We're launching a new mission to the International Space Station to continue measurements of the Sun's energy reaching Earth.
The Total and Spectral solar Irradiance Sensor (TSIS-1) will precisely measure the total amount of sunlight that falls on Earth and how that light is distributed among different wavelengths, including the ultraviolet, visible and infrared. This will give us a better understanding of Earth’s primary energy supply and help improve models simulating Earth’s climate.
The Sun is Earth's sunshine and it does more than make us happy; it gives us life. Our Sun's energy drives our planet's ocean currents, seasons, weather and climate. Changes in the Sun also alter our climate in at least two ways.
First, solar radiation has a direct effect where it heats regions of Earth, like our oceans, land, and atmosphere. Second, the solar radiation can cause indirect effects, such as when sunlight interacts with molecules in the upper atmosphere to produce ozone which can affect human health.
Earth’s energy system is in a constant dance to maintain a balance between incoming energy from the Sun and outgoing energy from Earth to space, which scientists call Earth’s energy budget. If you have more energy absorbed by the Earth than leaving it, its temperature increases and vice versa. Because the Sun is Earth's fundamental energy source and only sunshine, we need a quantitative record of the Sun's solar energy output. TSIS-1 will provide the most accurate measurements ever made of sunlight as seen from above Earth’s atmosphere.
The energy flow between the Earth and Sun's connection is not a constant thing. The Sun can be fickle, sometimes it puts out slightly more energy and some years less. Earth is no better. The Earth absorbs different amounts of the Sun's energy depending on many factors, such as the presence of clouds and tiny particles in the atmosphere called aerosols.
What we do know is that the Sun's cycle is about 11 years rolling through periods of quiet to times of intense activity. When the Sun is super-intense it releases explosions of light and solar material. This time is a solar maximum.
When the Sun is in a quiet state this period is called the solar minimum.
Over the course of one solar cycle (one 11-year period), the Sun’s total emitted energy varies on average at about 0.1 percent. That may not sound like a lot, but the Sun emits a large amount of energy – 1,361 watts per square meter. Even fluctuations at just a tenth of a percent can affect Earth. That's why TSIS-1 is launching: to help scientists understand and anticipate how changes in the Sun will affect us on Earth.
Scientists use computer models to interpret changes in the Sun’s energy input. If less solar energy is available, scientists can gauge how that affects Earth’s atmosphere, oceans, weather and seasons by using computer simulations. But the Sun is just one of many factors scientists use to model Earth’s climate. A lot of other factors come into play in addition to the energy from the Sun. Factors like greenhouse gases, clouds scattering light and small particles in the atmosphere called aerosols all can affect Earth’s climate so they all need to be included in climate models. So, while we need to measure the total amount of energy from the Sun, we also need to understand how these other factors alter the amount of energy reaching Earth's surface and affect our climate.
We receive the Sun's energy in many different wavelengths, including visible light (rainbows!) as well as light we can't see like infrared and ultraviolet wavelengths. Each color or wavelength of light from the Sun affects Earth’s atmosphere differently.
For instance, ultraviolet light from the Sun can affect Earth's ozone. High in the atmosphere is a layer of protective ozone gas. Ozone is Earth’s natural sunscreen, absorbing the Sun’s most harmful ultraviolet radiation and protecting living things below. But ozone is vulnerable to certain gases made by humans that reach the upper atmosphere. Once there, they react in the presence of sunlight to destroy ozone molecules. Currently, several satellites from us and the National Oceanic and Atmospheric Administration (NOAA) track the ozone in the upper atmosphere and the solar energy that drives the photochemistry that creates and destroys ozone. Our new instrument, TSIS-1, will join that fleet with even better accuracy.
TSIS-1 will see different types of ultraviolet (UV) light, including UV-B and UV-C. Each plays a different role in the ozone layer. UV-C rays are essential in creating ozone. UV-B rays and some naturally occurring chemicals regulate the abundance of ozone in the upper atmosphere. The amount of ozone is a balance between these natural production and loss processes.
TSIS-1 data of the Sun's UV energy will help improve computer models of the atmosphere that need accurate measurements of sunlight across the ultraviolet spectrum to model the ozone layer correctly. While UV light represents a tiny fraction of the total sunlight that reaches the top of Earth's atmosphere, it fluctuates from 3 to 10 percent, a change that, in turn causes small changes in the chemical composition and thermal structure of the upper atmosphere.
This is just one of the important applications of TSIS-1 measurements. TSIS-1 will measure how the Sun's energy is distributed over 1,000 different wavelengths.
TSIS-1 will continue our nearly 40 years of closely studying the total amount of energy the Sun sends to Earth from space. We've previously studied this 'total solar irradiance' with nine previous satellites, currently with Solar Radiation and Climate Experiment, (SORCE).
NASA’s SORCE collected this data on the total amount of the Sun’s radiant energy throughout Sept. 2017. The satellite actually detected a dip in total irradiance – or the total amount of energy from the Sun- during the month’s intense solar activity.
But there's still very much we don't know about total solar irradiance. We do not know how it varies over longer timescales. Longer term observations are especially important because scientists have observed unusually quiet magnetic activity from the Sun for the past two decades with previous satellites. During the last prolonged solar minimum in 2008-2009, our Sun was the quietest it has ever been since we started observations in 1978. Scientists expect the Sun to enter a solar minimum within the next three years, and TSIS-1 will be primed to take measurements of the next minimum and see if this is part of a larger trend.
For all the latest Earth updates, follow us on Twitter @NASAEarth or Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
To most of us, dust is an annoyance. Something to be cleaned up, washed off or wiped away. But these tiny particles that float about and settle on surfaces play an important role in a variety of processes on Earth and across the solar system. So put away that feather duster for a few moments, as we share with you 10 things to know about dust.
Not all of what we call "dust" is made of the same stuff. Dust in your home generally consists of things like particles of sand and soil, pollen, dander (dead skin cells), pet hair, furniture fibers and cosmetics. But in space, dust can refer to any sort of fine particles smaller than a grain of sand. Dust is most commonly bits of rock or carbon-rich, soot-like grains, but in the outer solar system, far from the Sun's warmth, it's also common to find tiny grains of ice as well. Galaxies, including our Milky Way, contain giant clouds of fine dust that are light years across – the ingredients for future generations of planetary systems like ours.
Dust grains come in a range of sizes, which affects their properties. Particles can be extremely tiny, from only a few tens of nanometers (mere billionths of a meter) wide, to nearly a millimeter wide. As you might expect, smaller dust grains are more easily lifted and pushed around, be it by winds or magnetic, electrical and gravitational forces. Even the gentle pressure of sunlight is enough to move smaller dust particles in space. Bigger particles tend to be heavier, and they settle out more easily under the influence of gravity.
For example, on Earth, powerful winds can whip up large amounts of dust into the atmosphere. While the smaller grains can be transported over great distances, the heavier particles generally sink back to the ground near their source. On Saturn's moon Enceladus, jets of icy dust particles spray hundreds of miles up from the surface; the bigger particles are lofted only a few tens of miles (or kilometers) and fall back to the ground, while the finest particles escape the moon's gravity and go into orbit around Saturn to create the planet's E ring.
Generally speaking, the space between the planets is pretty empty, but not completely so. Particles cast off by comets and ground up bits of asteroids are found throughout the solar system. Take any volume of space half a mile (1 kilometer) on a side, and you’d average a few micron-sized particles (grains the thickness of a red blood cell).
Dust in the solar system was a lot more abundant in the past. There was a huge amount of it present as the planets began to coalesce out of the disk of material that formed the Sun. In fact, motes of dust gently sticking together were likely some of the earliest seeds of the planet-building process. But where did all that dust come from, originally? Some of it comes from stars like our Sun, which blow off their outer layers in their later years. But lots of it also comes from exploding stars, which blast huge amounts of dust and gas into space when they go boom.
Dust is easier to see from certain viewing angles. Tiny particles scatter light depending on how big their grains are. Larger particles tend to scatter light back in the direction from which it came, while very tiny particles tend to scatter light forward, more or less in the direction it was already going. Because of this property, structures like planetary rings made of the finest dusty particles are best viewed with the Sun illuminating them from behind. For example, Jupiter's rings were only discovered after the Voyager 1 spacecraft passed by the planet, where it could look back and see them backlit by the Sun. You can see the same effect looking through a dusty windshield at sunset; when you face toward the Sun, the dust becomes much more apparent.
Local dust storms occur frequently on Mars, and occasionally grow or merge to form regional systems, particularly during the southern spring and summer, when Mars is closest to the Sun. On rare occasions, regional storms produce a dust haze that encircles the planet and obscures surface features beneath. A few of these events may become truly global storms, such as one in 1971 that greeted the first spacecraft to orbit Mars, our Mariner 9. In mid-2018, a global dust storm enshrouded Mars, hiding much of the Red Planet's surface from view and threatening the continued operation of our uber long-lived Opportunity rover. We’ve also seen global dust storms in 1977, 1982, 1994, 2001 and 2007.
Dust storms will likely present challenges for future astronauts on the Red Planet. Although the force of the wind on Mars is not as strong as portrayed in an early scene in the movie "The Martian," dust lofted during storms could affect electronics and health, as well as the availability of solar energy.
Earth's largest, hottest desert is connected to its largest tropical rain forest by dust. The Sahara Desert is a near-uninterrupted brown band of sand and scrub across the northern third of Africa. The Amazon rain forest is a dense green mass of humid jungle that covers northeast South America. But after strong winds sweep across the Sahara, a dusty cloud rises in the air, stretches between the continents, and ties together the desert and the jungle.
This trans-continental journey of dust is important because of what is in the dust. Specifically, the dust picked up from the Bodélé Depression in Chad -- an ancient lake bed where minerals composed of dead microorganisms are loaded with phosphorus. Phosphorus is an essential nutrient for plant proteins and growth, which the nutrient-poor Amazon rain forest depends on in order to flourish.
The rings of the giant planets contain a variety of different dusty materials. Jupiter's rings are made of fine rock dust. Saturn's rings are mostly pure water ice, with a sprinkling of other materials. (Side note about Saturn's rings: While most of the particles are boulder-sized, there's also lots of fine dust, and some of the fainter rings are mostly dust with few or no large particles.) Dust in the rings of Uranus and Neptune is made of dark, sooty material, probably rich in carbon.
Over time, dust gets removed from ring systems due to a variety of processes. For example, some of the dust falls into the planet's atmosphere, while some gets swept up by the planets' magnetic fields, and other dust settles onto the surfaces of the moons and other ring particles. Larger particles eventually form new moons or get ground down and mixed with incoming material. This means rings can change a lot over time, so understanding how the tiniest ring particles are being moved about has bearing on the history, origins and future of the rings.
So, dust is kind of a thing on the Moon. When the Apollo astronauts visited the Moon, they found that lunar dust quickly coated their spacesuits and was difficult to remove. It was quite abrasive, causing wear on their spacesuit fabrics, seals and faceplates. It also clogged mechanisms like the joints in spacesuit limbs, and interfered with fasteners like zippers and Velcro. The astronauts also noted that it had a distinctive, pungent odor, not unlike gunpowder, and it was an eye and lung irritant.
Many of these properties apparently can be explained by the fact that lunar dust particles are quite rough and jagged. While dust particles on Earth get tumbled and ground by the wind into smoother shapes, this sort of weathering doesn't happen so much on the Moon. The roughness of Moon dust grains makes it very easy for them to cling to surfaces and scratch them up. It also means they're not the sort of thing you would want to inhale, as their jagged edges could damage delicate tissues in the lung.
Most comets are basically clods of dust, rock and ice. They spend most of their time far from the Sun, out in the refrigerated depths of the outer solar system, where they're peacefully dormant. But when their orbits carry them closer to the Sun -- that is, roughly inside the orbit of Jupiter -- comets wake up. In response to warming temperatures, the ices on and near their surfaces begin to turn into gases, expanding outward and away from the comet, and creating focused jets of material in places. Dust gets carried away by this rapidly expanding gas, creating a fuzzy cloud around the comet's nucleus called a coma. Some of the dust also is drawn out into a long trail -- the comet's tail.
Dust in our solar system is continually replenished by comets whizzing past the Sun and the occasional asteroid collision, and it's always being moved about, thanks to a variety of factors like the gravity of the planets and even the pressure of sunlight. Some of it even gets ejected from our solar system altogether.
With telescopes, we also observe dusty debris disks around many other stars. As in our own system, the dust in such disks should evolve over time, settling on planetary surfaces or being ejected, and this means the dust must be replenished in those star systems as well. So studying the dust in our planetary environs can tell us about other systems, and vice versa. Grains of dust from other planetary systems also pass through our neighborhood -- a few spacecraft have actually captured and analyzed some them -- offering us a tangible way to study material from other stars.
Read the full version of ‘Solar System: 10 Things to Know’ article HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
To celebrate National Intern Day, we asked interns to share how they got their internship and their perspective and advice to the next generation of prospective NASA interns.
Meet our interns and check out their suggestions for the next generation.
Sarah is a summer Surface Tension Driven Convection Experiment Data Intern at NASA. Her inspiration for applying for an internship came from a passion for science from an early age. “I grew up in a family that liked, enjoyed and appreciated science and the fun of it all,” she recalls. “I grew up watching PBS, NOVA, and other science shows, so when I saw NASA had opportunities for students like me, I was very interested.”
Sarah’s advice to the next generation of NASA interns is one of perseverance and resilience.
Nicholas is a summer Attitude Control Engineering Intern at NASA. He wants to contribute to scientific innovation and discovery. “Overall, what inspired me to apply and come to work here was to contribute to the scientific exploration of space while learning about unique perspectives and innovative space discoveries.”
Nicholas’s advice for prospective NASA interns is to make the most out of your time here and to be a curious and eager learner.
“Use all the resources that are at your center and ask questions about projects you are working on. Don’t be afraid to talk to your mentor about your plans for the future and ask for any advice you may need, as they are more than willing to help you during your time here,” says Nicholas.
Nicholas and his mentor, Brent Faller, are using software to inform design decisions on a variety of spacecraft.
As an American Indian College Fund ambassador and a Navajo engineer, Nylana Murphy hopes her internship story will inspire others to pursue a career in aerospace.
After attending the American Indian Science Engineering Society Conference, Nylana secured an internship in the additive manufacturing research laboratory at NASA Marshall.
“My internships have helped me get to where I am,” she says, “There is a career for everyone, where their dreams can become reality. Those dreams WILL become a reality.”
You might be wondering: what happens after a NASA internship Here’s what two of our former interns did.
Lorel interned at NASA JPL in 2003, and at NASA Goddard in 2004. She earned science degrees from both the University of Kansas and Purdue University.
As a research and project engineer, O’Hara reported for duty in August 2017 and completed two years of training as an Astronaut Candidate. She is projected to fly in Soyuz missions as a NASA astronaut soon.
If she could go back in time, Loral says she would tell her younger self to enjoy the opportunities that come her way—and never stop looking for new ones. “Enjoy the whole journey of…figuring out what it is that you like to do and exploring all different kinds of things.”
The “7 Minutes of Terror” video piqued Jeff Carlson’s interest in working at JPL. He thought, "That's the coolest thing I've ever heard of. I've got to go be a part of that in some way." While interning at the Jet Propulsion Laboratory, he worked on Starshade, a sunflower-shaped device used to block starlight in order to reveal planets orbiting a star. Later, he went on to work on the team tasked with assembling and testing the “head” and “neck” (officially called the Remote Sensing Mast) for the Mars 2020 rover.
Want to join us in exploring the secrets of the universe? Visit intern.nasa.gov to learn more about open opportunities and requirements!
Make sure to follow us on Tumblr for your regular dose of space!
Credits: Isabel Rodriguez, Glenn Research Center intern and Claire O'Shea, Johnson Space Center intern
A new batch of science is headed to the International Space Station aboard the SpaceX Dragon on the company’s 15th mission for commercial resupply services. The spacecraft will deliver science that studies the use of artificial intelligence, plant water use all over the planet, gut health in space, more efficient drug development and the formation of inorganic structures without the influence of Earth’s gravity.
Take a look at five investigations headed to space on the latest SpaceX resupply:
Credits: DLR
As we travel farther into space, the need for artificial intelligence (AI) within a spacecraft increases.
Credits: DLR
Mobile Companion, a European Space Agency (ESA) investigation, explores the use of AI as a way to mitigate crew stress and workload during long-term spaceflight.
Credits: DLR
Plants regulate their temperature by releasing water through tiny pores on their leaves. If they have sufficient water they can maintain their temperature, but if water is insufficient their temperatures rise. This temperature rise can be measured with a sensor in space.
Credits: NASA/JPL-Caltech
ECOSTRESS measures the temperature of plants and uses that information to better understand how much water plants need and how they respond to stress.
Credits: Northwestern University
Spaceflight has an on impact many bodily systems. Rodent Research-7 takes a look at how the microgravity environment of space affects the community of microoganisms in the gastrointestinal tract, or microbiota.
The study also evaluates relationships between system changes, such as sleep-wake cycle disruption, and imbalance of microbial populations, to identify contributing factors and supporting development of countermeasures to protect astronaut health during long-term missions, as well as to improve the treatment of gastrointestinal, immune, metabolic and sleep disorders on Earth.
Credits: Angiex
Cardiovascular diseases and cancer are the leading causes of death in developed countries. Angiex Cancer Therapy examines whether microgravity-cultured endothelial cells represent a valid in vitro model to test effects of vascular-targeted agents on normal blood vessels.
Results may create a model system for designing safer drugs, targeting the vasculature of cancer tumors and helping pharmaceutical companies design safer vascular-targeted drugs.
Credits: Oliver Steinbock chemistry group at Florida State University
Chemical Gardens are structures that grow during the interaction of metal salt solutions with silicates, carbonates or other selected anions. Their growth characteristics and attractive final shapes form from a complex interplay between reaction-diffusion processes and self-organization.
Credits: Oliver Steinbock chemistry group at Florida State University
On Earth, gravity-induced flow due to buoyancy differences between the reactants complicates our understanding of the physics behind these chemical gardens. Conducting this experiment in a microgravity environment ensures diffusion-controlled growth and allows researchers a better assessment of initiation and evolution of these structures.
These investigations join hundreds of others currently happening aboard the orbiting laboratory.
For daily updates, follow @ISS_Research, Space Station Research and Technology News or our Facebook. For opportunities to see the space station pass over your town, check out Spot the Station.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What's the weirdest part of your job? How does a typical work day for you looks like?
Discoveries in planetary science are often both weird and wonderful, and these newest announcements are no exception. This week we present a few of the most interesting recent scientific findings from our missions and NASA-funded planetary science. Take a look:
1. Seeing Spots
Scientists from our Dawn mission unveiled new images from the spacecraft’s lowest orbit at the dwarf planet Ceres, including highly anticipated views of the famous “bright spots” of Occator Crater. Take a look HERE.
2. Pluto’s Secrets Brought to Light
A year ago, Pluto was just a bright speck in the cameras of our approaching New Horizons spacecraft, not much different than its appearances in telescopes since Clyde Tombaugh discovered the dwarf planet in 1930. Now, New Horizons scientists have authored the first comprehensive set of papers describing results from last summer’s Pluto system flyby. Find out more HERE.
3. Rising Above the Rest
In a nod to extraterrestrial mountaineers of the future, scientists working on our Cassini mission have identified the highest point on Saturn’s largest moon, Titan. The tallest peak is 10,948 feet (3,337 meters) high and is found within a trio of mountainous ridges called the Mithrim Montes, named for the mountains in Tolkien’s Middle-Earth.
4. Does the “Man in the Moon” Have a New Face?
New NASA-funded research provides evidence that the spin axis of Earth’s moon shifted by about five degrees roughly three billion years ago. The evidence of this motion is recorded in the distribution of ancient lunar ice, evidence of delivery of water to the early solar system.
5. X-Ray Vision
Solar storms are triggering X-ray auroras on Jupiter that are about eight times brighter than normal over a large area of the planet and hundreds of times more energetic than Earth’s “northern lights,” according to a new study using data from our Chandra X-ray Observatory.
Want to learn more? Read our full list of things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Take a deep breath. Feel the oxygen in your lungs. We have the ocean to thank for that! Over long time scales, between 50 and 70 percent of our planet's oxygen is produced by microscopic organisms living in the ocean.
Today is World Oceans Day! And as our planet’s climate continues to change, we want to understand how one of our biggest ecosystems is changing with it. Wondering how you can celebrate with NASA? We’ve got downloadable coloring pages and online coloring interactives to show how we study the ocean. Read on.
From Space to Sea
Download ocean missions coloring page here Download Sentinel-6 Michael Freilich coloring page here
We use planes, boats, Earth-observing satellites and much more to study the ocean and partner with organizations all over the world. Here are a few examples:
From Sea
The Export Processes in the Ocean from Remote Sensing (EXPORTS) is one way we study the ocean from the sea to study changes in the ocean’s carbon cycle. In May, scientists and crew conducted research on three ships in the Northern Atlantic Ocean. They hope to create models to better understand climate change patterns.
From Space
Launched last year, the Sentinel-6 Michael Freilich spacecraft began a five-and-a-half-year prime mission to collect the most accurate data yet on global sea level and how our oceans are rising in response to climate change. Sentinel-6 Michael Freilich is just one of many satellites monitoring the ocean from space. Together with other Earth-observing spacecraft, the mission will also collect precise data of atmospheric temperature and humidity to help improve weather forecasts and climate models.
Finding Eddies
Download Eddies Coloring Page The ocean is full of eddies – swirling water masses that look like hurricanes in the atmosphere. Eddies are often hot spots for biological activity that plays an important role in absorbing carbon. . We find eddies by looking for small changes in the height of the ocean surface, using multiple satellites continuously orbiting Earth. We also look at eddies up close, using ships and planes to study their role in the carbon cycle.
Monitoring Aerosols and Clouds
Clouds coloring interactive here
Aerosols coloring interactive here
Tiny particles in the air called aerosols interact with clouds. These interactions are some of the most poorly understood components of Earth's climate system. Clouds and aerosols can absorb, scatter or reflect incoming radiation -- heat and light from the Sun -- depending on their type, abundance and locations in the atmosphere. We’re building new instruments to better understand aerosols and contribute to air quality forecasts.
The Ocean in Living Color Download PACE coloring page here
The Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission will continue and greatly advance observations of global ocean color, biogeochemistry, and ecology, as well as Earth’s carbon cycle and atmospheric aerosols and clouds. It’s set to launch in late 2023 to early 2024. Want to learn more? Click here to see how PACE will collect data and here to see what PACE will see through our coloring interactives. (Make sure to check out the hidden surprises in both!)
Exploring Ocean Worlds on Earth and Beyond
Download Clouds coloring page here
Using our understanding of oceans on Earth, we also study oceans on other planets. Mars, for example, contains water frozen in the ice caps or trapped beneath the soil. But there’s even more water out there. Planets and moons in our solar system and beyond have giant oceans on their surface. Saturn’s moon Enceladus is thought to have a massive ocean under its frozen surface, which sometimes sprays into space through massive fissures in the ice.
Learn more about ocean worlds here: nasa.gov/oceanworlds
Interested in learning more about how NASA studies oceans? Follow @NASAClimate, @NASAOcean and @NASAEarth.
You can also find all the coloring pages and interactives here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The Perseid meteor shower is the best of the year! It peaks on a Moonless summer night from 4 p.m. EST on August 12 until 4 a.m. EST on August 13.
Because the new Moon falls near the peak night, the days before and after the peak will also provide nice, dark skies. Your best window of observation is from a few hours after twilight until dawn, on the days surrounding the peak.
Unlike most meteor showers, which have a short peak of high meteor rates, the Perseids have a very broad peak, as Earth takes more than three weeks to plow through the wide trail of cometary dust from comet Swift-Tuttle.
The Perseids appear to radiate from the constellation Perseus, visible in the northern sky soon after sunset this time of year. Observers in mid-northern latitudes will have the best views.
You should be able to see some meteors from July 17 to August 24, with the rates increasing during the weeks before August 12 and decreasing after August 13.
Observers should be able to see between 60 and 70 per hour at the peak. Remember, you don't have to look directly at the constellation to see them. You can look anywhere you want to-even directly overhead.
Meteor showers like the Perseids are caused by streams of meteoroids hitting Earth's atmosphere. The particles were once part of their parent comet-or, in some cases, from an asteroid.
The parade of planets Venus, Jupiter, Saturn and Mars--and the Milky Way continue to grace the evening sky, keeping you and the mosquitoes company while you hunt for meteors.
Watch the full What’s Up for August Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Image Credit: Department of Transportation. U.S. Coast Guard. Office of Public and International Affairs
It was the raw courage of the more than 160,000 Allied troops who stormed an 80-kilometer (50-mile) stretch of heavily fortified beaches in Normandy, France, that made victory on D-Day possible. But without the sound advice of meteorologists and geologists working behind the scenes, one of the most consequential battles in human history could have gone quite differently.
As D-Day neared, the American meteorologists predicted fair weather on June 5 and pushed for invasion, based on a forecasting method that gave great weight to historical weather conditions for a given date and location. The British forecasters took a different approach, focusing instead on analyzing measurements of temperature, pressure, and humidity to try to map out weather fronts. Unlike the Americans, the British teams predicted low clouds and stormy weather on June 5. At the last minute, Captain James Martin Stagg, the highest ranking of the meteorologists, convinced Eisenhower to postpone the invasion.
NASA Earth Observatory images by Joshua Stevens, using Landsat data from the U.S. Geological Survey
Meanwhile, on the other side of the English Channel, German meteorologists had come to the same conclusion—and then some. Their forecasters had predicted that gale-force winds would arrive on June 5 and persist until mid-June. The Germans were so confident that the Allies would not dare attack that they allowed many soldiers to leave their posts on the beaches and take part in war games in Rennes, France. Field Marshal Erwin Rommel felt comfortable enough to return to Germany to deliver a pair of shoes to his wife as a birthday present.
Image Credit: Department of Defense. Department of the Army. Office of the Deputy Chief of Staff for Operations. U.S. Army Audiovisual Center. ca. 1974-5/15/1984
When the first paratroopers were dropped behind enemy lines around midnight and the first wave of Allied boats began to swarm the beaches at dawn on June 6, the weather was still far from ideal. Cloud cover meant many paratroopers ended up in the wrong locations, and rough seas and high winds made the task of landing boats and unloading tanks a terrible challenge. But by noon the skies cleared, just as the Allied meteorologists had predicted. The Germans, meanwhile, had been caught off guard. That day the Allies endured thousands of causalities, but they established a toehold in France that they would never give up.
NASA Earth Observatory images by Joshua Stevens, using Landsat data from the U.S. Geological Survey
An enormous amount of scientific expertise went into even the most unscientific of tasks, like rolling a tank up the Normandy beaches. Prior to the invasion, Allied military planners studied nearly one million aerial photographs of the shores of Normandy to find the best landing sites. The aerial photographs would have looked something like the Landsat 8 images shown above. Acquired by the Operational Land Imager (OLI) on July 15, 2018, these image offer a top-down view of the sandy Normandy beaches that were center stage on D-Day.
Read the full story: https://earthobservatory.nasa.gov/images/145143/forecasting-d-day
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
As part of our Asteroid Redirect Mission (ARM), we plan to send a robotic spacecraft to an asteroid tens of millions of miles away from Earth, capture a multi-ton boulder and bring it to an orbit near the moon for future crew exploration.
This mission to visit a large near-Earth asteroid is part of our plan to advance the new technologies and spaceflight experience needed for a human mission to the Martian system in the 2030s.
The robotic spacecraft, powered by the most advanced solar electric propulsion system, will travel for about 18 months to the target asteroid.
After the spacecraft arrives and the multi-ton boulder is collected from the surface, the spacecraft will hover near the asteroid to create a gravitational attraction that will slightly change the asteroid’s trajectory.
After the enhanced gravity tractor demonstration is compete, the robotic vehicle will deliver the boulder into a stable orbit near the moon. During the transit, the boulder will be further imaged and studied by the spacecraft.
Astronauts aboard the Orion spacecraft will launch on the Space Launch System rocket to explore the returned boulder.
Orion will dock with the robotic vehicle that still has the boulder in its grasp.
While docked, two crew members on spacewalks will explore the boulder and collect samples to bring back to Earth for further study.
The astronauts and collected samples will return to Earth in the Orion spacecraft.
This mission will demonstrate future Mars-level exploration missions closer to home and will fly a mission with technologies and real life operational constraints that we’ll encounter on the way to the Red Planet. A few of the capabilities it will help us test include:
Solar Electric Propulsion – Using advanced Solar Electric Propulsion (SEP) technologies is an important part of future missions to send larger payloads into deep space and to the Mars system. Unlike chemical propulsion, which uses combustion and a nozzle to generate thrust, SEP uses electricity from solar arrays to create electromagnetic fields to accelerate and expel charged atoms (ions) to create a very low thrust with a very efficient use of propellant.
Trajectory and Navigation – When we move the massive asteroid boulder using low-thrust propulsion and leveraging the gravity fields of Earth and the moon, we’ll validate critical technologies for the future Mars missions.
Advances in Spacesuits – Spacesuits designed to operate in deep space and for the Mars surface will require upgrades to the portable life support system (PLSS). We are working on advanced PLSS that will protect astronauts on Mars or in deep space by improving carbon dioxide removal, humidity control and oxygen regulation. We are also improving mobility by evaluating advances in gloves to improve thermal capacity and dexterity.
Sample Collection and Containment Techniques – This experience will help us prepare to return samples from Mars through the development of new techniques for safe sample collection and containment. These techniques will ensure that humans do not contaminate the samples with microbes from Earth, while protecting our planet from any potential hazards in the samples that are returned.
Rendezvous and Docking Capabilities – Future human missions to Mars will require new capabilities to rendezvous and dock spacecraft in deep space. We will advance the current system we’ve developed with the international partners aboard the International Space Station.
Moving from spaceflight a couple hundred miles off Earth to the proving ground environment (40,000 miles beyond the moon) will allow us to start accumulating experience farther than humans have ever traveled in space.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This composite image shows a coronal mass ejection, a type of space weather linked to solar energetic particles, as seen from two space-based solar observatories and one ground-based instrument. The image in gold is from NASA’s Solar Dynamics Observatory, the image in blue is from the Manua Loa Solar Observatory’s K-Cor coronagraph, and the image in red is from ESA and NASA’s Solar and Heliospheric Observatory.
Our constantly-changing sun sometimes erupts with bursts of light, solar material, or ultra-fast energized particles — collectively, these events contribute to space weather. A new study shows that the warning signs of one type of space weather event can be detected tens of minutes earlier than with current forecasting techniques – critical extra time that could help protect astronauts in space.
Credits: NASA/ESA/SOHO/SDO/Joy Ng and MLSO/K-Cor
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts