What Did Astronaut Scott Kelly Do After A #YearInSpace?

What Did Astronaut Scott Kelly Do After a #YearInSpace?

Astronaut Scott Kelly just returned from his One-Year Mission aboard the International Space Station. After spending 340 days on orbit, you can imagine that he started to miss a few Earthly activities. Here are a few things he did after his return home:

Watched a Sunset

image

While on the International Space Station for his One-Year Mission, astronaut Scott Kelly saw 16 sunrises/sunsets each day...so he definitely didn’t miss out on the beauty. That said, watching a sunset while on Earth is something that he had to wait to see. Tweet available HERE. 

Ate Fresh Food

image

After spending a year on the International Space Station, eating precooked food, anyone would be excited to dig into a REAL salad. Astronaut Scott Kelly was no exception, and posted about his first salad on Earth after his one-year mission. Learn more about what astronauts eat while in space HERE. Tweet available HERE.

Jumped into a Pool

image

Water is a precious resource in space. Unfortunately, that means that there isn’t a pool on the space station. Luckily, astronaut Scott Kelly was able to jump into some water after his return to Earth. Tweet/video available HERE.

Sat at a Dinner Table

image

While living on the International Space Station, crew members regularly enjoy their meals together, but do so while floating in microgravity. The comfort of pulling up a chair to the dinner table is something they can only experience once they’re back home on Earth. Tweet available HERE.

Enjoyed the Weather

image

When crew members live on the space station they can’t just step outside for a stroll. The only time they go outside the orbiting laboratory is during a spacewalk. Even then, they are confined inside a bulky spacesuit. Experiencing the cool breeze or drops of rain are Earthly luxuries. Tweet available HERE.

Stopped by the Doctor’s Office

image

The One-Year Mission doesn’t stop now that astronaut Scott Kelly is back on Earth. Follow-up exams and tests will help scientists understand the impacts of microgravity on the human body during long-duration spaceflight. This research will help us on our journey to Mars. Tweet available HERE. 

Visited the Denist

image

When you spend a year in space, you’ll probably need to catch up on certain things when you return to Earth. Astronaut Scott Kelly made sure to include a visit to the dentist on his “return home checklist”. Tweet available HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

5 years ago

Is Earth your favorite planet? Why or why not?


Tags
5 years ago

What popular film is the closest to reality for you?


Tags
7 years ago

Science-Heavy SpaceX Dragon Headed to Space Station

Heads up: a new batch of science is headed to the International Space Station aboard the SpaceX Dragon on April 2, 2018. Launching from Florida's Cape Canaveral Air Force Station atop a Falcon 9 rocket, this fire breathing (well, kinda…) spacecraft will deliver science that studies thunderstorms on Earth, space gardening, potential pathogens in space, new ways to patch up wounds and more.

image

Let's break down some of that super cool science heading 250 miles above Earth to the orbiting laboratory:

Sprites and Elves in Space

Atmosphere-Space Interactions Monitor (ASIM) experiment will survey severe thunderstorms in Earth's atmosphere and upper-atmospheric lightning, or transient luminous events. 

image

These include sprites, flashes caused by electrical break-down in the mesosphere; the blue jet, a discharge from cloud tops upward into the stratosphere; and ELVES, concentric rings of emissions caused by an electromagnetic pulse in the ionosphere.

Here's a graphic showing the layers of the atmosphere for reference:

image

Metal Powder Fabrication

Our Sample Cartridge Assembly (MSL SCA-GEDS-German) experiment will determine underlying scientific principles for a fabrication process known as liquid phase sintering, in microgravity and Earth-gravity conditions.

image

Science term of the day: Liquid phase sintering works like building a sandcastle with just-wet-enough sand; heating a powder forms interparticle bonds and formation of a liquid phase accelerates this solidification, creating a rigid structure. But in microgravity, settling of powder grains does not occur and larger pores form, creating more porous and distorted samples than Earth-based sintering. 

Sintering has many applications on Earth, including metal cutting tools, automotive engine connecting rods, and self-lubricating bearings. It has potential as a way to perform in-space fabrication and repair, such as building structures on the moon or creating replacement parts during extraterrestrial exploration.

Plants in space! It's l[a]unch time!

Understanding how plants respond to microgravity and demonstrating reliable vegetable production in space represent important steps toward the goal of growing food for future long-duration missions. The Veggie Passive Orbital Nutrient Delivery System (Veggie PONDS) experiment will test a passive nutrient delivery system in the station's Veggie plant growth facility by cultivating lettuce and mizuna greens for harvest and consumption on orbit.

The PONDS design features low mass and low maintenance, requires no additional energy, and interfaces with the Veggie hardware, accommodating a variety of plant types and growth media.

image

Quick Science Tip: Download the Plant Growth App to grow your own veggies in space! Apple users can download the app HERE! Android users click HERE!

Testing Materials in Space

The Materials ISS Experiment Flight Facility (MISSE-FF) experiment will provide a unique platform for testing how materials, coatings and components react in the harsh environment of space.

image

A continuation of a previous experiment, this version's new design eliminates the need for astronauts to perform spacewalks for these investigations. New technology includes power and data collection options and the ability to take pictures of each sample on a monthly basis, or more often if required. The testing benefits a variety of industries, including automotive, aeronautics, energy, space, and transportation.

New Ways to Develop Drugs in Space

Science-Heavy SpaceX Dragon Headed To Space Station

Microgravity affects movement and effectiveness of drugs in unique ways. Microgravity studies already have resulted in innovative medicines to treat cancer, for example. The Metabolic Tracking investigation determines the possibility of developing improved drugs in microgravity, using a new method to test the metabolic impacts of drug compounds. This could lead to more effective, less expensive drugs.

Follow @ISS_Research on Twitter for your daily dose of nerdy, spacey goodness.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago
Aboard The International Space Station This Morning, Astronaut Kimiya Yui Of The Japan Aerospace Exploration

Aboard the International Space Station this morning, Astronaut Kimiya Yui of the Japan Aerospace Exploration Agency (JAXA) successfully captured JAXA's Kounotori 5 H-II Transfer Vehicle (HTV-5) at 6:28 a.m. EDT.

Yui commanded the station's robotic arm, Canadarm2, to reach out and grapple the HTV-5, while NASA astronauts Kjell Lindgren provided assistance and Scott Kelly monitored HTV-5 systems. The HTV-5 launched aboard an H-IIB rocket at 7:50 a.m. Wednesday, Aug. 19, from the Tanegashima Space Center in southern Japan. Since then, the spacecraft has performed a series of engine burns to fine-tune its course for arrival at the station.

The HTV-5 is delivering more than 8,000 pounds of equipment, supplies and experiments in a pressurized cargo compartment. The unpressurized compartment will deliver the 1,400-pound CALorimetric Electron Telescope (CALET) investigation, an astrophysics mission that will search for signatures of dark matter and provide the highest energy direct measurements of the cosmic ray electron spectrum.

Below is a breathtaking image shared by Astronaut Scott Kelly of the HTV-5 and Canadarm2, which reached out and grappled the cargo spacecraft.

Aboard The International Space Station This Morning, Astronaut Kimiya Yui Of The Japan Aerospace Exploration

Tags
3 years ago
Spread Your Cosmic Wings 🦋

Spread your cosmic wings 🦋

The Butterfly Nebula, created by a dying star, was captured by the Hubble Space Telescope in this spectacular image. Observations were taken over a more complete spectrum of light, helping researchers better understand the “wings'' of gas bursting out from its center. The nebula’s dying central star has become exceptionally hot, shining ultraviolet light brightly over the butterfly’s wings and causing the gas to glow.

Learn more about Hubble’s celebration of Nebula November and see new nebula images, here.

You can also keep up with Hubble on Twitter, Instagram, Facebook, and Flickr!

Image credits: NASA, ESA, and J. Kastner (RIT)


Tags
9 years ago

Solar System: 5 Things To Know This Week

Our solar system is huge, so let us break it down for you. Here are 5 things to know this week:

1. Dancing with a Star

image

Our local star, better known as the sun, teems with activity. This month NASA has been tracking regions that burst with magnetic loops. The Solar Dynamics Observatory is one of several space-based assets that keep tabs on the sun daily, watching as charged particles trace the magnetic field, forming bright lines as they emit light in ultraviolet wavelengths.

2. An Idyll for Ida

image

On Nov. 24, the asteroid Ida makes its closest approach to Earth (at a very safe distance). Ida is the first asteroid found to have its own moon, and the second ever visited by a spacecraft. Its close encounter happened in 1993 as Galileo flew by en route to Jupiter.

3. Moonshine

image

On Nov. 23, the Cassini spacecraft will fly near Saturn's icy moon Tethys. Several instruments aboard Cassini will collect data, including an eight-frame color image mosaic. Between Nov. 27 and Dec. 2, Cassini will have very limited communications with Earth, because Cassini will enter solar conjunction, when Cassini and Saturn are on the other side of the Sun from Earth.

4. The Moon Will Occult Aldebaran

image

That may sound ominous, but all it means is that Earth's moon will pass in front of the giant red star Aldebaran on Nov. 26. Aldebaran is the bright "eye" of the constellation Taurus. The event will only be visible in some parts of North America. Details can be found HERE. 

5. One Wild Ride, One Year Later

image

What a year it's been for the Rosetta mission since the Philae lander came to rest on the surface of Comet 67P/Churyumov-Gerasimenko in November 2014. A steady flow of data from the orbiter, together with several days of information sent from the lander, is providing a detailed picture of this remnant from the creation of the solar system.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
1 year ago
NASA astronaut Luke Delaney, a white man, poses for a portrait at NASA’s Johnson Space Center in Houston, Texas. His body is slightly turned as he looks ahead. Credit: NASA/Josh Valcarcel

Luke Delaney

Luke Delaney, born in Miami and a graduate of the University of North Florida, was a test pilot for the Marine Corps before applying to become a NASA astronaut. He loves nature and spending time outdoors with his family. https://go.nasa.gov/3uNL8xn

Make sure to follow us on Tumblr for your regular dose of space!


Tags
7 years ago
image

We're sorry, but we will not be posting updates to Tumblr during the government shutdown. Also, all public NASA activities and events are cancelled or postponed until further notice. We'll be back as soon as possible! Sorry for the inconvenience.

1 year ago
A color GIF looking down at the Ingenuity Mars Helicopter as it begins to spin its two counter-rotating blades. The small craft sits on red, rocky Martian terrain. There is red dust on the helicopter’s solar panel. Credit: NASA/JPL-Caltech/ASU

What We Learned from Flying a Helicopter on Mars

A color GIF of NASA's Ingenuity Mars Helicopter as it hovers slowly above the dusty, rocky Martian landscape. Credit: NASA/JPL-Caltech/ASU/MSSS

The Ingenuity Mars Helicopter made history – not only as the first aircraft to perform powered, controlled flight on another world – but also for exceeding expectations, pushing the limits, and setting the stage for future NASA aerial exploration of other worlds.

Built as a technology demonstration designed to perform up to five experimental test flights over 30 days, Ingenuity performed flight operations from the Martian surface for almost three years. The helicopter ended its mission on Jan. 25, 2024, after sustaining damage to its rotor blades during its 72nd flight.

So, what did we learn from this small but mighty helicopter?

We can fly rotorcraft in the thin atmosphere of other planets.

Ingenuity proved that powered, controlled flight is possible on other worlds when it took to the Martian skies for the first time on April 19, 2021.

Flying on planets like Mars is no easy feat: The Red Planet has a significantly lower gravity – one-third that of Earth’s – and an extremely thin atmosphere, with only 1% the pressure at the surface compared to our planet. This means there are relatively few air molecules with which Ingenuity’s two 4-foot-wide (1.2-meter-wide) rotor blades can interact to achieve flight.

Ingenuity performed several flights dedicated to understanding key aerodynamic effects and how they interact with the structure and control system of the helicopter, providing us with a treasure-trove of data on how aircraft fly in the Martian atmosphere.

Now, we can use this knowledge to directly improve performance and reduce risk on future planetary aerial vehicles.

NASA’s Ingenuity Mars Helicopter took this black-and-white photo while hovering over the Martian surface on April 19, 2021, during the first instance of powered, controlled flight on another planet. It used its navigation camera, which is mounted in its fuselage and pointed directly downward to track the ground during flight. The image shows the shadow of the Ingenuity Mars Helicopter on the surface of Mars. The black shadow of the helicopter is very crisp and clear against the white backdrop of the Martian sandy surface. Its wing-shaped rotors jut out from the sides of its square body, and from each corner is a thin leg that has a small ball shape at the end. Credit: NASA/JPL-Caltech

Creative solutions and “ingenuity” kept the helicopter flying longer than expected.

Over an extended mission that lasted for almost 1,000 Martian days (more than 33 times longer than originally planned), Ingenuity was upgraded with the ability to autonomously choose landing sites in treacherous terrain, dealt with a dead sensor, dusted itself off after dust storms, operated from 48 different airfields, performed three emergency landings, and survived a frigid Martian winter.

Fun fact: To keep costs low, the helicopter contained many off-the-shelf-commercial parts from the smartphone industry - parts that had never been tested in deep space. Those parts also surpassed expectations, proving durable throughout Ingenuity’s extended mission, and can inform future budget-conscious hardware solutions.

A split screen image. The left side of the image shows a close-up photo of an Ingenuity team member inspecting NASA's Ingenuity Mars Helicopter while it was still here on Earth. Across the image are bold white letters that spell out "DREAM." The right side of the image shows a close-up photo of Ingenuity after it landed on Mars. The helicopter sits on the dusty, rocky surface of the planet. Across the image are bold white letters that spell out "REALITY." Credit:NASA/JPL-Caltech

There is value in adding an aerial dimension to interplanetary surface missions.

Ingenuity traveled to Mars on the belly of the Perseverance rover, which served as the communications relay for Ingenuity and, therefore, was its constant companion. The helicopter also proved itself a helpful scout to the rover.

After its initial five flights in 2021, Ingenuity transitioned to an “operations demonstration,” serving as Perseverance’s eyes in the sky as it scouted science targets, potential rover routes, and inaccessible features, while also capturing stereo images for digital elevation maps.

Airborne assets like Ingenuity unlock a new dimension of exploration on Mars that we did not yet have – providing more pixels per meter of resolution for imaging than an orbiter and exploring locations a rover cannot reach.

A color-animated image sequence of NASA’s Mars Perseverance rover shows the vehicle on Mars's red, dusty surface. The six-wheeled rover’s camera “head” faces the viewer and then turns to the left, where, on the ground, sits the small Ingenuity Mars Helicopter. Credit: NASA/JPL-Caltech/MSSS

Tech demos can pay off big time.

Ingenuity was flown as a technology demonstration payload on the Mars 2020 mission, and was a high risk, high reward, low-cost endeavor that paid off big. The data collected by the helicopter will be analyzed for years to come and will benefit future Mars and other planetary missions.

Just as the Sojourner rover led to the MER-class (Spirit and Opportunity) rovers, and the MSL-class (Curiosity and Perseverance) rovers, the team believes Ingenuity’s success will lead to future fleets of aircraft at Mars.

In general, NASA’s Technology Demonstration Missions test and advance new technologies, and then transition those capabilities to NASA missions, industry, and other government agencies. Chosen technologies are thoroughly ground- and flight-tested in relevant operating environments — reducing risks to future flight missions, gaining operational heritage and continuing NASA’s long history as a technological leader.

You can fall in love with robots on another planet.

Following in the tracks of beloved Martian rovers, the Ingenuity Mars Helicopter built up a worldwide fanbase. The Ingenuity team and public awaited every single flight with anticipation, awe, humor, and hope.

Check out #ThanksIngenuity on social media to see what’s been said about the helicopter’s accomplishments.

Learn more about Ingenuity’s accomplishments here. And make sure to follow us on Tumblr for your regular dose of space!


Tags
7 years ago

5 Myths About Becoming a Flight Director

Have you ever wondered if you have what it takes to become a NASA Flight Director? 

They are historically well known for making difficult calls and guiding the crew through "Houston, we've had a problem" situations, but in all spaceflight operations, they are ultimately responsible for the success of the mission.

We're looking for a new class of Flight Directors to join our team, and there are a few things to know.

Here are a few myths about becoming a Flight Director:

MYTH: You have to have already been a flight controller in Mission Control at NASA to become a flight director.

FACT: Although many flight directors have previously been NASA flight controllers, that is not a prerequisite to apply. The necessary experience could come from the military, other spaceflight organizations or areas that operate in similar high-stakes conditions.

image

MYTH: You have to already have a special spaceship flying license to apply.

FACT: The only place to get certified is on the job at NASA. Once chosen, the new flight directors will receive training on flight control and vehicle systems, as well as operational leadership and risk management.

image

MYTH: All flight directors have advanced degrees like, a PhD.

FACT: While a Bachelor's degree in engineering, biological science, physical science, computer science or mathematics from an accredited university is necessary, an advanced degree is not required to become a flight director.

image

MYTH: Flight directors are required to have experience in the space industry.

FACT: While you need at least three years of related, progressively responsible professional experience to apply, it can come from a variety of industries as long as it represents time-critical decision-making experience in high-stress, high-risk environments.

image

MYTH: Only astronauts become flight directors and vice versa.

FACT: To date, only one astronaut, T.J. Creamer, has become a flight director, and no flight directors have become astronauts. However, members of the flight controller teams have become astronauts. The "capsule communicator," or CAPCOM, role in Mission Control is more often filled by astronauts because the CAPCOM is the one responsible for relaying the flight director's decisions to the astronauts in space.

image

Okay, but What are the requirements?

Basic Qualification Requirements

image

Applicants must meet the following minimum requirements before submitting an application:

Be a U.S. citizen.

Have a Bachelor's degree from an accredited institution in engineering, biological science, physical science, computer science or math.

Have at least three years of related, progressively responsible professional experience.

Applications for our next Flight Director class open on Dec. 3, 2021 and close Dec. 16, 2021! Visit: go.nasa.gov/FlightDirector

Learn more about what Flight Directors do with our Everything About Mission Control Houston video featuring Flight Director Mary Lawrence!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • lasagnadame
    lasagnadame reblogged this · 8 years ago
  • maevetheeuropan
    maevetheeuropan reblogged this · 8 years ago
  • joeldirtybastard
    joeldirtybastard liked this · 8 years ago
  • covington-shenanigans
    covington-shenanigans liked this · 8 years ago
  • alternativewhinder
    alternativewhinder liked this · 9 years ago
  • quarantine-masturbation-project
    quarantine-masturbation-project reblogged this · 9 years ago
  • hc1701
    hc1701 reblogged this · 9 years ago
  • hc1701
    hc1701 liked this · 9 years ago
  • stovokor
    stovokor reblogged this · 9 years ago
  • qvir
    qvir liked this · 9 years ago
  • oblivioneyes
    oblivioneyes reblogged this · 9 years ago
  • ambersagt
    ambersagt reblogged this · 9 years ago
  • civis-romanus-sum
    civis-romanus-sum reblogged this · 9 years ago
  • maevemauvaise
    maevemauvaise reblogged this · 9 years ago
  • cupidv2
    cupidv2 liked this · 9 years ago
  • rubinaambrosina
    rubinaambrosina reblogged this · 9 years ago
  • rubinaambrosina
    rubinaambrosina liked this · 9 years ago
  • supercalifragilistichplover-blog
    supercalifragilistichplover-blog liked this · 9 years ago
  • sixthrangerknight
    sixthrangerknight reblogged this · 9 years ago
  • andourheartsmakethebeat
    andourheartsmakethebeat liked this · 9 years ago
  • andourheartsmakethebeat
    andourheartsmakethebeat reblogged this · 9 years ago
  • michelleovadia
    michelleovadia reblogged this · 9 years ago
  • michelleovadia
    michelleovadia liked this · 9 years ago
  • almondandpistachio95
    almondandpistachio95 reblogged this · 9 years ago
  • illieous
    illieous reblogged this · 9 years ago
  • pride-raven
    pride-raven reblogged this · 9 years ago
  • pride-raven
    pride-raven liked this · 9 years ago
  • lucy-in-the-sky22
    lucy-in-the-sky22 liked this · 9 years ago
  • poseidonslostspawn
    poseidonslostspawn reblogged this · 9 years ago
  • jaimistoryteller
    jaimistoryteller liked this · 9 years ago
  • phipiohsum475
    phipiohsum475 reblogged this · 9 years ago
  • anyonia
    anyonia reblogged this · 9 years ago
  • nocereals
    nocereals liked this · 9 years ago
  • lnds-y
    lnds-y reblogged this · 9 years ago
  • lnds-y
    lnds-y liked this · 9 years ago
  • lithiumrox
    lithiumrox liked this · 9 years ago
  • everythingispossibleforus
    everythingispossibleforus liked this · 9 years ago
  • flyingaway9
    flyingaway9 reblogged this · 9 years ago
  • diabaliful
    diabaliful reblogged this · 9 years ago
  • jakeeatworld
    jakeeatworld liked this · 9 years ago
  • asherlockedwhovian
    asherlockedwhovian reblogged this · 9 years ago
  • freelancealchemist
    freelancealchemist liked this · 9 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags