Diving Into New Magnetic Territory With The MMS Mission

Diving into New Magnetic Territory with the MMS Mission

Our Magnetospheric Multiscale Mission, or MMS, is on a journey to study a new region of space.  

image

On May 4, 2017, after three months of precisely coordinated maneuvers, MMS reached its new orbit to begin studying the magnetic environment on the ever-rotating nighttime side of Earth.

image

The space around Earth is not as empty as it looks. It’s packed with high energy electrons and ions that zoom along magnetic field lines and surf along waves created by electric and magnetic fields.  

image

MMS studies how these particles move in order to understand a process known as magnetic reconnection, which occurs when magnetic fields explosively collide and re-align.

image

After launch, MMS started exploring the magnetic environment on the side of Earth closest to the sun. Now, MMS has been boosted into a new orbit that tops out twice as high as before, at over 98,000 miles above Earth’s surface.

The new orbit will allow the spacecraft to study magnetic reconnection on the night side of Earth, where the process is thought to cause the northern and southern lights and energize particles that fill the radiation belts, a doughnut-shaped region of trapped particles surrounding Earth.  

image

MMS uses four separate but identical spacecraft, which fly in a tight pyramid formation known as a tetrahedron. This allows MMS to map the magnetic environment in three dimensions.

image

MMS made many discoveries during its first two years in space, and its new orbit will open the door to even more. The information scientists get from MMS will help us better understand our space environment, which helps in planning future missions to explore even further beyond our planet. Learn more about MMS at nasa.gov/mms.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

9 years ago

What is a Supermoon Lunar Eclipse?

image

We’ve told you that on Sept. 27 a supermoon lunar eclipse will occur in the U.S. And much of the world, but what does that mean?

One important note, is that this event can be referred to in many different ways: 

Supermoon Lunar Eclipse

Super Blood Moon

Harvest Moon Eclipse

Supermoon Eclipse

All slightly different names, but apply to the same spectacular event that will occur this weekend. 

Since it’s rare that both a supermoon and an lunar eclipse occur at the same time, let’s break it down. 

1) Supermoon

image

A supermoon is a full or new moon that falls closest to the fall equinox, and is at its closest approach to the Earth. This results in the moon appearing up to 14% larger in diameter.

2) Lunar Eclipse 

image

A lunar eclipse occurs when the moon passes directly behind the Earth into its shadow. This can give the moon a red tint.

3) A Supermoon Lunar Eclipse!

image

The combination of these two events does not happen very often. In fact, since 1900 a supermoon lunar eclipse has only happened 5 times! The last time this occurred was 1982, and if you miss the event this year, your next opportunity won’t come until 2033.

This year, the event will be visible from the Americas, Europe and Africa on the night of Sept. 27. Here’s a full schedule of the supermoon eclipse:

image

If it’s cloudy in your area on Sept. 27, don’t worry! NASA Television will be providing a live stream of the event, so you can tune in and enjoy the show. 

For more information and resources on the supermoon lunar eclipse, visit our page on NASA.gov.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

6 years ago

Beached Berg in Alaska

Each year since 2009, geophysicist and pilot Chris Larsen has led two sets of flights to monitor Alaska’s mountain glaciers. From the air, scientists like Larsen collect critical information on how the region’s snow and ice is changing. They also are in a good position to snap photographs of the stunning landscape. Larsen was flying with NASA science writer Maria-Jose Viñas on board. During a flight on August 19, 2018, Viñas shot this photograph during a mission to survey Yakutat Icefield and nearby glaciers in southeast Alaska.

image

The beach and stream in the photograph are in Russel Fjord near the terminus of the Hubbard Glacier. While this photograph does not show any glaciers, evidence of their presence is all around. Meltwater winds down a vegetation-free path of glacial till. On its way toward open water, the stream cuts through a beach strewn with icebergs. “The Hubbard Glacier has a broad and active calving front providing a generous supply of icebergs,” said Larsen, a researcher at the University of Alaska, Fairbanks. “They are present all summer since new ones keep coming from the glacier.”

NASA’s Operation IceBridge makes lengthy flights each year over the landmasses of Greenland and Antarctica and their surrounding sea ice. While IceBridge-Alaska flights are shorter in length, the terrain is equally majestic and its snow and ice important to monitor. Wherever IceBridge flights are made, data collection depends in part on weather and instruments.

Read more: https://go.nasa.gov/2Mj48r0

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
10 months ago
A gif of images taken from space shows half of the Earth light by sunlight and half in darkness. As the gif runs, the illuminated half tilts counterclockwise as the seasons change. Credit: NASA

The Summer Solstice Is Here!

Today — June 20, 2024 — is the northern summer solstice. In the Northern Hemisphere, it marks the longest day of the year and the official start to summer.

A visualization of Earth’s geometry during the summer solstice shows the planet tilted at 23.5 degrees towards the Sun, which fills the right-hand side of the image. Credit: NASA

We experience changing day lengths throughout the year because Earth rotates on a tilted axis as it goes around the Sun. This means during half of the year the North Pole tilts toward the Sun and in the other half it points away.

Two depictions of Earth show how much sunlight the planet receives in each hemisphere during the June and December solstices. The Earths are connected along a white line showing the planet’s orbit. A yellow Sun dots the center. Credit: NASA/Genna Duberstein

Solstices occur twice per year, when Earth’s poles are tilted closest to and farthest from the Sun.

Crop circles in various shades of green are seen in this aerial image captured on June 24, 2001. The different shades of green are created by different crops like corn, wheat and sorghum, that were planted at different times. Credit: NASA/NASA Goddard Space Flight Center/Japan's Ministry of Economy, Trade and Industry/Earth Remote Sensing Data Analysis Center/Japan Association of Real Options and Strategy, and U.S./Japan ASTER Science Team

The summer solstice is an important day for cultures around the world, especially at latitudes near the North Pole. Indigenous peoples have long marked the summer solstice with dancing and celebrations. Farmers have relied on the solstice to determine when to plant crops. The solstice’s timing also influenced the development of some calendars, like the ancient Roman calendar and the modern Gregorian calendar.

To mark the beginning of summer, here are four ways you can enjoy the Sun and the many wonders of space this season:

The rosy-tinted Moon rises through clouds as a Metrorail car crosses the Potomac River at the bottom of the image. Photo Credit: NASA/Bill Ingalls

1. Check out the “Strawberry Moon”

June is the month of the Strawberry Moon. This name originates with the Algonquin tribes. June is when strawberries are ready for harvest in the northeastern United States, where the Algonquin people traditionally live. The full Strawberry Moon this year happens tomorrow night — June 21, 2024. Grab a pair of binoculars to see it in detail.

2. Celebrate the Heliophysics Big Year!

During the Heliophysics Big Year, we are challenging you to participate in as many Sun-related activities as you can. This month’s theme is performance art. We’re looking at how various kinds of performance artists are moved by the Sun and its influence on Earth. For example, check out this Sun song!

Find out how to get involved here: https://science.nasa.gov/sun/helio-big-year/.

The top half of the Sun in red and yellow fills the GIF. Material can be seen jetting off the Sun from the top right side. Credit: NASA

3. Listen to a space-cast

NASA has a ton of great space podcasts. Take a listen to Curious Universe’s Here Comes the Sun series to learn all about our closest star, from how it causes weather in space, to how you can help study it! For even more podcasts, visit our full list here: https://www.nasa.gov/podcasts.

Cookies shaped like the Sun and coated in yellow and orange frosting are shown sprinkled with chocolate chips that represent sunspots. Credit: NASA

4. Make sunspot cookies

The Sun sometimes has dark patches called sunspots. You can make your own sunspots with our favorite cookie recipe. Real sunspots aren’t made of chocolate, but on these sunspot cookies they are. And they're delicious.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
7 years ago

What exactly is a sun eclipse? Will I be able to see it and if so when from the Netherlands?

The solar eclipse is when the moon is directly in front of the Sun and creates a shadow on the Earth. They happen about once every 18 months. I don’t believe that you’ll be able to see this eclipse from the Netherlands. I think the next one to be in Europe is in 2026. There’s one in Chillie and Argentia in 2019 and another in Antartica in 2021. 


Tags
6 years ago

10 Things: CubeSats — Going Farther

Now that the MarCOs — a pair of briefcase-sized interplanetary CubeSats — seem to have reached their limit far beyond Mars, we’re looking forward to an expanding era of small, versatile and powerful space-based science machines.

Here are ten ways we’re pushing the limits of miniaturized technology to see  just how far it can take us.

image

1. MarCO: The Farthest (So Far)

MarCO, short for Mars Cube One, was the first interplanetary mission to use a class of mini-spacecraft called CubeSats.

The MarCOs — nicknamed EVE and WALL-E, after characters from a Pixar film — served as communications relays during InSight's November 2018 Mars landing, beaming back data at each stage of its descent to the Martian surface in near-real time, along with InSight's first image.

WALL-E sent back stunning images of Mars as well, while EVE performed some simple radio science.

All of this was achieved with experimental technology that cost a fraction of what most space missions do: $18.5 million provided by NASA's Jet Propulsion Laboratory in Pasadena, California, which built the CubeSats.

WALL-E was last heard from on Dec. 29; EVE, on Jan. 4. Based on trajectory calculations, WALL-E is currently more than 1 million miles (1.6 million kilometers) past Mars; EVE is farther, almost 2 million miles (3.2 million kilometers) past Mars.

image

MarCO-B took these images as it approached Mars in November 2018. Credit: NASA/JPL-Caltech

2. What Are CubeSats?

CubeSats were pioneered by California Polytechnic State University in 1999 and quickly became popular tools for students seeking to learn all aspects of spacecraft design and development.

Today, they are opening up space research to public and private entities like never before. With off-the-shelf parts and a compact size that allows them to hitch a ride with other missions — they can, for example, be ejected from the International Space Station, up to six at a time — CubeSats have slashed the cost of satellite development, opening up doors to test new instruments as well as to create constellations of satellites working together.

CubeSats can be flown in swarms, capturing simultaneous, multipoint measurements with identical instruments across a large area. Sampling entire physical systems in this way would drive forward our ability to understand the space environment around us, in the same way multiple weather sensors help us understand global weather systems.

Ready to get started? Check out NASA’s CubeSats 101 Guide.

image

Engineer Joel Steinkraus uses sunlight to test the solar arrays on one of the Mars Cube One (MarCO) spacecraft at NASA's Jet Propulsion Laboratory. Credit: NASA/JPL-Caltech

3. Measuring Up

The size and cost of spacecraft vary depending on the application; some are the size of a pint of ice cream while others, like the Hubble Space Telescope, are as big as a school bus.

Small spacecraft (SmallSats) generally have a mass less than 400 pounds (180 kilograms) and are about the size of a large kitchen fridge.

CubeSats are a class of nanosatellites that use a standard size and form factor.  The standard CubeSat size uses a "one unit" or "1U" measuring 10x10x10 centimeters (or about 4x4x4 inches) and is extendable to larger sizes: 1.5, 2, 3, 6, and even 12U.

image

The Sojourner rover (seen here on Mars in 1997) is an example of small technology that pioneered bigger things. Generations of larger rovers are being built on its success.

4. A Legacy of Small Pathfinders

Not unlike a CubeSat, NASA’s first spacecraft — Explorer 1 — was a small, rudimentary machine. It launched in 1958 and made the first discovery in outer space, the Van Allen radiation belts that surround Earth. It was the birth of the U.S. space program.

In 1997, a mini-rover named Sojourner rolled onto Mars, a trial run for more advanced rovers such as NASA's Spirit, Opportunity and Curiosity.

Innovation often begins with pathfinder technology, said Jakob Van Zyl, director of the Solar System Exploration Directorate at NASA's Jet Propulsion Laboratory. Once engineers prove something can be done, science missions follow.

image

5. Testing in Space

NASA is continually developing new technologies — technologies that are smaller than ever before, components that could improve our measurements, on-board data processing systems that streamline data retrievals, or new methods for gathering observations. Each new technology is thoroughly tested in a lab, sometimes on aircraft, or even at remote sites across the world. But the space environment is different than Earth. To know how something is going to operate in space, testing in space is the best option.

Sending something unproven to orbit has traditionally been a risky endeavor, but CubeSats have helped to change that. The diminutive satellites typically take less than two years to build. CubeSats are often a secondary payload on many rocket launches, greatly reducing cost. These hitchhikers can be deployed from a rocket or sent to the International Space Station and deployed from orbit.

Because of their quick development time and easy access to space, CubeSats have become the perfect platform for demonstrating how a new technological advancement will perform in orbit.

image

RainCube is a mini weather satellite, no bigger than a shoebox, that will measure storms. It’s part of several new NASA experiments to track storms from space with many small satellites, instead of individual, large ones. Credit: UCAR

6. At Work in Earth Orbit

A few recent examples from our home world:

RainCube, a satellite no bigger than a suitcase, is a prototype for a possible fleet of similar CubeSats  that could one day help monitor severe storms, lead to improving the accuracy of weather forecasts and track climate change over time.

IceCube tested instruments for their ability to make space-based measurements of the small, frozen crystals that make up ice clouds. Like other clouds, ice clouds affect Earth’s energy budget by either reflecting or absorbing the Sun’s energy and by affecting the emission of heat from Earth into space. Thus, ice clouds are key variables in weather and climate models.

image

Rocket Lab's Electron rocket lifts off from Launch Complex 1 for the NASA ELaNa19 mission. Credit: Trevor Mahlmann/Rocket Lab

7. First Dedicated CubeSat Launch

A series of new CubeSats is now in space, conducting a variety of scientific investigations and technology demonstrations following a Dec. 17, 2018 launch from New Zealand — the first time CubeSats have launched for NASA on a rocket designed specifically for small payloads.

This mission included 10 Educational Launch of Nanosatellites (ELaNa)-19 payloads, selected by NASA’s CubeSat Launch Initiative:

CubeSat Compact Radiation Belt Explorer (CeREs) — High energy particle measurement in Earth’s radiation belt

Simulation-to-Flight 1 (STF-1) — Software condensing to support CubeSat implementations

Advanced Electrical Bus (ALBus) — Advances in solar arrays and high capacity batteries

CubeSat Handling Of Multisystem Precision Time Transfer (CHOMPTT) — Navigation plans for exo-planetary implementation

CubeSail — Deployment and control of a solar sail blade

NMTSat — Magnetic field, high altitude plasma density

Rsat — Manipulation of robotic arms

Ionospheric Scintillation Explorer (ISX) — Plasma fluctuations in the upper atmosphere

Shields-1 — Radiation shielding

DaVinci — High School to Grade School STEM education

8. The Little CubeSat That Could

CubeSat technology is still in its infancy, with mission success rates hovering near 50 percent. So, a team of scientists and engineers set out on a quest. Their goal? To build a more resilient CubeSat — one that could handle the inevitable mishaps that bedevil any spacecraft, without going kaput.

They wanted a little CubeSat that could.

They got to work in 2014 and, after three years of development, Dellingr was ready to take flight.

Read the Full Story: Dellingr: The Little CubeSat That Could

image

Artist's concept of Lunar Flashlight. Credit: NASA

9. Going Farther

There are a handful of proposed NASA missions could take CubeSat technology farther:

CUVE would travel to Venus to investigate a longstanding mystery about the planet’s atmosphere using ultraviolet-sensitive instruments and a novel, carbon-nanotube light-gathering mirror.

Lunar Flashlight would use a laser to search for water ice in permanently shadowed craters on the south pole of Earth’s Moon.

Near-Earth Asteroid Scout, a SmallSat, would use a solar sail to propel it to do science on asteroids that pass close to Earth.

All three spacecraft would hitch rides to space with other missions, a key advantage of these compact science machines.

image

Expedition 56 Flight Engineer Serena Auñón-Chancellor installs the NanoRacks Cubesat Deployer-14 (NRCSD-14) on the Multipurpose Experiment Platform inside the Japanese Kibo laboratory module. The NRCSD-14 was then placed in the Kibo airlock and moved outside of the space station to deploy a variety of CubeSats into Earth orbit. Credit: NASA

10. And We’re Just Getting Started

Even if they're never revived, the team considers MarCO a spectacular success.

A number of the critical spare parts for each MarCO will be used in other CubeSat missions. That includes their experimental radios, antennas and propulsion systems. Several of these systems were provided by commercial vendors, making it easier for other CubeSats to use them as well.

More small spacecraft are on the way. NASA is set to launch a variety of new CubeSats in coming years.

"There's big potential in these small packages," said John Baker, the MarCO program manager at JPL. "CubeSats — part of a larger group of spacecraft called SmallSats — are a new platform for space exploration affordable to more than just government agencies."

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

What is it like floating in space?


Tags
5 years ago

Is Earth your favorite planet? Why or why not?


Tags
6 years ago

5 Reasons our Space Launch System is the Backbone for Deep Space Exploration

Our Space Launch System (SLS) will be the world’s most powerful rocket, engineered to carry astronauts and cargo farther and faster than any rocket ever built. Here are five reasons it is the backbone of bold, deep space exploration missions.

image

5. We’re Building This Rocket to Take Humans to the Moon and Beyond

The SLS rocket is a national asset for leading new missions to deep space. More than 1,000 large and small companies in 44 states are building the rocket that will take humans to the Moon. Work on SLS has an economic impact of $5.7 billion and generates 32,000 jobs. Small businesses across the U.S. supply 40 percent of the raw materials for the rocket. An investment in SLS is an investment in human spaceflight and in American industry and will lead to applications beyond NASA.

image

4. This Rocket is Built for Humans

Modern deep space systems are designed and built to keep humans safe from launch to landing.  SLS provides the power to safely send the Orion spacecraft and astronauts to the Moon. Orion, powered by the European Service Module, keeps the crew safe during the mission. Exploration Ground Systems at NASA’s Kennedy Space Center in Florida, safely launches the SLS with Orion on top and recovers the astronauts and Orion after splashdown.

image

3. This Rocket is Engineered for a Variety of Exploration Missions

SLS is engineered for decades of human space exploration to come. SLS is not just one rocket but a transportation system that evolves to meet the needs of a variety of missions. The rocket can send more than 26 metric tons (57,000 pounds) to the Moon and can evolve to send up to 45 metric tons (99,000 pounds) to the Moon. NASA has the expertise to meet the challenges of designing and building a new, complex rocket that evolves over time while developing our nation’s capability to extend human existence into deep space.

image

2. This Rocket can Carry Crews and Cargos Farther, Faster

SLS’s versatile design enables it to carry astronauts their supplies as well as cargo for resupply and send science missions far in the solar system. With its power and unprecedented ability to transport heavy and large volume science payloads in a single mission, SLS can send cargos to Mars or probes even farther out in the solar system, such as to Jupiter’s moon Europa, faster than any other rocket flying today. The rocket’s large cargo volume makes it possible to design planetary probes, telescopes and other scientific instruments with fewer complex mechanical parts.

image

1. This Rocket Complements International and Commercial Partners

The Space Launch System is the right rocket to enable exploration on and around the Moon and even longer missions away from home. SLS makes it possible for astronauts to bring along supplies and equipment needed to explore, such as pieces of the Gateway, which will be the cornerstone of sustainable lunar exploration. SLS’s ability to launch both people and payloads to deep space in a single mission makes space travel safer and more efficient. With no buildings, hardware or grocery stores on the Moon or Mars, there are plenty of opportunities for support by other rockets. SLS and contributions by international and commercial partners will make it possible to return to the Moon and create a springboard for exploration of other areas in the solar system where we can discover and expand knowledge for the benefit of humanity.

image

Learn more about the Space Launch System.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

The Kepler space telescope has shown us our galaxy is teeming with planets — and other surprises

image

The Kepler space telescope has taught us there are so many planets out there, they outnumber even the stars. Here is a sample of these wondrous, weird and unexpected worlds (and other spectacular objects in space) that Kepler has spotted with its “eye” opened to the heavens.

Kepler has found that double sunsets really do exist.

image

Yes, Star Wars fans, the double sunset on Tatooine could really exist. Kepler discovered the first known planet around a double-star system, though Kepler-16b is probably a gas giant without a solid surface.

Kepler has gotten us closer to finding planets like Earth.

image

Nope. Kepler hasn’t found Earth 2.0, and that wasn’t the job it set out to do. But in its survey of hundreds of thousands of stars, Kepler found planets near in size to Earth orbiting at a distance where liquid water could pool on the surface. One of them, Kepler-62f, is about 40 percent bigger than Earth and is likely rocky. Is there life on any of them? We still have a lot more to learn.

This sizzling world is so hot iron would melt!

image

One of Kepler’s early discoveries was the small, scorched world of Kepler-10b. With a year that lasts less than an Earth day and density high enough to imply it’s probably made of iron and rock, this “lava world” gave us the first solid evidence of a rocky planet outside our solar system. 

If it’s not an alien megastructure, what is this oddly fluctuating star?

image

When Kepler detected the oddly fluctuating light from “Tabby’s Star,” the internet lit up with speculation of an alien megastructure. Astronomers have concluded it’s probably an orbiting dust cloud.  

Kepler caught this dead star cannibalizing its planet.

image

What happens when a solar system dies? Kepler discovered a white dwarf, the compact corpse of a star in the process of vaporizing a planet.

These Kepler planets are more than twice the age of our Sun!

image

The five small planets in Kepler-444 were born 11 billion years ago when our galaxy was in its youth. Imagine what these ancient planets look like after all that time?

Kepler found a supernova exploding at breakneck speed.

image

This premier planet hunter has also been watching stars explode. Kepler recorded a sped-up version of a supernova called a “fast-evolving luminescent transit” that reached its peak brightness at breakneck speed. It was caused by a star spewing out a dense shell of gas that lit up when hit with the shockwave from the blast. 

* All images are artist illustrations.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

See Why Our Researchers Explore Earth's Extreme and Remote Environments

image

When we talk about exploration in far-flung places, you might think of space telescopes taking images of planets outside our solar system, or astronauts floating on the International Space Station. 

image

But did you know our researchers travel to some of Earth's most inaccessible and dangerous places, too? 

image

Two scientists working with the ICESat-2 mission just finished a trek from the South Pole to latitude 88 south, a journey of about 450 miles. They had to travel during the Antarctic summer - the region's warmest time, with near-constant sunshine - but the trek was still over solid ice and snow. 

image

The trip lasted 14 days, and was an important part of a process known as calibration and validation. ICESat-2 will launch this fall, and the team was taking extremely precise elevation measurements that will be used to validate those taken by the satellite. 

image

Sometimes our research in Earth's remote regions helps us understand even farther-flung locations…like other planets. 

image

Geologic features on Mars look very similar to islands and landforms created by volcanoes here on our home planet. 

image

As hot jets of magma make their way to Earth's surface, they create new rocks and land - a process that may have taken place on Mars and the Moon.

image

In 2015, our researchers walked on newly cooled lava on the Holuhraun volcano in Iceland to take measurements of the landscape, in order to understand similar processes on other rocky bodies in our solar system.

image

There may not be flowing lava in the mangrove forests in Gabon, but our researchers have to brave mosquitoes and tree roots that reach up to 15-foot high as they study carbon storage in the vegetation there.

image

The scientists take some measurements from airplanes, but they also have to gather data from the ground in one our of planet's most pristine rainforests, climbing over and around roots that can grow taller than people. They use these measurements to create a 3-D map of the ecosystem, which helps them understand how much carbon in stored in the plants. 

image

You can follow our treks to Earth’s most extreme locales on our Earth Expeditions blog.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • 4s14
    4s14 liked this · 1 year ago
  • rosyhdz
    rosyhdz liked this · 4 years ago
  • batjohnsmithme
    batjohnsmithme liked this · 5 years ago
  • mind-muscle-and-muesli
    mind-muscle-and-muesli liked this · 6 years ago
  • gal4xyfalls
    gal4xyfalls liked this · 6 years ago
  • mielst-lind
    mielst-lind reblogged this · 6 years ago
  • averageinside
    averageinside liked this · 6 years ago
  • coolsaralyra
    coolsaralyra liked this · 6 years ago
  • cliffsteele
    cliffsteele reblogged this · 7 years ago
  • wannawannagimmiegimmie-blog
    wannawannagimmiegimmie-blog liked this · 7 years ago
  • poronguita-insipida-blog
    poronguita-insipida-blog reblogged this · 7 years ago
  • poronguita-insipida-blog
    poronguita-insipida-blog liked this · 7 years ago
  • goldenthreadoflight
    goldenthreadoflight reblogged this · 7 years ago
  • holnessvince
    holnessvince liked this · 7 years ago
  • vorelnahestyl-blog
    vorelnahestyl-blog liked this · 7 years ago
  • aliensworldwide-blog
    aliensworldwide-blog liked this · 7 years ago
  • bluudbank
    bluudbank reblogged this · 7 years ago
  • cxffncase
    cxffncase liked this · 7 years ago
  • shawn1965
    shawn1965 liked this · 7 years ago
  • treebich
    treebich reblogged this · 7 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags