Pathway To The Stars: Part 8, Dreamy & Deep Is Out! (eBook & Paperback!) "This Is It. This Is Humanity

Pathway to the Stars: Part 8, Dreamy & Deep is out! (eBook & Paperback!) "This is it. This is humanity stepping it up and demonstrating to the universe that we were ready to preserve life, reanimate it, and protect the Universe itself from the laws of uncontrolled chaos-rather than destroy life or watch the universe expand beyond repair." Vesha has been through a lot of training in the Virtual Universe, but soon her time will come to return to the real world. Leading to this, her dear friend, Najem Grace, has long weighed in the prospects of physiological optimization yet has stayed the hands of technology. Perhaps Vesha's outcome will help her decide; perhaps it won't. Is this the new evolution? Or are we tempting fate? Joanne Gallant, a musician with all the awards and the talent that goes with it, experiences life with deep questions. Her wonder is if there is more than this, more she can do, beyond the applause and recognition. Where is Eliza Williams, the founder of Pathway in all of this? How will she help both Najem and Joanne? Find out in this story! Dreamy & Deep, ISBN: 978-1951321086, LCCN: 2019918460 eBook: https://smile.amazon.com/dp/B081XK1XN2 Paperback: https://smile.amazon.com/dp/1951321081 More info: https://www.mjopublications.com https://smile.amazon.com/author/matthewopdyke

More Posts from Matthewjopdyke and Others

6 years ago
Happy To Announce That The Trilogy For Pathway To The Stars: Parts 1, 2, And 3, Has Now Been Released

Happy to announce that the Trilogy for Pathway to the Stars: Parts 1, 2, and 3, has now been released in one 6" x 9" volume, with a little "Teaser" from Pathway to the Stars: Part 4, Universal Party, at the end. I am currently working on Part 4 during any free moments that come my way. https://www.amazon.com/dp/B07NC8W6V5 https://www.instagram.com/p/BtaV1Arlvfk/?utm_source=ig_tumblr_share&igshid=h2icug9jmfw0

6 years ago
Just Published, Pathway To The Stars: Part 3, James Cooper! Woot! Http://www.amazon.com/dp/B07K2B5WS3

Just published, Pathway to the Stars: Part 3, James Cooper! Woot! http://www.amazon.com/dp/B07K2B5WS3 #future #scififantasy #architect #pathwaytothestars #strongfemalelead #strongmalerolemodel #physiology #neuroscience #physics #theoreticalphysics #biotechnology #nanotechnology #longevity #CRISPR #politicalsciencefiction #matthewopdyke https://www.instagram.com/p/BpswVbAHJ5d/?utm_source=ig_tumblr_share&igshid=o8byncedd7qp


Tags
5 years ago

SPACE: A Global Frontier

Space is a global frontier. That’s why we partner with nations all around the world to further the advancement of science and to push the boundaries of human exploration. With international collaboration, we have sent space telescopes to observe distant galaxies, established a sustainable, orbiting laboratory 254 miles above our planet’s surface and more! As we look forward to the next giant leaps in space exploration with our Artemis lunar exploration program, we will continue to go forth with international partnerships!

Teamwork makes the dream work. Here are a few of our notable collaborations:

Artemis Program

image

Our Artemis lunar exploration program will send the first woman and the next man to the Moon by 2024. Using innovative technologies and international partnerships, we will explore more of the lunar surface than ever before and establish sustainable missions by 2028.

During these missions, the Orion spacecraft will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability and provide safe re-entry from deep space return velocities. The European Service Module, provided by the European Space Agency, will serve as the spacecraft’s powerhouse and supply it with electricity, propulsion, thermal control, air and water in space.

image

The Gateway, a small spaceship that will orbit the Moon, will be a home base for astronauts to maintain frequent and sustainable crewed missions to the lunar surface. With the help of a coalition of nations, this new spaceship will be assembled in space and built within the next decade.

Gateway already has far-reaching international support, with 14 space agencies agreeing on its importance in expanding humanity’s presence on the Moon, Mars and deeper into the solar system.

International Space Station

image

The International Space Station (ISS) is one of the most ambitious international collaborations ever attempted. Launched in 1998 and involving the U.S., Russia, Canada, Japan and the participating countries of the European Space Agency — the ISS has been the epitome of global cooperation for the benefit of humankind. The largest space station ever constructed, the orbital laboratory continues to bring together international flight crews, globally distributed launches, operations, training, engineering and the world’s scientific research community.

Hubble Space Telescope 

image

The Hubble Space Telescope, one of our greatest windows into worlds light-years away, was built with contributions from the European Space Agency (ESA).

image

ESA provided the original Faint Object Camera and solar panels, and continues to provide science operations support for the telescope. 

Deep Space Network

image

The Deep Space Network (DSN) is an international array of giant radio antennas that span the world, with stations in the United States, Australia and Spain. The three facilities are equidistant approximately one-third of the way around the world from one another – to permit constant communication with spacecraft as our planet rotates. The network supports interplanetary spacecraft missions and a few that orbit Earth. It also provides radar and radio astronomy observations that improve our understanding of the solar system and the larger universe!

Mars Missions 

Information gathered today by robots on Mars will help get humans to the Red Planet in the not-too-distant future. Many of our Martian rovers – both past, present and future – are the products of a coalition of science teams distributed around the globe. Here are a few notable ones:

Curiosity Mars Rover 

image

France: ChemCam, the rover’s laser instrument that can analyze rocks from more than 20 feet away

Russia: DAN, which looks for subsurface water and water locked in minerals

Spain: REMS, the rover’s weather station

InSight Mars Lander

image

France with contributions from Switzerland: SEIS, the first seismometer on the surface of another planet

Germany: HP3, the heatflow probe that will help us understand the interior structure of Mars

Spain: APSS, the lander’s weather station

Mars 2020 Rover

image

Norway: RIMFAX, a ground-penetrating radar

France: SuperCam, the laser instrument for remote science

Spain: MEDA, the rover’s weather station

Space-Analog Astronaut Training

We partner with space agencies around the globe on space-analog missions. Analog missions are field tests in locations that have physical similarities to the extreme space environments. They take astronauts to space-like environments to prepare as international teams for near-term and future exploration to asteroids, Mars and the Moon.

image

The European Space Agency hosts the Cooperative Adventure for Valuing and Exercising human behavior and performance Skills (CAVES) mission. The two week training prepares multicultural teams of astronauts to work safely and effectively in an environment where safety is critical. The mission is designed to foster skills such as communication, problem solving, decision-making and team dynamics.

image

We host our own analog mission, underwater! The NASA Extreme Environment Mission Operations (NEEMO) project sends international teams of astronauts, engineers and scientists to live in the world’s only undersea research station, Aquarius, for up to three weeks. Here, “aquanauts” as we call them, simulate living on a spacecraft and test spacewalk techniques for future space missions in hostile environments.

International Astronautical Congress 

So, whether we’re collaborating as a science team around the globe, or shoulder-to-shoulder on a spacewalk, we are committed to working together with international partners for the benefit of all humanity! 

If you’re interested in learning more about how the global space industry works together, check out our coverage of the 70th International Astronautical Congress (IAC) happening this week in Washington, D.C. IAC is a yearly gathering in which all space players meet to talk about the advancements and progress in exploration.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

6 years ago

Further than Before: Pathway to the Stars, Tome (Parts 1 & 2 Combined!)

View this post on Instagram

Combined as one! Further than Before: Pathway to the Stars, Parts 1 & 2 in an 8.3 x 11.7 inch novel of 400K words that hit the intellect in the best and most sophisticated ways,… through #scifi #fantasy #mustread #physics #theoreticalphysics #spaceopera #strongfemalelead #strongmalerolemodel #physiology #neuroscience #nanotechnology…

View On WordPress

6 years ago
Author – Matthew J. Opdyke Matthew J Opdyke Is A Published Science Fiction Author With A Passion To

Author – Matthew J. Opdyke Matthew J Opdyke is a published Science Fiction Author with a passion to take his audience on journey's into the cosmos and to inspire his audience to look at the world with a new vision of futurism and enhancing a state of mind toward progression.

8 years ago

Largest Batch of Earth-size, Habitable Zone Planets

Our Spitzer Space Telescope has revealed the first known system of seven Earth-size planets around a single star. Three of these planets are firmly located in an area called the habitable zone, where liquid water is most likely to exist on a rocky planet.

image

This exoplanet system is called TRAPPIST-1, named for The Transiting Planets and Planetesimals Small Telescope (TRAPPIST) in Chile. In May 2016, researchers using TRAPPIST announced they had discovered three planets in the system.

image

Assisted by several ground-based telescopes, Spitzer confirmed the existence of two of these planets and discovered five additional ones, increasing the number of known planets in the system to seven.

image

This is the FIRST time three terrestrial planets have been found in the habitable zone of a star, and this is the FIRST time we have been able to measure both the masses and the radius for habitable zone Earth-sized planets.

All of these seven planets could have liquid water, key to life as we know it, under the right atmospheric conditions, but the chances are highest with the three in the habitable zone.

image

At about 40 light-years (235 trillion miles) from Earth, the system of planets is relatively close to us, in the constellation Aquarius. Because they are located outside of our solar system, these planets are scientifically known as exoplanets. To clarify, exoplanets are planets outside our solar system that orbit a sun-like star.

image

In this animation, you can see the planets orbiting the star, with the green area representing the famous habitable zone, defined as the range of distance to the star for which an Earth-like planet is the most likely to harbor abundant liquid water on its surface. Planets e, f and g fall in the habitable zone of the star.

Using Spitzer data, the team precisely measured the sizes of the seven planets and developed first estimates of the masses of six of them. The mass of the seventh and farthest exoplanet has not yet been estimated.

image

For comparison…if our sun was the size of a basketball, the TRAPPIST-1 star would be the size of a golf ball.

Based on their densities, all of the TRAPPIST-1 planets are likely to be rocky. Further observations will not only help determine whether they are rich in water, but also possibly reveal whether any could have liquid water on their surfaces.

The sun at the center of this system is classified as an ultra-cool dwarf and is so cool that liquid water could survive on planets orbiting very close to it, closer than is possible on planets in our solar system. All seven of the TRAPPIST-1 planetary orbits are closer to their host star than Mercury is to our sun.

image

 The planets also are very close to each other. How close? Well, if a person was standing on one of the planet’s surface, they could gaze up and potentially see geological features or clouds of neighboring worlds, which would sometimes appear larger than the moon in Earth’s sky.

image

The planets may also be tidally-locked to their star, which means the same side of the planet is always facing the star, therefore each side is either perpetual day or night. This could mean they have weather patterns totally unlike those on Earth, such as strong wind blowing from the day side to the night side, and extreme temperature changes.

image

Because most TRAPPIST-1 planets are likely to be rocky, and they are very close to one another, scientists view the Galilean moons of Jupiter – lo, Europa, Callisto, Ganymede – as good comparisons in our solar system. All of these moons are also tidally locked to Jupiter. The TRAPPIST-1 star is only slightly wider than Jupiter, yet much warmer. 

How Did the Spitzer Space Telescope Detect this System?

Spitzer, an infrared telescope that trails Earth as it orbits the sun, was well-suited for studying TRAPPIST-1 because the star glows brightest in infrared light, whose wavelengths are longer than the eye can see. Spitzer is uniquely positioned in its orbit to observe enough crossing (aka transits) of the planets in front of the host star to reveal the complex architecture of the system. 

image

Every time a planet passes by, or transits, a star, it blocks out some light. Spitzer measured the dips in light and based on how big the dip, you can determine the size of the planet. The timing of the transits tells you how long it takes for the planet to orbit the star.

image

The TRAPPIST-1 system provides one of the best opportunities in the next decade to study the atmospheres around Earth-size planets. Spitzer, Hubble and Kepler will help astronomers plan for follow-up studies using our upcoming James Webb Space Telescope, launching in 2018. With much greater sensitivity, Webb will be able to detect the chemical fingerprints of water, methane, oxygen, ozone and other components of a planet’s atmosphere.

At 40 light-years away, humans won’t be visiting this system in person anytime soon…that said…this poster can help us imagine what it would be like: 

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

5 years ago
2020 February 19

2020 February 19

UGC 12591: The Fastest Rotating Galaxy Known Image Credit: NASA, ESA, Hubble; Processing & Copyright: Leo Shatz

Explanation: Why does this galaxy spin so fast? To start, even identifying which type of galaxy UGC 12591 is difficult – featured on the lower left, it has dark dust lanes like a spiral galaxy but a large diffuse bulge of stars like a lenticular. Surprisingly observations show that UGC 12591 spins at about 480 km/sec, almost twice as fast as our Milky Way, and the fastest rotation rate yet measured. The mass needed to hold together a galaxy spinning this fast is several times the mass of our Milky Way Galaxy. Progenitor scenarios for UGC 12591 include slow growth by accreting ambient matter, or rapid growth through a recent galaxy collision or collisions – future observations may tell. The light we see today from UGC 12591 left about 400 million years ago, when trees were first developing on Earth.

∞ Source: apod.nasa.gov/apod/ap200219.html

7 years ago

Meet Fermi: Our Eyes on the Gamma-Ray Sky

Black holes, cosmic rays, neutron stars and even new kinds of physics — for 10 years, data from our Fermi Gamma-ray Space Telescope have helped unravel some of the biggest mysteries of the cosmos. And Fermi is far from finished!

image

On June 11, 2008, at Cape Canaveral in Florida, the countdown started for Fermi, which was called the Gamma-ray Large Area Space Telescope (GLAST) at the time. 

The telescope was renamed after launch to honor Enrico Fermi, an Italian-American pioneer in high-energy physics who also helped develop the first nuclear reactor. 

Fermi has had many other things named after him, like Fermi’s Paradox, the Fermi National Accelerator Laboratory, the Enrico Fermi Nuclear Generating Station, the Enrico Fermi Institute, and the synthetic element fermium.

image

Photo courtesy of Argonne National Laboratory

The Fermi telescope measures some of the highest energy bursts of light in the universe; watching the sky to help scientists answer all sorts of questions about some of the most powerful objects in the universe. 

Its main instrument is the Large Area Telescope (LAT), which can view 20% of the sky at a time and makes a new image of the whole gamma-ray sky every three hours. Fermi’s other instrument is the Gamma-ray Burst Monitor. It sees even more of the sky at lower energies and is designed to detect brief flashes of gamma-rays from the cosmos and Earth.

image

This sky map below is from 2013 and shows all of the high energy gamma rays observed by the LAT during Fermi’s first five years in space.  The bright glowing band along the map’s center is our own Milky Way galaxy!

image

So what are gamma rays? 

Well, they’re a form of light. But light with so much energy and with such short wavelengths that we can’t see them with the naked eye. Gamma rays require a ton of energy to produce — from things like subatomic particles (such as protons) smashing into each other. 

Here on Earth, you can get them in nuclear reactors and lightning strikes. Here’s a glimpse of the Seattle skyline if you could pop on a pair of gamma-ray goggles. That purple streak? That’s still the Milky Way, which is consistently the brightest source of gamma rays in our sky.

image

In space, you find that kind of energy in places like black holes and neutron stars. The raindrop-looking animation below shows a big flare of gamma rays that Fermi spotted coming from something called a blazar, which is a kind of quasar, which is different from a pulsar… actually, let’s back this up a little bit.

image

One of the sources of gamma rays that Fermi spots are pulsars. Pulsars are a kind of neutron star, which is a kind of star that used to be a lot bigger, but collapsed into something that’s smaller and a lot denser. Pulsars send out beams of gamma rays. But the thing about pulsars is that they rotate. 

So Fermi only sees a beam of gamma rays from a pulsar when it’s pointed towards Earth. Kind of like how you only periodically see the beam from a lighthouse. These flashes of light are very regular. You could almost set your watch by them!

image

Quasars are supermassive black holes surrounded by disks of gas. As the gas falls into the black hole, it releases massive amount of energy, including — you guessed it — gamma rays. Blazars are quasars that send out beams of gamma rays and other forms of light — right in our direction. 

When Fermi sees them, it’s basically looking straight down this tunnel of light, almost all the way back to the black hole. This means we can learn about the kinds of conditions in that environment when the rays were emitted. Fermi has found about 5,500 individual sources of gamma rays, and the bulk of them have been blazars, which is pretty nifty.

image

But gamma rays also have many other sources. We’ve seen them coming from supernovas where stars die and from star factories where stars are born. They’re created in lightning storms here on Earth, and our own Sun can toss them out in solar flares. 

Gamma rays were in the news last year because of something Fermi spotted at almost the same time as the National Science Foundation (NSF)’s Laser Interferometer Gravitational-Wave Observatory (LIGO) and European Gravitational Observatory’s Virgo on August 17, 2017. Fermi, LIGO, Virgo, and numerous other observatories spotted the merger of two neutron stars. It was the first time that gravitational waves and light were confirmed to come from the same source.

image

Fermi has been looking at the sky for almost 10 years now, and it’s helped scientists advance our understanding of the universe in many ways. And the longer it looks, the more we’ll learn. Discover more about how we’ll be celebrating Fermi’s achievements all year.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

7 years ago

Nice view of Earth...

Our pale blue dot, planet Earth, is seen in this video captured by NASA astronaut Jack Fischer from his unique vantage point on the International Space Station. From 250 miles above our home planet, this time-lapse imagery takes us over the Pacific Ocean’s moon glint and above the night lights of San Francisco, CA. The thin hue of our atmosphere is visible surrounding our planet with a majestic white layer of clouds sporadically seen underneath.

The International Space Station is currently home to 6 people who are living and working in microgravity. As it orbits our planet at 17,500 miles per hour, the crew onboard is conducting important research that benefits life here on Earth.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Loading...
End of content
No more pages to load
  • matthewjopdyke
    matthewjopdyke reblogged this · 5 years ago
matthewjopdyke - Matthew J. Opdyke
Matthew J. Opdyke

Author Matthew J. Opdyke, Science Fiction and Fantasy

147 posts

Explore Tumblr Blog
Search Through Tumblr Tags