Mars Pathfinder & Sojourner Rover (360 View) Explained

Mars Pathfinder & Sojourner Rover (360 View) Explained
Mars Pathfinder & Sojourner Rover (360 View) Explained

Mars Pathfinder & Sojourner Rover (360 View) Explained

Thanks to new technology, we can take a 360-degree tour of the 1997 Pathfinder mission landing site, including Sojourner, the first Mars rover. Check out this interactive YouTube panorama, and then…

…keep scrolling to find out more about each point of interest, how the Pathfinder mission compares to “The Martian” and NASA’s real Journey to Mars.

image

Yogi

“Yogi” is a meter-size rock about 5 meters northwest of the Mars Pathfinder lander and the second rock visited by the Sojourner Rover’s alpha proton X-ray spectrometer (APXS) instrument. This mosaic shows super resolution techniques applied to help to address questions about the texture of this rock and what it might tell us about how it came to be.

image

Twin Peaks

The Twin Peaks are modest-size hills to the southwest of the Mars Pathfinder landing site. They were discovered on the first panoramas taken by the IMP camera on the July 4, 1997, and subsequently identified in Viking Orbiter images taken over 20 years ago. They’re about 30-35 meters tall.

image

Barnacle Bill

“Barnacle Bill” is a small rock immediately west-northwest of the Mars Pathfinder lander and was the first rock visited by the Sojourner Rover’s alpha proton X-ray spectrometer (APXS) instrument. If you have some old-school red-cyan glasses, put them on and see this pic in eye-popping 3-D.

image

Rock Garden

The Rock Garden is a cluster of large, angular rocks tilted in a downstream direction from ancient floods on Mars. The rocky surface is comprised of materials washed down from the highlands and deposited in this ancient outflow channel.

image

MOAR INFO

Pathfinder Lander & Sojourner Rover 

Mission Facts [PDF]

Science Results

Rock & Soil Types

image
image

This vista was stitched together from many images taken in 1997 by Pathfinder.

image

Pathfinder and Sojourner figure into Mark Watney’s quest for survival on the Red Planet in the book and movie, “The Martian.” See JPL’s role in making “The Martian” a reality: http://go.nasa.gov/1McRrXw and discover nine real NASA technologies depicted in “The Martian”: http://go.nasa.gov/1QiyUiC.

image

So what about the real-life “Journey to Mars”? NASA is developing the capabilities needed to send humans to Mars in the 2030s. Discover more at http://nasa.gov/journeytomars and don’t forget to visit me when you make it to the Red Planet. Until then, stay curious and I’ll see you online.

More Posts from Nasa and Others

5 years ago

What’s the best piece of advice you have ever received?


Tags
6 years ago

9 Ocean Facts You Likely Don’t Know, but Should

Earth is a place dominated by water, mainly oceans. It’s also a place our researchers study to understand life. Trillions of gallons of water flow freely across the surface of our blue-green planet. Ocean’s vibrant ecosystems impact our lives in many ways. 

In celebration of World Oceans Day, here are a few things you might not know about these complex waterways.

1. Why is the ocean blue? 

image

The way light is absorbed and scattered throughout the ocean determines which colors it takes on. Red, orange, yellow,and green light are absorbed quickly beneath the surface, leaving blue light to be scattered and reflected back. This causes us to see various blue and violet hues.

2. Want a good fishing spot? 

image

Follow the phytoplankton! These small plant-like organisms are the beginning of the food web for most of the ocean. As phytoplankton grow and multiply, they are eaten by zooplankton, small fish and other animals. Larger animals then eat the smaller ones. The fishing industry identifies good spots by using ocean color images to locate areas rich in phytoplankton. Phytoplankton, as revealed by ocean color, frequently show scientists where ocean currents provide nutrients for plant growth.

3. The ocean is many colors. 

image

When we look at the ocean from space, we see many different shades of blue. Using instruments that are more sensitive than the human eye, we can measure carefully the fantastic array of colors of the ocean. Different colors may reveal the presence and amount of phytoplankton, sediments and dissolved organic matter.

4. The ocean can be a dark place. 

About 70 percent of the planet is ocean, with an average depth of more than 12,400 feet. Given that light doesn’t penetrate much deeper than 330 feet below the water’s surface (in the clearest water), most of our planet is in a perpetual state of darkness. Although dark, this part of the ocean still supports many forms of life, some of which are fed by sinking phytoplankton. 

5. We study all aspects of ocean life. 

image

Instruments on satellites in space, hundreds of kilometers above us, can measure many things about the sea: surface winds, sea surface temperature, water color, wave height, and height of the ocean surface.

6. In a gallon of average sea water, there is about 1/2 cup of salt. 

image

The amount of salt varies depending on location. The Atlantic Ocean is saltier than the Pacific Ocean, for instance. Most of the salt in the ocean is the same kind of salt we put on our food: sodium chloride.

7. A single drop of sea water is teeming with life.  

image

It will most likely have millions (yes, millions!) of bacteria and viruses, thousands of phytoplankton cells, and even some fish eggs, baby crabs, and small worms. 

8. Where does Earth store freshwater? 

image

Just 3.5 percent of Earth’s water is fresh—that is, with few salts in it. You can find Earth’s freshwater in our lakes, rivers, and streams, but don’t forget groundwater and glaciers. Over 68 percent of Earth’s freshwater is locked up in ice and glaciers. And another 30 percent is in groundwater. 

9. Phytoplankton are the “lungs of the ocean”.

image

Just like forests are considered the “lungs of the earth”, phytoplankton is known for providing the same service in the ocean! They consume carbon dioxide, dissolved in the sunlit portion of the ocean, and produce about half of the world’s oxygen. 

Want to learn more about how we study the ocean? Follow @NASAEarth on twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
7 years ago

The National Space Council

October 5 marks the first meeting of the National Space Council since 1993. But what is it and why does it matter? Let us explain by taking a trip back in history… We’ve teleported back to 1958…President Dwight Eisenhower is in office and the National Aeronautics and Space Council was created with the signing of the Space Act that year. President Eisenhower chaired the first National Aeronautics and Space Council (NASC). That council continued during the Kennedy, Johnson and Nixon Administrations during which we put an American in outer space with John Glenn in 1962 and put humans on the moon starting in 1969. That Council was disbanded in 1973.

image

In 1989, President George H.W. Bush’s Administration reinstated what was known as the National Space Council, which was designed to help chart national space policy and the roles of multiple federal agencies such as NASA. The Space Council disbanded again in 1993.

On June 30, 2017, President Trump signed an executive order reestablishing the National Space Council – which brings us to today. The current National Space Council will bring a unified national perspective on space policy to the Administration by coordinating the views of the civilian, commercial and national security sectors.

image

So now that you have a bit of the history…why does this matter?

With the Oct. 5 meeting, titled “Leading the Next Frontier: An Event with the National Space Council,” Vice President Mike Pence will convene this council and have participation from acting NASA Administrator Robert Lightfoot, as well as a number of Trump Administration cabinet members and senior officials, and aerospace industry leaders.

image

During the council’s first meeting, we will hear from experts who represent various parts of the space industry: Civil Space, Commercial Space and National Security Space.

You can watch the first meeting of the National Space Council starting at 10 a.m. EDT HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

@paleskeletonuniversitypizza: How does it feel to experience weightlessness for the first time? 


Tags
3 years ago

Decoding Nebulae

We can agree that nebulae are some of the most majestic-looking objects in the universe. But what are they exactly? Nebulae are giant clouds of gas and dust in space. They’re commonly associated with two parts of the life cycle of stars: First, they can be nurseries forming new baby stars. Second, expanding clouds of gas and dust can mark where stars have died.

Decoding Nebulae

Not all nebulae are alike, and their different appearances tell us what's happening around them. Since not all nebulae emit light of their own, there are different ways that the clouds of gas and dust reveal themselves. Some nebulae scatter the light of stars hiding in or near them. These are called reflection nebulae and are a bit like seeing a street lamp illuminate the fog around it.

Decoding Nebulae

In another type, called emission nebulae, stars heat up the clouds of gas, whose chemicals respond by glowing in different colors. Think of it like a neon sign hanging in a shop window!

Decoding Nebulae

Finally there are nebulae with dust so thick that we’re unable to see the visible light from young stars shine through it. These are called dark nebulae.

Decoding Nebulae

Our missions help us see nebulae and identify the different elements that oftentimes light them up.

The Hubble Space Telescope is able to observe the cosmos in multiple wavelengths of light, ranging from ultraviolet, visible, and near-infrared. Hubble peered at the iconic Eagle Nebula in visible and infrared light, revealing these grand spires of dust and countless stars within and around them.

Decoding Nebulae

The Chandra X-ray Observatory studies the universe in X-ray light! The spacecraft is helping scientists see features within nebulae that might otherwise be hidden by gas and dust when viewed in longer wavelengths like visible and infrared light. In the Crab Nebula, Chandra sees high-energy X-rays from a pulsar (a type of rapidly spinning neutron star, which is the crushed, city-sized core of a star that exploded as a supernova).

Decoding Nebulae

The James Webb Space Telescope will primarily observe the infrared universe. With Webb, scientists will peer deep into clouds of dust and gas to study how stars and planetary systems form.

Decoding Nebulae

The Spitzer Space Telescope studied the cosmos for over 16 years before retiring in 2020. With the help of its detectors, Spitzer revealed unknown materials hiding in nebulae — like oddly-shaped molecules and soot-like materials, which were found in the California Nebula.

Decoding Nebulae

Studying nebulae helps scientists understand the life cycle of stars. Did you know our Sun got its start in a stellar nursery? Over 4.5 billion years ago, some gas and dust in a nebula clumped together due to gravity, and a baby Sun was born. The process to form a baby star itself can take a million years or more!

Decoding Nebulae

After billions more years, our Sun will eventually puff into a huge red giant star before leaving behind a beautiful planetary nebula (so-called because astronomers looking through early telescopes thought they resembled planets), along with a small, dense object called a white dwarf that will cool down very slowly. In fact, we don’t think the universe is old enough yet for any white dwarfs to have cooled down completely.

Since the Sun will live so much longer than us, scientists can't observe its whole life cycle directly ... but they can study tons of other stars and nebulae at different phases of their lives and draw conclusions about where our Sun came from and where it's headed. While studying nebulae, we’re seeing the past, present, and future of our Sun and trillions of others like it in the cosmos.

Decoding Nebulae

To keep up with the most recent cosmic news, follow NASA Universe on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space.


Tags
5 years ago

Hi Kate! What did you learn from your Heart Cells experiment? Sounds so interesting!


Tags
5 years ago

How does the whole sleeping situation work with 0 gravity, or do sleep mid air?


Tags
3 years ago
Spotted: Signs Of A Planet About 28 Million Light-years Away 🔎 🪐

Spotted: signs of a planet about 28 million light-years away 🔎 🪐

For the first time, astronomers may have detected an exoplanet candidate outside of the Milky Way galaxy. Exoplanets are defined as planets outside of our Solar System. All other known exoplanets and exoplanet candidates have been found in the Milky Way, almost all of them less than about 3,000 light-years from Earth.

This new result is based on transits, events in which the passage of a planet in front of a star blocks some of the star's light and produces a characteristic dip. Researchers used our Chandra X-ray Observatory to search for dips in the brightness of X-rays received from X-ray bright binaries in the spiral galaxy Messier 51, also called the Whirlpool Galaxy (pictured here). These luminous systems typically contain a neutron star or black hole pulling in gas from a closely orbiting companion star. They estimate the exoplanet candidate would be roughly the size of Saturn, and orbit the neutron star or black hole at about twice the distance of Saturn from the Sun.

This composite image of the Whirlpool Galaxy was made with X-ray data from Chandra and optical light from our Hubble Space Telescope.

Credit: X-ray: NASA/CXC/SAO/R. DiStefano, et al.; Optical: NASA/ESA/STScI/Grendler

Make sure to follow us on Tumblr for your regular dose of space!


Tags
7 years ago

The 2017 Atlantic Hurricane Season: What We Learned

image

The 2017 Atlantic hurricane season was among the top ten most active seasons in recorded history. Our experts are exploring what made this year particularly active and the science behind some of the biggest storms to date.

image

After a period of 12 years without a Category 3 or higher hurricane making landfall in the U.S., Hurricane Harvey made landfall over Texas as a Category 4 hurricane this August.

Harvey was also the biggest rainfall event ever to hit the continental U.S. with estimates more than 49 inches of rain.

image

Data like this from our Global Precipitation Measurement Mission, which shows the amount of rainfall from the storm and temperatures within the story, are helping scientists better understand how storms develop. 

image

The unique vantage point of satellites can also help first responders, and this year satellite data helped organizations map out response strategies during hurricanes Harvey, Irma and Maria. 
 

image

In addition to satellites, we use ground stations and aircraft to track hurricanes.

image

We also use the capabilities of satellites like Suomi NPP and others that are able to take nighttime views. In this instance, we were able to view the power outages in Puerto Rico. This allowed first responders to see where the location of impacted urban areas.

image

The combined effort between us, NOAA, FEMA and other federal agencies helps us understand more about how major storms develop, how they gain strength and how they affect us. 

image

To learn more about how we study storms, go to www.nasa.gov/Hurricanes.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

More Than Just Drawings

Artist and graphic designer Mike Okuda may not be a household name, but you’re more familiar with his work than you know. Okuda’s artistic vision has left a mark here at NASA and on Star Trek. The series debuted 50 years ago in September 1966 and the distinctive lines and shapes of logos and ships that he created have etched their way into the minds of fans and inspired many.  

Flight Ops

image

The Flight Operations patch has a lengthy history, the original version of which dates to the early 1970s. Having designed a version of the patch, Okuda had some insights about the evolution of the design.

“The original version of that emblem was designed around 1972 by Robert McCall and represented Mission Control. It later changed to Mission Operations. I did the 2004 version, incorporating the space station, and reflecting the long-term goals of returning to the Moon, then on to Mars and beyond. I later did a version intended to reflect the new generation of spacecraft that are succeeding the shuttle, and most recently the 2014 version reflecting the merger of Mission Operations with the Astronaut Office under the new banner Flight Operations.”

“The NASA logos and patches are an important part of NASA culture,” Okuda said. “They create a team identity and they focus pride on a mission.”

image

In July 2009, Okuda received the NASA Exceptional Public Service Medal, which is awarded to those who are not government employees, but have made exceptional contributions to NASA’s mission. Above, Okuda holds one of the mission patches he designed, this one for STS-125, the final servicing mission to the Hubble Space Telescope.

Orion

image

Among the other patches that Okuda has designed for us, it one for the Orion crew exploration vehicle. Orion is an integral of our Journey to Mars and is an advanced spacecraft that will take our astronauts deeper into the solar system than ever before. 

Okuda’s vision of space can be seen in the Star Trek series through his futuristic set designs, a vision that came from his childhood fascination with the space program. 

Learn more about Star Trek and NASA.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
  • sakurafarron
    sakurafarron liked this · 1 year ago
  • sadatmirza
    sadatmirza liked this · 1 year ago
  • conversetheatrekid
    conversetheatrekid liked this · 4 years ago
  • keanuismygod
    keanuismygod liked this · 4 years ago
  • mi9dre5lec2ion
    mi9dre5lec2ion liked this · 5 years ago
  • reddog1984
    reddog1984 reblogged this · 5 years ago
  • ardricael
    ardricael liked this · 5 years ago
  • homosexualangelinthesky
    homosexualangelinthesky reblogged this · 5 years ago
  • drunkenhills
    drunkenhills liked this · 6 years ago
  • theseviolentdelights-insta
    theseviolentdelights-insta liked this · 6 years ago
  • writetothemoon
    writetothemoon liked this · 6 years ago
  • hazelandglasz
    hazelandglasz liked this · 6 years ago
  • why-so-red
    why-so-red liked this · 6 years ago
  • jarmilatblr
    jarmilatblr liked this · 6 years ago
  • xferxanix
    xferxanix liked this · 6 years ago
  • silverwolf02001
    silverwolf02001 liked this · 6 years ago
  • teenageunderdog
    teenageunderdog liked this · 6 years ago
  • resylesy
    resylesy liked this · 6 years ago
  • cabbagecrunt
    cabbagecrunt reblogged this · 6 years ago
  • reyisbae580
    reyisbae580 liked this · 7 years ago
  • thealmightykurama
    thealmightykurama reblogged this · 7 years ago
  • a-n-i-m-e-us
    a-n-i-m-e-us reblogged this · 7 years ago
  • alnoobi302-blog
    alnoobi302-blog liked this · 7 years ago
  • samiradaystar-blog
    samiradaystar-blog liked this · 7 years ago
  • astex72
    astex72 liked this · 7 years ago
  • robhol272-blog
    robhol272-blog liked this · 7 years ago
  • nugzzy
    nugzzy liked this · 7 years ago
  • vladdonskoy-blog
    vladdonskoy-blog liked this · 7 years ago
  • passionikeaccendonoilcuore
    passionikeaccendonoilcuore reblogged this · 7 years ago
  • anony-mouse1
    anony-mouse1 liked this · 7 years ago
  • switchback-pony
    switchback-pony liked this · 7 years ago
  • featherishere-blog
    featherishere-blog liked this · 7 years ago
  • 7even11eleven-blog
    7even11eleven-blog liked this · 7 years ago
  • imtherealbillybatson
    imtherealbillybatson liked this · 7 years ago
  • scott-mcallmelater
    scott-mcallmelater liked this · 7 years ago
  • fidy1977
    fidy1977 liked this · 7 years ago
  • swacwaeth
    swacwaeth liked this · 7 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags