This animation blinks between two images of our Mars Phoenix Lander. The first – dark smudges on the planet’s surface. The second – the same Martian terrain nearly a decade later, covered in dust. Our Mars orbiter captured this shot as it surveyed the planet from orbit: the first in 2008. The second: late 2017.
In August 2008, Phoenix completed its three-month mission studying Martian ice, soil and atmosphere. The lander worked for two additional months before reduced sunlight caused energy to become insufficient to keep the lander functioning. The solar-powered robot was not designed to survive through the dark and cold conditions of a Martian arctic winter.
Read the full story HERE.
Credit: NASA/JPL-Caltech/Univ. of Arizona
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
For the first time in almost a decade, we're going back to Jupiter. Our Juno spacecraft arrives at the king of planets on the fourth of July. From a unique polar orbit, Juno will repeatedly dive between the planet and its intense belts of charged particle radiation. Juno's primary goal is to improve our understanding of Jupiter's formation and evolution, which will help us understand the history of our own solar system and provide new insight into how other planetary systems form.
In anticipation, here are a few things you need to know about the Juno mission and the mysterious world it will explore:
1. This is the Big One
The most massive planet in our solar system, with dozens of moons and an enormous magnetic field, Jupiter rules over a kind of miniature solar system.
2. Origin Story
Why study Jupiter in the first place? How does the planet fit into the solar system as a whole? What is it hiding? How will Juno unlock its secrets? A series of brief videos tells the stories of Jupiter and Juno. Watch them HERE.
3. Eyes on Juno
If you really want a hands-on understanding of Juno's flight through the Jupiter system, there's no better tool than the "Eyes on Juno" online simulation. It uses data from the mission to let you realistically see and interact with the spacecraft and its trajectory—in 3D and across both time and space.
4. You’re on JunoCam!
Did you know that you don't have to work for NASA to contribute to the Juno mission? Amateur astronomers and space enthusiasts everywhere are invited to help with JunoCam, the mission's color camera. You can upload your own images of Jupiter, comment on others' images, and vote on which pictures JunoCam will take when it reaches the Jovian system.
5. Ride Along
It's easy to follow events from the Juno mission as they unfold. Here are several ways to follow along online:
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Two mysterious worlds explored for the first time. Liquid water seen flowing on Mars. A global ocean discovered hiding inside a moon of Saturn. Even during our Era of audacious solar system exploration, 2015 stands out. Here are a few highlights:
1. New Horizons Reveals the Face of Pluto
Whether or not you call it a planet, Pluto entranced the people of Earth when it sent a love note from three billion miles away via our New Horizons spacecraft.
2. Dawn Comes to Ceres
The dwarf planet Ceres, the largest object in the main asteroid belt, teased explorers with its bizarre bright spots before finally giving up some of its secrets to the Dawn spacecraft. HERE are the latest findings.
3. Cassini Marks Discoveries and Milestones at Enceladus
When the Cassini spacecraft performs its final close flyby of Saturn’s icy moon Enceladus on Dec. 19, it will be a true milestone. Scientists using data from Cassini’s instruments have uncovered astounding secrets about this small moon, including (confirmed this year) the fact that its underground ocean of liquid water is global, and is home to hydrothermal vents.
4. We Confirmed Evidence that Liquid Water Flows on Today’s Mars
Findings from our Mars Reconnaissance Orbiter (MRO) provided the strongest evidence yet that liquid water flows intermittently — on present-day Mars.
5. Rosetta Passes Perihelion
The European Space Agency’s Rosetta mission had a remarkable year, re-establishing contact with the Philae lander and following comet 67P/Churyumov-Gerasimenko as it swung near the sun.
6. Mars Explorers Confirm Lakes Once Dotted Mars
A study from the team behind our Mars Science Laboratory/Curiosity Rover confirmed that Mars was once, billions of years ago, capable of storing water in lakes over an extended period of time.
7. MAVEN Finds a Culprit in the Loss of Mars’ Atmosphere
The Mars Atmosphere and Volatile Evolution (MAVEN) mission identified the process that appears to have played a key role in the transition of the Martian climate from an early, warm and wet environment that might have supported surface life to the cold, arid planet that Mars is today.
8. Akatsuki Gets a Second Chance at Venus
Five years after a mishap sent the spacecraft off course, the Japan Aerospace Exploration Agency (JAXA) successfully inserted the Venus Climate Orbiter “Akatsuki” into orbit around Venus. While the mission is not funded by NASA, an agency partnership with JAXA provides an opportunity for eight of our scientists to work with the Akatsuki team and study data from the spacecraft over the next year or so.
9. A Trailblazing Mission Sends Its Final Message from Mercury
After a flight of nearly 11 years, the highly successful MESSENGER mission ended when, as planned, the spacecraft slammed into the surface of Mercury.
10. Mars Reconnaissance Orbiter Completes 40,000 Orbits
Mars Reconnaissance Orbiter, at Mars since 2006, has orbited the Red Planet more than 40,000 times. The mission, which studies the whole planet from space, has shown that Mars is diverse and dynamic by way of many thousands of spectacular images and other kinds of data.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Meet Robonaut, our humanoid robot (which means it’s built to look like a person). This makes it easier for Robonaut to do the same jobs as a person.
Robonaut could help with anything from working on the International Space Station to exploring other worlds…and now he might even take up a job as a referee!
But it’s not all fun and games for Robonaut...from performing movements like a referee to helping astronauts on the space station, it’s important to have a robot that can perform the same tasks as humans. Why?
Robonaut could someday be tested outside the space station. This testing would determine how well Robonaut could work with, or instead of, spacewalking astronauts. Designers even have ideas for sending a robot like Robonaut to another world someday. If testing goes well, who knows where Robonaut - or a better robot based on Robonaut - could end up?
To learn more about connections between space and football, visit: https://www.nasa.gov/football
To learn more about Robonaut, visit: https://www.nasa.gov/robonaut2
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This composite image shows a coronal mass ejection, a type of space weather linked to solar energetic particles, as seen from two space-based solar observatories and one ground-based instrument. The image in gold is from NASA’s Solar Dynamics Observatory, the image in blue is from the Manua Loa Solar Observatory’s K-Cor coronagraph, and the image in red is from ESA and NASA’s Solar and Heliospheric Observatory.
Our constantly-changing sun sometimes erupts with bursts of light, solar material, or ultra-fast energized particles — collectively, these events contribute to space weather. A new study shows that the warning signs of one type of space weather event can be detected tens of minutes earlier than with current forecasting techniques – critical extra time that could help protect astronauts in space.
Credits: NASA/ESA/SOHO/SDO/Joy Ng and MLSO/K-Cor
SpaceX is helping the crew members aboard the International Space Station get down and nerdy as they launch their Dragon cargo spacecraft into orbit for the 13th commercial resupply mission, targeted for Dec. 15 from our Kennedy Space Center in Florida.
This super science-heavy flight will deliver experiments and equipment that will study phenomena on the Sun, materials in microgravity, space junk and more.
Here are some highlights of research that will be delivered to the station:
The Optical Fiber Production in Microgravity (Made in Space Fiber Optics) experiment demonstrates the benefits of manufacturing fiber optic filaments in a microgravity environment. This investigation will attempt to pull fiber optic wire from ZBLAN, a heavy metal fluoride glass commonly used to make fiber optic glass.
When ZBLAN is solidified on Earth, its atomic structure tends to form into crystals. Research indicates that ZBLAN fiber pulled in microgravity may not crystalize as much, giving it better optical qualities than the silica used in most fiber optic wire.
The Total and Spectral Solar Irradiance Sensor, or TSIS, monitors both total solar irradiance and solar spectral irradiance, measurements that represent one of the longest space-observed climate records. Solar irradiance is the output of light energy from the entire disk of the Sun, measured at the Earth. This means looking at the Sun in ways very similar to how we observe stars rather than as an image with details that our eye can resolve.
Understanding the variability and magnitude of solar irradiance is essential to understanding Earth’s climate.
The Space Debris Sensor (SDS) will directly measure the orbital debris environment around the space station for two to three years.
Above, see documentation of a Micro Meteor Orbital Debris strike on one of the window’s within the space station’s Cupola.
Research from this investigation could help lower the risk to human life and critical hardware by orbital debris.
Future space exploration may utilize self-assembly and self-replication to make materials and devices that can repair themselves on long duration missions.
The Advanced Colloids Experiment- Temperature-7 (ACE-T-7) investigation involves the design and assembly of 3D structures from small particles suspended in a fluid medium.
The Transparent Alloys project seeks to improve the understanding of the melting and solidification processes in plastics in microgravity. Five investigations will be conducted as a part of the Transparent Alloys project.
These European Space Agency (ESA) investigations will allow researchers to study this phenomena in the microgravity environment, where natural convection will not impact the results.
Arthrospira B, an ESA investigation, will examine the form, structure and physiology of the Arthrospira sp. algae in order to determine the reliability of the organism for future spacecraft biological life support systems.
The development of these kinds of regenerative life support systems for spaceflight could also be applied to remote locations on Earth where sustainability of materials is important.
Follow @ISS_Research on Twitter for more space science and watch the launch live on Dec. 15 at 10:36 a.m. EDT HERE!
For a regular dose of space-nerdy-goodness, follow us on Tumblr: https://nasa.tumblr.com/.
The night sky has really been showing off lately. During the past week, we’ve had the chance to see some amazing sights by simply just looking up!
On Wednesday, Dec. 29, we were greeted by a flyby of the International Space Station over much of the east coast.
When the space station flies overhead, it’s usually easy to spot because it’s the third brightest object in the night sky. You can even enter your location into THIS website and get a list of dates/times when it will be flying over you!
One of our NASA Headquarters Photographers ventured to the Washington National Cathedral to capture the pass in action.
Then, on Saturday, Dec. 2, just one day before the peak of this month’s supermoon, the space station was seen passing in front of the Moon.
Captured by another NASA HQ Photographer, this composite image shows the space station, with a crew of six onboard, as its silhouette transits the Moon at roughly five miles per second.
Here’s an animated version of the transit.
To top off all of this night sky greatness, are these beautiful images of the Dec. 3 supermoon. This marked the first of three consecutive supermoons taking the celestial stage. The two others will occur on Jan. 1 and Jan. 31, 2018.
A supermoon occurs when the moon’s orbit is closest to Earth at the same time that it is full.
Are you this pilot? An aircraft taking off from Ronald Reagan National Airport is seen passing in front of the Moon as it rose on Sunday.
Learn more about the upcoming supermoons:
To learn more about what you can expect to spot in the sky this month, visit: https://solarsystem.nasa.gov/news/2017/12/04/whats-up-december-2017
Discover when the International Space Station will be visible over your area by visiting: https://spotthestation.nasa.gov/
Learn more about our Moon at: https://moon.nasa.gov/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
How much rain falls in a hurricane? How much snow falls in a nor’easter? What even is a nor’easter? These are the sorts of questions answered by our Global Precipitation Measurement Mission, or GPM.
GPM measures precipitation: Rain, snow, sleet, freezing rain, hail, ice pellets. It tells meteorologists the volume, intensity and location of the precipitation that falls in weather systems, helping them improve their forecasting, gather information about extreme weather and better understand Earth’s energy and water cycles.
And putting all that together, one of GPM’s specialties is measuring storms.
GPM is marking its fifth birthday this year, and to celebrate, we’re looking back on some severe storms that the mission measured in its first five years.
1. The Nor’easter of 2018
A nor’easter is a swirling storm with strong northeasterly winds and often lots of snow. In January 2018, the mission’s main satellite, the Core Observatory, flew over the East Coast in time to capture the development of a nor’easter. The storm dumped 18 inches of snow in parts of New England and unleashed winds up to 80 miles per hour!
2. Hurricane Harvey
Hurricane Harvey came to a virtual halt over eastern Texas in August 2017, producing the largest rain event in U.S. history. Harvey dropped up to 5 feet of rain, causing $125 billion in damage. The Core Observatory passed over the storm several times, using its radar and microwave instruments to capture the devastating deluge.
3. Typhoon Vongfong
In October 2014, GPM flew over one of its very first Category 5 typhoons – tropical storms with wind speeds faster than 157 miles per hour. The storm was Typhoon Vongfong, which caused $48 million in damage in Japan, the Philippines and Taiwan. We were able to see both the pattern and the intensity of Vongfong’s rain, which let meteorologists know the storm’s structure and how it might behave.
4. Near Real-Time Global Precipitation Calculations
The Core Observatory isn’t GPM’s only satellite! A dozen other satellites from different countries and government agencies come together to share their microwave measurements with the Core Observatory. Together, they are called the GPM Constellation, and they create one of its most impressive products, IMERG.
IMERG stands for “Integrated Multi-satellitE Retrievals for GPM,” and it uses the info from all the satellites in the Constellation to calculate global precipitation in near real time. In other words, we can see where it’s raining anywhere in the world, practically live.
5. Hurricane Ophelia
Hurricane Ophelia hit Ireland and the United Kingdom in October 2017, pounding them with winds up to 115 miles per hour, reddening the skies with dust from the Sahara Desert and causing more than $79 million in damages. Several satellites from the Constellation passed over Ophelia, watching this mid-latitude weather system develop into a Category 3 hurricane – the easternmost Category 3 storm in the satellite era (since 1970).
From the softest snow to the fiercest hurricanes, GPM is keeping a weather eye open for precipitation around the world. And we’re on cloud nine about that.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
do you have a favourite planet etc?
We’re always making amazing discoveries about the farthest reaches of our universe, but there’s also plenty of unexplored territory much closer to home.
Our “Backyard Worlds: Planet 9” is a citizen science project that asks curious people like you — yes, you there! — to help us spot objects in the area around our own solar system like brown dwarfs. You could even help us figure out if our solar system hosts a mysterious Planet 9!
In 2009, we launched the Wide-field Infrared Survey Explorer (WISE). Infrared radiation is a form of light that humans can’t see, but WISE could. It scans the sky for infrared light, looking for galaxies, stars and asteroids. Later on, scientists started using it to search for near-Earth objects (NEOWISE) like comets and asteroids.
These searches have already turned up so much data that researchers have trouble hunting through all of it. They can’t do it on their own. That’s why we asked everyone to chip in. If you join Backyard Worlds: Planet 9, you’ll learn how to look at noisy images of space and spot previously unidentified objects.
You’ll figure out how to tell the difference between real objects, like planets and stars, and artifacts. Artifacts are blurry blobs of light that got scattered around in WISE’s instruments while it was looking at the sky. These “optical ghosts” sometimes look like real objects.
Why can’t we use computers to do this, you ask? Well, computers are good at lots of things, like crunching numbers. But when it comes to recognizing when something’s a ghostly artifact and when it’s a real object, humans beat software all the time. After some practice, you’ll be able to recognize which objects are real and which aren’t just by watching them move!
One of the things our citizen scientists look for are brown dwarfs, which are balls of gas too big to be planets and too small to be stars. These objects are some of our nearest neighbors, and scientists think there’s probably a bunch of them floating around nearby, we just haven’t been able to find all of them yet.
But since Backyard Worlds launched on February 15, 2016, our volunteers have spotted 432 candidate brown dwarfs. We’ve been able to follow up 20 of these with ground-based telescopes so far, and 17 have turned out to be real!
Image Credit: Ryan Trainor, Franklin and Marshall College
How do we know for sure that we’ve spotted actual, bona fide, authentic brown dwarfs? Well, like with any discovery in science, we followed up with more observation. Our team gets time on ground-based observatories like the InfraRed Telescope Facility in Hawaii, the Magellan Telescope in Chile (pictured above) and the Apache Point Observatory in New Mexico and takes a closer look at our candidates. And sure enough, our participants found 17 brown dwarfs!
But we’re not done! There’s still lots of data to go through. In particular, we want your help looking for a potential addition to our solar system’s census: Planet 9. Some scientists think it’s circling somewhere out there past Pluto. No one has seen anything yet, but it could be you! Or drop by and contribute to our other citizen science projects like Disk Detective.
Congratulations to the citizen scientists who spotted these 17 brown dwarfs: Dan Caselden, Rosa Castro, Guillaume Colin, Sam Deen, Bob Fletcher, Sam Goodman, Les Hamlet, Khasan Mokaev, Jörg Schümann and Tamara Stajic.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
We’ve discovered thousands of exoplanets – planets beyond our solar system – so far. These worlds are mysterious, but observations from telescopes on the ground and in space help us understand what they might look like.
Take the planet 55 Cancri e, for instance. It’s relatively close, galactically speaking, at 41 light-years away. It’s a rocky planet, nearly two times bigger than Earth, that whips around its star every 18 hours (as opposed to the 365 days it takes our planet to orbit the Sun. Slacker).
The planet’s star, 55 Cancri, is slightly smaller than our Sun, but it’s 65 times closer than the Sun is to Earth. Imagine a massive sun on the horizon! Because 55 Cancri e is so close to its star, it’s tidally locked just like our Moon is to the Earth. One side is always bathed in daylight, the other is in perpetual darkness. It’s also hot. Really hot. So hot that silicate rocks would melt into a molten ocean of melted rock. IT’S COVERED IN AN OCEAN OF LAVA. So, it’s that hot (between 3,140 degrees and 2,420 degrees F).
Scientists think 55 Cancri e also may harbor a thick atmosphere that circulates heat from the dayside to the nightside. Silicate vapor in the atmosphere could condense into sparkling clouds on the cooler, darker nightside that would reflect the lava below. It’s also possible that it would rain sand on the nightside, but … sparkling skies!
Check out our Exoplanet Travel Bureau's latest 360-degree visualization of 55 Cancri e and download the travel poster at https://go.nasa.gov/2HOyfF3.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts