What’s Up For August 2017

What’s Up for August 2017

image

The total solar eclipse on August 21 will trace a narrow path across the nation, although most of the U.S. will see a partial eclipse. Here's what to do before, during and after the eclipse, plus how you can become a citizen scientist helping us with eclipse observations.

image

Not everyone can travel to the path of totality, so here are some things you can do whether you see totality or a partial eclipse. 

Collecting Citizen Science

image

Want to be a citizen scientist? 

Before the eclipse, make and pack your very own eclipse toolkit, containing a notebook, pen, a clock, a stopwatch, the front page of a newspaper, a thermometer, and a stick with a piece of crepe paper tied to it. Don’t forget your assistant, who will help conduct science observations. 

image

Practice using a citizen scientist phone app, like our GLOBE app to study clouds, air and surface temperatures and other observations. Go to the location where you plan to observe the eclipse and check for any obstructions. You may want to focus on only one activity as the eclipse will last less than 3 minutes ... or just really experience the eclipse. 

image

Cell phones don’t take eclipse video! And plan to have your safe eclipse-viewing glasses within reach for before and after totality. Just before totality, if you have a good view of the horizon, look west to see the approaching shadow. After totality, look east low on the horizon for the departing shadow.

image

During totality, look for stars. You should be able to see the star Regulus in the solar corona or the stars of Orion.

image

During totality, we may see moving bands of shadows, like on the bottom of a swimming pool.

image

How dark does it get at totality? Look at the newspaper you brought with you. What is the smallest print you can read?

image

How much does the temperature drop? Does the wind stop or change direction?

image

Use your hands, a sheet of paper with a hole in it, a kitchen colander or any other object with one or more holes to use as a pinhole projector. You’ll be able to see the crescent shape of the sun projected through the holes.

Find out more about the eclipse, including eclipse safety, at https://eclipse2017.nasa.gov

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

6 years ago

@ringochan94: What advice would you give the new generation of teens who want to get into your field of work?


Tags
7 years ago

Coffee in Space: Keeping Crew Members Grounded in Flight

Happy National Coffee Day, coffee lovers! 

On Earth, a double shot mocha latte with soymilk, low-fat whip and a caramel drizzle is just about as complicated as a cup of coffee gets. Aboard the International Space Station, however, even just a simple cup of black coffee presents obstacles for crew members.

image

Understanding how fluids behave in microgravity is crucial to bringing the joys of the coffee bean to the orbiting laboratory. Astronaut Don Pettit crafted a DIY space cup using a folded piece of overhead transparency film. Surface tension keeps the scalding liquid inside the cup, and the shape wicks the liquid up the sides of the device into the drinker’s mouth.

image

The Capillary Beverage investigation explored the process of drinking from specially designed containers that use fluid dynamics to mimic the effect of gravity. While fun, this study could provide information useful to engineers who design fuel tanks for commercial satellites!

image

The capillary beverage cup allows astronauts to drink much like they would on Earth. Rather than drinking from a shiny bag and straw, the cup allows the crew member to enjoy the aroma of the beverage they’re consuming.

image

On Earth, liquid is held in the cup by gravity. In microgravity, surface tension keeps the liquid stable in the container.

image

The ISSpresso machine brought the comforts of freshly-brewed coffees and teas to the space station. European astronaut Samantha Cristoforetti enjoyed the first cup of espresso brewed using the ISSpresso machine during Expedition 43.

image
image

Now, during Expedition 53, European astronaut Paolo Nespoli enjoys the same comforts. 

image

Astronaut Kjell Lindgren celebrated National Coffee Day during Expedition 45 by brewing the first cup of hand brewed coffee in space.

image

We have a latte going on over on our Snapchat account, so give us a follow to stay up to date! Also be sure to follow @ISS_Research on Twitter for your daily dose of space station science.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Blowing Bubbles in the Gamma-ray Sky

image

Did you know our Milky Way galaxy is blowing bubbles? Two of them, each 25,000 light-years tall! They extend above and below the disk of the galaxy, like the two halves of an hourglass. We can’t see them with our own eyes because they’re only apparent in gamma-ray light, the highest-energy light in the universe.

image

We didn’t even know these humongous structures were smack in the middle of our galaxy until 2010. Scientists found them when they analyzed the first two years of data from NASA’s Fermi Gamma-ray Space Telescope. They dubbed them the “Fermi bubbles” and found that in addition to being really big and spread out, they seem to have well-defined edges. The bubbles’ shape and the light they give off led scientists to think they were created by a rapid release of energy. But by what? And when?

image

One possible explanation is that they could be leftovers from the last big meal eaten by the supermassive black hole at the center of our galaxy. This monster is more than 4 million times the mass of our own Sun. Scientists think it may have slurped up a big cloud of hydrogen between 6 and 9 million years ago and then burped jets of hot gas that we see in gamma rays and X-rays.

image

Another possible explanation is that the bubbles could be the remains of star formation. There are massive clusters of stars at very the center of the Milky Way — sometimes the stars are so closely packed they’re a million times more dense than in the outer suburb of the galaxy where we live. If there was a burst of star formation in this area a few million years ago, it could have created the surge of gas needed to in turn create the Fermi bubbles.

image

It took us until 2010 to see these Fermi bubbles because the sky is filled with a fog of other gamma rays that can obscure our view. This fog is created when particles moving near light speed bump into gas, dust, and light in the Milky Way. These collisions produce gamma rays, and scientists had to factor out the fog to unveil the bubbles.

image

Scientists continue to study the possible causes of these massive bubbles using the 10 years of data Fermi has collected so far. Fermi has also made many other exciting discoveries — like the the collision of superdense neutron stars and the nature of space-time. Learn more about Fermi and how we’ve been celebrating its first decade in space.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
10 months ago

ALT: This video shows blades of grass moving in the wind on a beautiful day at NASA’s Michoud Assembly Facility in New Orleans. In the background, we see the 212-foot-core stage for the powerful SLS (Space Launch System) rocket used for Artemis I. The camera ascends, revealing the core stage next to a shimmering body of water as technicians lead it towards NASA’s Pegasus barge. Credit: NASA

The SLS (Space Launch System) Core Stage by Numbers

Technicians with NASA and SLS core stage lead contractor Boeing, along with RS-25 engines lead contractor Aerojet Rocketdyne, an L3Harris Technologies company, are nearing a major milestone for the Artemis II mission. The SLS (Space Launch System) rocket’s core stage for Artemis II is fully assembled and will soon be shipped via barge from NASA’s Michoud Assembly Facility in New Orleans to the agency’s Kennedy Space Center in Florida. Once there, it will be prepped for stacking and launch activities.

Get to know the core stage – by the numbers.

A vibrant blue sky creates a beautiful backdrop for the colossal orange core stage of NASA's Artemis I SLS rocket. Sprawled horizontally against the industrial backdrop of NASA’s Michoud Assembly Facility. Technicians in bright yellow vests are seen next to the core stage and add a human touch to the scale of this monumental hardware. Credit: NASA

Standing 212 feet tall and measuring 27.6 feet in diameter, the SLS core stage is the largest rocket stage NASA has ever built. Due to its size, the hardware must be shipped aboard NASA’s Pegasus barge.

A montage of three photos captures two men strolling across NASA's Pegasus barge at night preparing to set sail before shifting to two images of the barge on an journey down the mighty Mississippi River from varied perspectives.
Credit: NASA/Steve Seipel and George Shelton

900 miles

Once loaded, the barge – which was updated to accommodate the giant core stage -- will travel 900 miles to Florida across inland and ocean waterways. Once at Kennedy, teams with our Exploration Ground Systems team will complete checkouts for the core stage prior to stacking preparations.

NASA astronauts Christina Koch and Reid Wiseman immerse themselves in NASA's Systems Integration Lab at Marshall Space Flight Center in Huntsville, Alabama,, surrounded by a web of crucial cables, wires, and avionics systems that act as the 'brains' of the SLS rocket. Engrossed, they listen intently as a NASA engineer unveils the intricate workings before them. Credit: NASA/Sam Lott

18 Miles + 500 Sensors

As impressive as the core stage is on the outside, it’s also incredible on the inside. The “brains” of the rocket consist of three flight computers and special avionics systems that tell the rocket what to do. This is linked to 18 miles of cabling and more than 500 sensors and systems to help feed fuel and steer the four RS-25 engines.

This GIF shows a panoramic sweep showing several RS-25 engines, their vibrant red and silver hues shining under the lights of NASA’s Michoud Assembly Facility, as they await installation on the SLS core stage. Credit: NASA

8.8 million

Speaking of engines… Our SLS Moon rocket generates approximately 8.8 million pounds of thrust at launch. Two million pounds come from the four powerful RS-25 engines at the base of the core stage, while each of the two solid rocket boosters produces a maximum thrust of 3.6 million pounds. Together, the engines and boosters will help launch a crew of four Artemis astronauts inside NASA’s Orion spacecraft beyond Earth orbit to venture around the Moon.

ALT: Two large, white spheres used to hold the liquid propellants for the SLS (Space Launch System) are seen at launch complex 39B at NASA’s Kennedy Space Center. These white tanks stand tall and vibrant amongst a blue sky and green grass. Credit: NASA/Chad Siwik

733,000 Gallons

Achieving the powerful thrust required at launch calls for a large amount of fuel - 733,000 gallons, to be precise. The stage has two huge propellant tanks that hold the super-cooled liquid hydrogen and liquid oxygen that make the rocket “go.” A new liquid hydrogen storage sphere has recently been built at Kennedy, which can store 1.25 million gallons of liquid hydrogen.

We see from left to right NASA astronauts Victor Glover, Christina Koch, Reid Wiseman, and Canadian Space Agency’s Jeremy Hansen stand in their vibrant orange flight suits, clutching their helmets. Against a cosmic backdrop of deep black, a mesmerizing white starburst effect emanates behind them, intensifying the moment as the video gradually draws them closer, evoking a sense of awe and anticipation. Credit: NASA

Four

The number four doesn’t just apply to the RS-25 engines. It’s also the number of astronauts who will fly inside our Orion spacecraft atop our SLS rocket for the first crewed Artemis mission. When NASA astronauts Reid Wiseman, Christina Koch, and Victor Glover along with CSA astronaut Jeremy Hansen launch, they will be the first astronauts returning to the Moon in more than 50 years.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
4 years ago

Setting the Standards for Unmanned Aircraft

From advanced wing designs, through the hypersonic frontier, and onward into the era of composite structures, electronic flight controls, and energy efficient flight, our engineers and researchers have led the way in virtually every aeronautic development. And since 2011, aeronautical innovators from around the country have been working on our Unmanned Aircraft Systems integration in the National Airspace System, or UAS in the NAS, project.  

image

This project was a new type of undertaking that worked to identify, develop, and test the technologies and procedures that will make it possible for unmanned aircraft systems to have routine access to airspace occupied by human piloted aircraft. Since the start, the goal of this unified team was to provide vital research findings through simulations and flight tests to support the development and validation of detect and avoid and command and control technologies necessary for integrating UAS into the NAS.  

image

That interest moved into full-scale testing and evaluation to determine how to best integrate unmanned vehicles into the national airspace and how to come up with standards moving forward. Normally, 44,000 flights safely take off and land here in the U.S., totaling more than 16 million flights per year. With the inclusion of millions of new types of unmanned aircraft, this integration needs to be seamless in order to keep the flying public safe.

image

Working hand-in-hand, teams collaborated to better understand how these UAS's would travel in the national airspace by using NASA-developed software in combination with flight tests. Much of this work is centered squarely on technology called detect and avoid.  One of the primary safety concerns with these new systems is the inability of remote operators to see and avoid other aircraft.  Because unmanned aircraft literally do not have a pilot on board, we have developed concepts allowing safe operation within the national airspace.  

image

In order to better understand how all the systems work together, our team flew a series of tests to gather data to inform the development of minimum operational performance standards for detect and avoid alerting guidance. Over the course of this testing, we gathered an enormous amount of data allowing safe integration for unmanned aircraft into the national airspace. As unmanned aircraft are becoming more ubiquitous in our world - safety, reliability, and proven research must coexist.

image

Every day new use case scenarios and research opportunities arise based around the hard work accomplished by this incredible workforce. Only time will tell how these new technologies and innovations will shape our world.

image

Want to learn the many ways that NASA is with you when you fly? Visit nasa.gov/aeronautics.



Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

For the second time in history, a human-made object has reached the space between the stars. Our Voyager 2 probe now has exited the heliosphere – the protective bubble of particles and magnetic fields created by the Sun.

Comparing data from different instruments aboard the trailblazing spacecraft, mission scientists determined the probe crossed the outer edge of the heliosphere on Nov. 5. This boundary, called the heliopause, is where the tenuous, hot solar wind meets the cold, dense interstellar medium. Its twin, Voyager 1, crossed this boundary in 2012, but Voyager 2 carries a working instrument that will provide first-of-its-kind observations of the nature of this gateway into interstellar space.

Voyager 2 now is slightly more than 11 billion miles (18 billion kilometers) from Earth. Mission operators still can communicate with Voyager 2 as it enters this new phase of its journey, but information – moving at the speed of light – takes about 16.5 hours to travel from the spacecraft to Earth. By comparison, light traveling from the Sun takes about eight minutes to reach Earth.

Read more at https://go.nasa.gov/2QG2s16 or follow along with the mission @NASAVoyager on Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
1 year ago

Save the Date: 2024 Total Solar Eclipse

On April 8, 2024, a total solar eclipse will travel through Mexico, cross the United States from Texas to Maine, and exit North America along Canada’s Atlantic coast. A total solar eclipse occurs when the Moon passes between the Sun and the Earth, completely blocking the face of the Sun. The sky will darken as if it were dawn or dusk.

Weather permitting, people throughout most of North and Central America, including all of the contiguous United States, will be able to view at least a partial solar eclipse. A partial solar eclipse is when the Moon only covers part of the Sun. People in Hawaii and parts of Alaska will also experience a partial solar eclipse. Click here to learn more about when and where the solar eclipse will be visible: go.nasa.gov/Eclipse2024Map

Not in the path of the eclipse? Join us online to watch the eclipse with NASA. Set a reminder to watch live: https://go.nasa.gov/3V2CQML

Make sure to follow us on Tumblr for your regular dose of space!


Tags
8 years ago

Six Things You Don’t Know About Snow

image

FACT #1: Snow covers 30 percent of land on Earth.

image

FACT #2: More than 1.2 billion people rely on melt from snowpack and glaciers.

image

FACT #3: Snowmelt is the main source of water for 60 million Americans.

image

FACT #4: Since 1967, 1 million square miles of spring snow cover has disappeared from the Northern Hemisphere – an area the size of the southwestern U.S.

image

FACT #5: 70 percent of water from the snow-fed San Joaquin River irrigates California’s Central Valley.

image

FACT #6: NASA’s Global Precipitation Measurement mission observes falling snow, even at the tops of hurricanes.

image

Measuring how much water is in a snowpack is not easy. Scientists are investigating the best combination of sensors for different terrains. More accurate snow measurements will help scientists and decision makers better understand our world’s water supply and better predict floods and droughts.

image

To follow scientists in the field studying snow, follow #SnowEx on Twitter and Facebook 


Tags
4 years ago

Do you have any messages or tips for other girls who want to study and work in STEM fields?


Tags
9 years ago

Spot the International Space Station

Right now, there are humans living and working off the Earth on the International Space Station. They orbit our planet from 250 miles above every 90 minutes, which means the crew sees 16 sunrises and sunsets every day.

Spot The International Space Station

If you’re in the right place, at the right time, the space station is visible to the naked eye. It looks like a fast-moving plane, only much higher and traveling thousands of miles an hour faster. The fact that it’s the third brightest object in the sky makes it easier to spot…if you know when to look up.

That’s where we can help! Our Spot the Station site allows you to enter your location and find out when the space station will be flying overhead. You can even sign up to receive alerts that will send you email or text messages to let you know when and where to look up.

image

Why is the space station visible? It reflects the light of the Sun, the same reason we can see the Moon. However, unlike the Moon, the space station isn’t bright enough to see during the day.

To find out when the space station is flying over your area, visit: http://spotthestation.nasa.gov/

Learn more about the International Space Station and the crew HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • cariorexis
    cariorexis liked this · 4 years ago
  • white-trash-balling
    white-trash-balling reblogged this · 5 years ago
  • flawlessmeowmiu
    flawlessmeowmiu liked this · 5 years ago
  • iwakuramuses
    iwakuramuses liked this · 5 years ago
  • razz313
    razz313 liked this · 5 years ago
  • faze2703-blog
    faze2703-blog liked this · 5 years ago
  • chuyea-124
    chuyea-124 liked this · 6 years ago
  • cyhiraeth
    cyhiraeth reblogged this · 6 years ago
  • extra-origami
    extra-origami liked this · 6 years ago
  • aniketophotos
    aniketophotos liked this · 7 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags