What's Made In A Thunderstorm And Faster Than Lightning? Gamma Rays!

What's Made in a Thunderstorm and Faster Than Lightning? Gamma Rays!

A flash of lightning. A roll of thunder. These are normal stormy sights and sounds. But sometimes, up above the clouds, stranger things happen. Our Fermi Gamma-ray Space Telescope has spotted bursts of gamma rays - some of the highest-energy forms of light in the universe - coming from thunderstorms. Gamma rays are usually found coming from objects with crazy extreme physics like neutron stars and black holes. 

So why is Fermi seeing them come from thunderstorms?

image

Thunderstorms form when warm, damp air near the ground starts to rise and encounters colder air. As the warm air rises, moisture condenses into water droplets. The upward-moving water droplets bump into downward-moving ice crystals, stripping off electrons and creating a static charge in the cloud.

image

The top of the storm becomes positively charged, and the bottom becomes negatively charged, like two ends of a battery. Eventually the opposite charges build enough to overcome the insulating properties of the surrounding air - and zap! You get lightning.

image

Scientists suspect that lightning reconfigures the cloud's electrical field. In some cases this allows electrons to rush toward the upper part of the storm at nearly the speed of light. That makes thunderstorms the most powerful natural particle accelerators on Earth!

image

When those electrons run into air molecules, they emit a terrestrial gamma-ray flash, which means that thunderstorms are creating some of the highest energy forms of light in the universe. But that's not all - thunderstorms can also produce antimatter! Yep, you read that correctly! Sometimes, a gamma ray will run into an atom and produce an electron and a positron, which is an electron's antimatter opposite!

image

The Fermi Gamma-ray Space Telescope can spot terrestrial gamma-ray flashes within 500 miles of the location directly below the spacecraft. It does this using an instrument called the Gamma-ray Burst Monitor which is primarily used to watch for spectacular flashes of gamma rays coming from the universe.

image

There are an estimated 1,800 thunderstorms occurring on Earth at any given moment. Over the 10 years that Fermi has been in space, it has spotted about 5,000 terrestrial gamma-ray flashes. But scientists estimate that there are 1,000 of these flashes every day - we're just seeing the ones that are within 500 miles of Fermi's regular orbits, which don't cover the U.S. or Europe.

The map above shows all the flashes Fermi has seen since 2008. (Notice there's a blob missing over the lower part of South America. That's the South Atlantic Anomaly, a portion of the sky where radiation affects spacecraft and causes data glitches.)

image

Fermi has also spotted terrestrial gamma-ray flashes coming from individual tropical weather systems. The most productive system we've seen was Tropical Storm Julio in 2014, which later became a hurricane. It produced four flashes in just 100 minutes!

image

Learn more about what Fermi's discovered about gamma rays over the last 10 years and how we're celebrating its accomplishments.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

2 years ago

What are Phytoplankton and Why Are They Important?

Breathe deep… and thank phytoplankton.

Why? Like plants on land, these microscopic creatures capture energy from the sun and carbon from the atmosphere to produce oxygen.

This moving image represents phytoplankton in motion. The background is blue. In the first motion two circular phytoplankton with six tentacles across the screen. After that, three circles of phytoplankton colored in red, blue and orange move from right to life. The final image shows a variety of phytoplankton appearing. NASA/Michael Starobin

Phytoplankton are microscopic organisms that live in watery environments, both salty and fresh. Though tiny, these creatures are the foundation of the aquatic food chain. They not only sustain healthy aquatic ecosystems, they also provide important clues on climate change.

Let’s explore what these creatures are and why they are important for NASA research.

Phytoplankton are diverse

Phytoplankton are an extremely diversified group of organisms, varying from photosynthesizing bacteria, e.g. cyanobacteria, to diatoms, to chalk-coated coccolithophores. Studying this incredibly diverse group is key to understanding the health - and future - of our ocean and life on earth.

This set of illustrations shows five different types of phytoplankton: cyanobacteria, diatom, dinoflagellate, green algae, and coccolithophore. Cyanobacteria look like a column of circles stuck together. Diatoms look like a triangle with rounded sides; there is a spherical shape at each corner of the triangle. Dinoflagellates look like an urn with fish-like fins on the top and right side, and a long whiplike appendage. Green algae are round with sharp spikes emanating like the teeth of a gear. Coccolithophores are spherical, and covered with flat round features, each circled with fluted edges like a pie crust. Credit: NASA/Sally Bensusen

Their growth depends on the availability of carbon dioxide, sunlight and nutrients. Like land plants, these creatures require nutrients such as nitrate, phosphate, silicate, and calcium at various levels. When conditions are right, populations can grow explosively, a phenomenon known as a bloom.

This image shows phytoplankton growing in a bloom. The bloom is colored in shades of green in the South Pacific Ocean off the Coast of New Zealand. In the left of the image clouds and blue water appear. In the left bottom corner a land mass colored in green and brown appears. To the middle the Cook Strait appears between the North and South Island of New Zealand in green. Credit: NASA

Phytoplankton blooms in the South Pacific Ocean with sediment re-suspended from the ocean floor by waves and tides along much of the New Zealand coastline.

Phytoplankton are Foundational

Phytoplankton are the foundation of the aquatic food web, feeding everything from microscopic, animal-like zooplankton to multi-ton whales. Certain species of phytoplankton produce powerful biotoxins that can kill marine life and people who eat contaminated seafood.

This image is divided into five different images. On the left, tiny phytoplankton, clear in color, are present. On the second a larger plankton, orange in color appears. In the middle, a blue sea image shows a school of fish. Next to that a large green turtle looks for food on the ocean floor. On the right, a large black whale jumps out of the water. Credit: WHOI

Phytoplankton are Part of the Carbon Cycle

Phytoplankton play an important part in the flow of carbon dioxide from the atmosphere into the ocean. Carbon dioxide is consumed during photosynthesis, with carbon being incorporated in the phytoplankton, and as phytoplankton sink a portion of that carbon makes its way into the deep ocean (far away from the atmosphere).

Changes in the growth of phytoplankton may affect atmospheric carbon dioxide concentrations, which impact climate and global surface temperatures. NASA field campaigns like EXPORTS are helping to understand the ocean's impact in terms of storing carbon dioxide.

This moving image shows angled phytoplankton, clear in color moving on a blue background. The image then switches to water. The top is a light blue with dots, while the dark blue underneath represents underwater. The moving dots on the bottom float to the top, to illustrate the carbon cycle. Credit: NASA

Phytoplankton are Key to Understanding a Changing Ocean

NASA studies phytoplankton in different ways with satellites, instruments, and ships. Upcoming missions like Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) - set to launch Jan. 2024 - will reveal interactions between the ocean and atmosphere. This includes how they exchange carbon dioxide and how atmospheric aerosols might fuel phytoplankton growth in the ocean.

Information collected by PACE, especially about changes in plankton populations, will be available to researchers all over the world. See how this data will be used.

The Ocean Color Instrument (OCI) is integrated onto the PACE spacecraft in the cleanroom at Goddard Space Flight Center. Credit: NASA


Tags
6 years ago

10 Things to Know About Parker Solar Probe

On Aug. 12, 2018, we launched Parker Solar Probe to the Sun, where it will fly closer than any spacecraft before and uncover new secrets about our star. Here's what you need to know.

image

1. Getting to the Sun takes a lot of power

At about 1,400 pounds, Parker Solar Probe is relatively light for a spacecraft, but it launched to space aboard one of the most powerful rockets in the world, the United Launch Alliance Delta IV Heavy. That's because it takes a lot of energy to go to the Sun — in fact, 55 times more energy than it takes to go to Mars.

Any object launched from Earth starts out traveling at about the same speed and in the same direction as Earth — 67,000 mph sideways. To get close to the Sun, Parker Solar Probe has to shed much of that sideways speed, and a strong launch is good start.

image

2. First stop: Venus!

Parker Solar Probe is headed for the Sun, but it's flying by Venus along the way. This isn't to see the sights — Parker will perform a gravity assist at Venus to help draw its orbit closer to the Sun. Unlike most gravity assists, Parker will actually slow down, giving some orbital energy to Venus, so that it can swing closer to the Sun.

One's not enough, though. Parker Solar Probe will perform similar maneuvers six more times throughout its seven-year mission!

image

3. Closer to the Sun than ever before

At its closest approach toward the end of its seven-year prime mission, Parker Solar Probe will swoop within 3.83 million miles of the solar surface. That may sound pretty far, but think of it this way: If you put Earth and the Sun on opposite ends of an American football field, Parker Solar Probe would get within four yards of the Sun's end zone. The current record-holder was a spacecraft called Helios 2, which came within 27 million miles, or about the 30 yard line. Mercury orbits at about 36 million miles from the Sun.

This will place Parker well within the Sun's corona, a dynamic part of its atmosphere that scientists think holds the keys to understanding much of the Sun's activity.

image

4. Faster than any human-made object

Parker Solar Probe will also break the record for the fastest spacecraft in history. On its final orbits, closest to the Sun, the spacecraft will reach speeds up to 430,000 mph. That's fast enough to travel from New York to Tokyo in less than a minute!

image

5. Dr. Eugene Parker, mission namesake

Parker Solar Probe is named for Dr. Eugene Parker, the first person to predict the existence of the solar wind. In 1958, Parker developed a theory showing how the Sun’s hot corona — by then known to be millions of degrees Fahrenheit — is so hot that it overcomes the Sun’s gravity. According to the theory, the material in the corona expands continuously outwards in all directions, forming a solar wind.

This is the first NASA mission to be named for a living person, and Dr. Parker watched the launch with the mission team from Kennedy Space Center in Florida.

image

6. Unlocking the secrets of the solar wind

Even though Dr. Parker predicted the existence of the solar wind 60 years ago, there's a lot about it we still don't understand. We know now that the solar wind comes in two distinct streams, fast and slow. We've identified the source of the fast solar wind, but the slow solar wind is a bigger mystery.

Right now, our only measurements of the solar wind happen near Earth, after it has had tens of millions of miles to blur together, cool down and intermix. Parker's measurements of the solar wind, just a few million miles from the Sun's surface, will reveal new details that should help shed light on the processes that send it speeding out into space.

10 Things To Know About Parker Solar Probe

7. Studying near-light speed particles

Another question we hope to answer with Parker Solar Probe is how some particles can accelerate away from the Sun at mind-boggling speeds — more than half the speed of light, or upwards of 90,000 miles per second. These particles move so fast that they can reach Earth in under half an hour, so they can interfere with electronics on board satellites with very little warning.

image

8. The mystery of the corona's high heat

The third big question we hope to answer with this mission is something scientists call the coronal heating problem. Temperatures in the Sun's corona, where Parker Solar Probe will fly, spike upwards of 2 million degrees Fahrenheit, while the Sun's surface below simmers at a balmy 10,000 F. How the corona gets so much hotter than the surface remains one of the greatest unanswered questions in astrophysics.

Though scientists have been working on this problem for decades with measurements taken from afar, we hope measurements from within the corona itself will help us solve the coronal heating problem once and for all.

image

9. Why won't Parker Solar Probe melt?

The corona reaches millions of degrees Fahrenheit, so how can we send a spacecraft there without it melting?

The key lies in the distinction between heat and temperature. Temperature measures how fast particles are moving, while heat is the total amount of energy that they transfer. The corona is incredibly thin, and there are very few particles there to transfer energy — so while the particles are moving fast (high temperature), they don’t actually transfer much energy to the spacecraft (low heat).

It’s like the difference between putting your hand in a hot oven versus putting it in a pot of boiling water (don’t try this at home!). In the air of the oven, your hand doesn’t get nearly as hot as it would in the much denser water of the boiling pot.

image

10. Engineered to thrive in an extreme environment

Make no mistake, the environment in the Sun's atmosphere is extreme — hot, awash in radiation, and very far from home — but Parker Solar Probe is engineered to survive.

The spacecraft is outfitted with a cutting-edge heat shield made of a carbon composite foam sandwiched between two carbon plates. The heat shield is so good at its job that, even though the front side will receive the full brunt of the Sun's intense light, reaching 2,500 F, the instruments behind it, in its shadow, will remain at a cozy 85 F.

Even though Parker Solar Probe's solar panels — which provide the spacecraft's power — are retractable, even the small bit of surface area that peeks out near the Sun is enough to make them prone to overheating. So, to keep its cool, Parker Solar Probe circulates a single gallon of water through the solar arrays. The water absorbs heat as it passes behind the arrays, then radiates that heat out into space as it flows into the spacecraft’s radiator.

For much of its journey, Parker Solar Probe will be too far from home and too close to the Sun for us to command it in real time — but don't worry, Parker Solar Probe can think on its feet. Along the edges of the heat shield’s shadow are seven sensors. If any of these sensors detect sunlight, they alert the central computer and the spacecraft can correct its position to keep the sensors — and the rest of the instruments — safely protected behind the heat shield.

Read the web version of this week’s “Solar System: 10 Things to Know” article HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
2 years ago

What is Artemis I?

The SLS and Orion spacecraft can be seen in the foreground with a full Moon to the left of the spacecraft. The SLS is orange, Orion is white, and the Moon is grey and white. A lightning tower is to the left of the Moon.

Credit: NASA/Ben Smegelsky

On November 14, NASA is set to launch the uncrewed Artemis I flight test to the Moon and back. Artemis I is the first integrated flight test of the Space Launch System (SLS) rocket, the Orion spacecraft, and Exploration Ground Systems at NASA’s Kennedy Space Center in Florida. These are the same systems that will bring future Artemis astronauts to the Moon.

The Vehicle Assembly Building (VAB), mobile launcher, and Space Launch System (SLS) rocket can all be seen from a low-angle perspective. The VAB is a large grey and white cube-shaped building with large doors. The mobile launcher is grey, black, and white, with many pipes and levels, and the SLS rocket is orange with two white boosters on either side.

Credit: NASA/Ben Smegelsky

Standing 322 feet (98 meters) tall, the SLS rocket comprises of a core stage, an upper stage, two solid boosters, and four RS-25 engines. The SLS rocket is the most powerful rocket in the world, able to carry 59,500 pounds (27 metric tons) of payloads to deep space — more than any other vehicle. With its unprecedented power, SLS is the only rocket that can send the Orion spacecraft, astronauts, and cargo directly to the Moon on a single mission.

The massive Vehicle Assembly Building (VAB) is a large grey and white cube-shaped building with large doors. It has an American flag on it, along with the NASA meatball logo and the Artemis mission logo. The Space Launch System (SLS) rocket stands to the right of the VAB. The SLS is orange with two white boosters on either side.

Credit: NASA/Kim Shiflett

Before launch, Artemis I has some big help: the Vehicle Assembly Building (VAB) at KSC is the largest single-story building in the world. The VAB was constructed for the assembly of the Apollo/Saturn V Moon rocket, and this is where the SLS rocket is assembled, maintained, and integrated with the Orion spacecraft. 

NASA’s Space Launch System (SLS) rocket, with the Orion capsule atop, slowly rolls out of the Vehicle Assembly Building on the crawler-transporter 2. The crawler is grey with treads and walkways, and the SLS is orange with two white boosters on either side.

Credit: NASA/Kim Shiflett

The mobile launcher is used to assemble, process, and launch the SLS rocket and Orion spacecraft. The massive structure consists of a two-story base and a tower equipped with a number of connection lines to provide the rocket and spacecraft with power, communications, coolant, and fuel prior to launch.

The crawler-transporter 2 is on the left, with the Space Launch System (SLS) rocket on the right of this photo. The crawler is grey with treads and walkways, and the SLS is orange with two white boosters on either side. The sky is blue with fluffy white clouds in the background.

Credit: NASA/Joel Kowsky

Capable of carrying 18 million pounds (8.2 million kg) and the size of a baseball infield, crawler-transporter 2 will transport SLS and Orion the 4.2 miles (6.8 km) to Launch Pad 39B. This historic launch pad was where the Apollo 10 mission lifted off from on May 18, 1969, to rehearse the first Moon landing.

An artist’s rendition of the Orion flight shows a portion of a blue and white Earth in a semi-circle at the bottom of this photo; at the center, a white and grey Orion heads towards a semi-lit Moon in grey. The rest of the image is black, with some small stars dotted throughout.

Credit: NASA/Liam Yanulis

During the launch, SLS will generate around 8.8 million pounds (~4.0 million kg) of thrust, propelling the Orion spacecraft into Earth’s orbit. Then, Orion will perform a Trans Lunar Injection to begin the path to the Moon. The spacecraft will orbit the Moon, traveling 40,000 miles beyond the far side of the Moon — farther than any human-rated spacecraft has ever flown.

An artist’s rendition of the Orion spacecraft is in the foreground in front of the Moon. The perspective is from one of the spacecraft’s solar arrays. The solar array is black, with white and orange dots throughout. The spacecraft has a large NASA logo in red and is grey, white, and black overall.

Credit: NASA/Liam Yanulis

The Orion spacecraft is designed to carry astronauts on deep space missions farther than ever before. Orion contains the habitable volume of about two minivans, enough living space for four people for up to 21 days. Future astronauts will be able to prepare food, exercise, and yes, have a bathroom. Orion also has a launch abort system to keep astronauts safe if an emergency happens during launch, and a European-built service module that fuels and propels the spacecraft.

Commander Moonikin Campos, a manikin, sits aboard the Orion spacecraft in the Orion Crew Survival suit, which is orange with blue straps. The helmet is white with a black tinted visor. A black hose connects to the suit, and the blue background shows NASA and Artemis logos.

Credit: NASA/Frank Michaux

While the Artemis I flight test is uncrewed, the Orion spacecraft will not be empty: there will be three manikins aboard the vehicle. Commander Moonikin Campos will be sitting in the commander’s seat, collecting data on the vibrations and accelerations future astronauts will experience on the journey to the Moon. He is joined with two phantom torsos, Helga and Zohar, in a partnership with the German Aerospace Center and Israeli Space Agency to test a radiation protection vest.

Seen from above is the upside-down, open interior of the Orion capsule with 10 CubeSats secured onto its walls. The interior is yellowish-green and textured, and the exterior of the capsule segment is white with a few black panels. It sits in a processing facility with white walls and servicing platforms surrounding the spacecraft.

Credit: NASA/Cory Huston

A host of shoebox-sized satellites called CubeSats help enable science and technology experiments that could enhance our understanding of deep space travel and the Moon while providing critical information for future Artemis missions.

An artist’s rendition of the Orion spacecraft reentering Earth’s atmosphere. Orion is an orange streak coming from the top right to the left center of the photo, and Earth is seen at night with city lights as dots and a thin strip of atmosphere beneath the Sun.

Credit: NASA/Liam Yanulis

At the end of the four-week mission, the Orion spacecraft will return to Earth. Orion will travel at 25,000 mph (40,000 km per hour) before slowing down to 300 mph (480 km per hour) once it enters the Earth’s atmosphere. After the parachutes deploy, the spacecraft will glide in at approximately 20 mph (32 km per hour) before splashdown about 60 miles (100 km) off the coast of California. NASA’s recovery team and the U.S. Navy will retrieve the Orion spacecraft from the Pacific Ocean.

A large gray ship in the background is deploying small boats, with the Orion spacecraft has large inflatable balloons on top.

Credit: NASA

With the ultimate goal of establishing a long-term presence on the Moon, Artemis I is a critical step as NASA prepares to send humans to Mars and beyond.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
A large, silver and gold metallic structure is suspended from the ceiling in a spacious room. The structure is hollow with six sides, each covered with a diamond-like pattern. Three people in white bunny suits and blue gloves watch in the foreground. In the background, a large wall covered in small pinkish squares is at the left and another wall with a large viewing window is at the right. Credit: NASA/Jolearra Tshiteya

Roman's primary structure hangs from cables as it moves into the big clean room at NASA's Goddard Space Flight Center.

What Makes the Clean Room So Clean?

When you picture NASA’s most important creations, you probably think of a satellite, telescope, or maybe a rover. But what about the room they’re made in? Believe it or not, the room itself where these instruments are put together—a clean room—is pretty special. 

A clean room is a space that protects technology from contamination. This is especially important when sending very sensitive items into space that even small particles could interfere with.

There are two main categories of contamination that we have to keep away from our instruments. The first is particulate contamination, like dust. The second is molecular contamination, which is more like oil or grease. Both types affect a telescope’s image quality, as well as the time it takes to capture imagery. Having too many particles on our instruments is like looking through a dirty window. A clean room makes for clean science!

Two people in white “bunny” suits stand on a glossy, white floor. One holds a thin vacuum and the other holds a mop. On the floor behind them are some metallic structures and the wall behind them is covered in pale pink squares. Credit: NASA/Chris Gunn

Two technicians clean the floor of Goddard’s big clean room.

Our Goddard Space Flight Center in Greenbelt, Maryland has the largest clean room of its kind in the world. It’s as tall as an eight-story building and as wide as two basketball courts.

Goddard’s clean room has fewer than 3,000 micron-size particles per cubic meter of air. If you lined up all those tiny particles, they’d be no longer than a sesame seed. If those particles were the size of 16-inch (0.4-meter) inflatable beach balls, we’d find only 3,000 spread throughout the whole body of Mount Everest!

A person in a white “bunny” suit and blue gloves is sitting at a desk looking through the eyepiece of a microscope. Credit: NASA/Chris Gunn

A clean room technician observes a sample under a microscope.

The clean room keeps out particles larger than five microns across, just seven percent of the width of an average human hair. It does this via special filters that remove around 99.97% of particles 0.3 microns and larger from incoming air. Six fans the size of school buses spin to keep air flowing and pressurize the room. Since the pressure inside is higher, the clean air keeps unclean air out when doors open.

Close-up of a person wearing a white suit, mask, head covering, gloves, and glasses is hunched over a table in a dark room. They hold a small object in their right hand and a device with a grid of blue dots on it in their left hand. The device casts a blue glow on the sample they’re looking at, and on the person too. Credit: NASA/Chris Gunn

A technician analyzes a sample under ultraviolet light.

In addition, anyone who enters must wear a “bunny suit” to keep their body particles away from the machinery. A bunny suit covers most of the person inside. Sometimes scientists have trouble recognizing each other while in the suits, but they do get to know each other’s mannerisms very well.

A person in a white “bunny” suit, blue-green gloves, a face mask, and goggles stands in the center of a plain blue background. Each element is labeled as follows: gloves, full-body jumpsuit, sometimes glasses or goggles are worn, hairnet under head cover, mask, tape around wrists, and boot covers. At the bottom of the graphic, three items (perfume, lotion, and deodorant) are each inside a red circle with a line through it. Credit: NASA/Shireen Dooling

This illustration depicts the anatomy of a bunny suit, which covers clean room technicians from head to toe to protect sensitive technology.

The bunny suit is only the beginning: before putting it on, team members undergo a preparation routine involving a hairnet and an air shower. Fun fact – you’re not allowed to wear products like perfume, lotion, or deodorant. Even odors can transfer easily!

Two Black men, two white women, and two white men each stand in white lab coats and blue gloves. All are smiling. They are in a small room with silver metallic tables, one of which in the foreground reflects some of their likenesses. Credit: NASA/Chris Gunn

Six of Goddard’s clean room technicians (left to right: Daniel DaCosta, Jill Bender, Anne Martino, Leon Bailey, Frank D’Annunzio, and Josh Thomas).

It takes a lot of specialists to run Goddard’s clean room. There are 10 people on the Contamination Control Technician Team, 30 people on the Clean Room Engineering Team to cover all Goddard missions, and another 10 people on the Facilities Team to monitor the clean room itself. They check on its temperature, humidity, and particle counts.

A person wearing a white suit, face mask, head covering, and blue gloves with black tape wrapped around the wrists pours a clear liquid from one clear bottle into a larger clear beaker. Credit: NASA/Chris Gunn

A technician rinses critical hardware with isopropyl alcohol and separates the particulate and isopropyl alcohol to leave the particles on a membrane for microscopic analysis.

Besides the standard mopping and vacuuming, the team uses tools such as isopropyl alcohol, acetone, wipes, swabs, white light, and ultraviolet light. Plus, they have a particle monitor that uses a laser to measure air particle count and size.

The team keeping the clean room spotless plays an integral role in the success of NASA’s missions. So, the next time you have to clean your bedroom, consider yourself lucky that the stakes aren’t so high!

Make sure to follow us on Tumblr for your regular dose of space!


Tags
6 years ago

6 Things You Didn’t Know About Our ‘First’ Space Flight Center

When NASA began operations on Oct. 1, 1958, we consisted mainly of the four laboratories of our predecessor, the National Advisory Committee for Aeronautics (NACA). Hot on the heels of NASA’s first day of business, we opened the Goddard Space Flight Center. Chartered May 1, 1959, and located in Greenbelt, Maryland, Goddard is home to one of the largest groups of scientists and engineers in the world. These people are building, testing and experimenting their way toward answering some of the universe’s most intriguing questions.

To celebrate 60 years of exploring, here are six ways Goddard shoots for the stars.

image

For the last 60 years, we’ve kept a close eye on our home planet, watching its atmosphere, lands and ocean.

Goddard instruments were crucial in tracking the hole in the ozone layer over Antarctica as it grew and eventually began to show signs of healing. Satellites and field campaigns track the changing height and extent of ice around the globe. Precipitation missions give us a global, near-real-time look at rain and snow everywhere on Earth. Researchers keep a record of the planet’s temperature, and Goddard supercomputer models consider how Earth will change with rising temperatures. From satellites in Earth’s orbit to field campaigns in the air and on the ground, Goddard is helping us understand our planet.

image

We seek to answer the big questions about our universe: Are we alone? How does the universe work? How did we get here?

We’re piecing together the story of our cosmos, from now all the way back to its start 13.7 billion years ago. Goddard missions have contributed to our understanding of the big bang and have shown us nurseries where stars are born and what happens when galaxies collide. Our ongoing census of planets far beyond our own solar system (several thousand known and counting!) is helping us hone in on which ones might be potentially habitable.

image

We study our dynamic Sun.

Our Sun is an active star, with occasional storms and a constant outflow of particles, radiation and magnetic fields that fill the solar system out far past the orbit of Neptune. Goddard scientists study the Sun and its activity with a host of satellites to understand how our star affects Earth, planets throughout the solar system and the nature of the very space our astronauts travel through.

image

We explore the planets, moons and small objects in the solar system and beyond. 

Goddard instruments (well over 100 in total!) have visited every planet in the solar system and continue on to new frontiers. What we’ve learned about the history of our solar system helps us piece together the mysteries of life: How did life in our solar system form and evolve? Can we find life elsewhere?

image

Over 60 years, our communications networks have enabled hundreds of NASA spacecraft to “phone home.”

Today, Goddard communications networks bring down 98 percent of our spacecraft data – nearly 30 terabytes per day! This includes not only science data, but also key information related to spacecraft operations and astronaut health. Goddard is also leading the way in creating cutting-edge solutions like laser communications that will enable exploration – faster, better, safer – for generations to come. Pew pew!

image

Exploring the unknown often means we must create new ways of exploring, new ways of knowing what we’re “seeing.” 

Goddard’s technologists and engineers must often invent tools, mechanisms and sensors to return information about our universe that we may not have even known to look for when the center was first commissioned.

image

Behind every discovery is an amazing team of people, pushing the boundaries of humanity’s knowledge. Here’s to the ones who ask questions, find answers and ask questions some more!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
4 years ago

It Takes a Nation to #LaunchAmerica!

image

Image Credit: NASA/Roscosmos

As we celebrate 20 years of humans living and working on the International Space Station, we’re also getting ready for another space milestone: Crew-1, this weekend’s trip to the ISS aboard the SpaceX Crew Dragon Resilience and the first certified crew rotation flight to the International Space Station.

Crew-1 is scheduled to lift off Saturday at 7:49 PM EST, from our Kennedy Space Center—but across the United States, teams from NASA and SpaceX will be hard at work sending our astronauts into orbit!

image

Image Credit: NASA/Fred Deaton

At Marshall Space Flight Center’s Huntsville Operations Support Center (HOSC), for example, engineers with our Commercial Crew Program have been helping review the design and oversee safety standards for SpaceX’s Falcon 9 rocket, making sure it’s ready to carry humans to the Space Station.

This Saturday, they’ll be in the HOSC to monitor launch conditions and watch the data as Crew-1 blasts off, helping future commercially-operated missions to the ISS run even more smoothly.

image

Image Credit: NASA/Emmett Given

Long before Crew-1, though, Marshall has been keeping things active on board the ISS. For decades, the Payload Operations and Integration Center, also located in the HOSC, has been “science central” for the Space Station, coordinating and keeping track of the scientific experiments taking place—24/7, 365 days a year.

With the Space Station’s population soon to jump from three to seven, our ISS crew will be able to spend up to 70 hours a week on science, helping us learn how to live in space while making life better on Earth!

image

Image Credit: NASA/Fred Deaton

Want to learn more about how America is coming together to launch Crew-1? Join us this afternoon (1 p.m. EST, Thursday, November 12) for a Reddit “Ask Me Anything” with experts from across the nation—then follow along on November 14 as we #LaunchAmerica!

image

Live coverage on NASA TV and social media starts at 3:30 PM EST. See you then!

Image Credit: NASA/Emmett Given

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
3 years ago

NASA’s Search for Life: Astrobiology in the Solar System and Beyond

Are we alone in the universe? So far, the only life we know of is right here on Earth. But here at NASA, we’re looking.

NASA’s Search For Life: Astrobiology In The Solar System And Beyond

We’re exploring the solar system and beyond to help us answer fundamental questions about life beyond our home planet. From studying the habitability of Mars, probing promising “oceans worlds,” such as Titan and Europa, to identifying Earth-size planets around distant stars, our science missions are working together with a goal to find unmistakable signs of life beyond Earth (a field of science called astrobiology).

Dive into the past, present, and future of our search for life in the universe.

NASA’s Search For Life: Astrobiology In The Solar System And Beyond

Mission Name: The Viking Project

Launch: Viking 1 on August 20, 1975 & Viking 2 on September 9, 1975

Status: Past

Role in the search for life: The Viking Project was our first attempt to search for life on another planet. The mission’s biology experiments revealed unexpected chemical activity in the Martian soil, but provided no clear evidence for the presence of living microorganisms near the landing sites.

NASA’s Search For Life: Astrobiology In The Solar System And Beyond

Mission Name: Galileo

Launch: October 18, 1989

Status: Past

Role in the search for life: Galileo orbited Jupiter for almost eight years, and made close passes by all its major moons. The spacecraft returned data that continues to shape astrobiology science –– particularly the discovery that Jupiter’s icy moon Europa has evidence of a subsurface ocean with more water than the total amount of liquid water found on Earth.

NASA’s Search For Life: Astrobiology In The Solar System And Beyond

Mission Name: Kepler and K2

Launch: March 7, 2009

Status: Past

Role in the search for life: Our first planet-hunting mission, the Kepler Space Telescope, paved the way for our search for life in the solar system and beyond. Kepler left a legacy of more than 2,600 exoplanet discoveries, many of which could be promising places for life.

NASA’s Search For Life: Astrobiology In The Solar System And Beyond

Mission Name: Perseverance Mars Rover

Launch: July 30, 2020

Status: Present

Role in the search for life: Our newest robot astrobiologist is kicking off a new era of exploration on the Red Planet. The rover will search for signs of ancient microbial life, advancing the agency’s quest to explore the past habitability of Mars.

NASA’s Search For Life: Astrobiology In The Solar System And Beyond

Mission Name: James Webb Space Telescope

Launch: 2021

Status: Future

Role in the search for life: Webb will be the premier space-based observatory of the next decade. Webb observations will be used to study every phase in the history of the universe, including planets and moons in our solar system, and the formation of distant solar systems potentially capable of supporting life on Earth-like exoplanets.

NASA’s Search For Life: Astrobiology In The Solar System And Beyond

Mission Name: Europa Clipper

Launch: Targeting 2024

Status: Future

Role in the search for life: Europa Clipper will investigate whether Jupiter’s icy moon Europa, with its subsurface ocean, has the capability to support life. Understanding Europa’s habitability will help scientists better understand how life developed on Earth and the potential for finding life beyond our planet.

NASA’s Search For Life: Astrobiology In The Solar System And Beyond

Mission Name: Dragonfly

Launch: 2027

Status: Future

Role in the search for life: Dragonfly will deliver a rotorcraft to visit Saturn’s largest and richly organic moon, Titan. This revolutionary mission will explore diverse locations to look for prebiotic chemical processes common on both Titan and Earth.

For more on NASA’s search for life, follow NASA Astrobiology on Twitter, on Facebook, or on the web.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
7 years ago

10 Questions About the 2017 Astronaut Class

We will select between eight and 14 new astronaut candidates from among a record-breaking applicant class of more than 18,300, almost three times the number of applications the agency received in 2012 for the recent astronaut class, and far surpassing the previous record of 8,000 in 1978.

10 Questions About The 2017 Astronaut Class

The candidates will be announced at an event at our Johnson Space Center in Houston, Texas at 2 p.m. EDT on June 7. You can find more information on how to watch the announcement HERE.

1. What are the qualifications for becoming an astronaut?

10 Questions About The 2017 Astronaut Class

Applicants must meet the following minimum requirements before submitting an application.

Bachelor’s degree from an accredited institution in engineering, biological science, physical science, computer science or mathematics. 

Degree must be followed by at least 3 years of related, progressively responsible, professional experience or at least 1,000 hours of pilot-in-command time in jet aircraft

Ability to pass the NASA Astronaut physical.

For more information, visit: https://astronauts.nasa.gov/content/faq.htm

2. What have selections looked like in the past?

10 Questions About The 2017 Astronaut Class

There have been 22 classes of astronauts selected from the original “Mercury Seven” in 1959 to the most recent 2017 class. Other notable classes include:

The fourth class in 1965 known as “The Scientists: because academic experience was favored over pilot skills. 

The eighth class in 1978 was a huge step forward for diversity, featuring the first female, African American and Asian American selections.

The 16th class in 1996 was the largest class yet with 44 members – 35 U.S. astronauts and 9 international astronauts. They were selected for the frequent Space Shuttle flights and the anticipated need for International Space Station crewmembers.

The 21st class in 2013 was the first class to have 50/50 gender split with 4 female members and 4 male members.

3. What vehicles will they fly in?

10 Questions About The 2017 Astronaut Class

They could be assigned on any of four different spacecraft: the International Space Station, our Orion spacecraft for deep space exploration or one of two American-made commercial crew spacecraft currently in development – Boeing’s CST-199 Starliner or the SpaceX Crew Dragon.

4. Where will they go?

10 Questions About The 2017 Astronaut Class

These astronauts will be part of expanded crews aboard the space station that will significantly increase the crew time available to conduct the important research and technology demonstrations that are advancing our knowledge for missions farther into space than humans have gone before, while also returning benefits to Earth. They will also be candidates for missions beyond the moon and into deep space aboard our Orion spacecraft on flights that help pave the way for missions to Mars.

5. What will their roles be?

10 Questions About The 2017 Astronaut Class

After completing two years of general training, these astronaut candidates will be considered full astronauts, eligible to be assigned spaceflight missions. While they wait for their turn, they will be given duties within the Astronaut Office at Johnson Space Center. Technical duties can range from supporting current missions in roles such as CAPCOM in Mission Control, to advising on the development of future spacecraft.

6. What will their training look like?

10 Questions About The 2017 Astronaut Class

The first two years of astronaut candidate training will focus on the basic skills astronauts need. They’ll practice for spacewalks in Johnson’s 60-foot deep swimming pool, the Neutral Buoyancy Lab, which requires SCUBA certification. They’ll also simulate bringing visiting spacecraft in for a berthing to the space station using its robotic arm, Canadarm2, master the ins and outs of space station system and learn Russian. 

10 Questions About The 2017 Astronaut Class

And, whether they have previous experience piloting an aircraft of not, they’ll learn to fly our fleet of T-38s. In addition, they’ll perfect their expeditionary skills, such as leadership and fellowship, through activities like survival training and geology treks.

7.  What kinds of partners will they work with?

10 Questions About The 2017 Astronaut Class

They will join a team that supports missions going on at many different NASA centers across the country, but they’ll also interact with commercial partners developing spaceflight hardware. In addition, they will work with our international partners around the globe: ESA (the European Space Agency, the Canadian Space Agency, the Japan Aerospace Exploration Agency and the Russian space agency, Roscosmos.

8. How does the selection process work?

10 Questions About The 2017 Astronaut Class

All 18,353 of the applications submitted were reviewed by human resources experts to determine if they met the basic qualifications. Those that did were then each reviewed by a panel of about 50 people, made up primarily of current astronauts. Called the Astronaut Rating Panel, that group narrowed to applicants down to a few hundred of what they considered the most highly qualified individuals, whose references were then checked.

10 Questions About The 2017 Astronaut Class

From that point, a smaller group called the Astronaut Selection Board brought in the top 120 applicants for an intense round of interviews and some initial medical screening tests. That group is further culled to the top 50 applicants afterward, who are brought back for a second round of interviews and additional screening. The final candidates are selected from that group.

9. How do they get notified?

10 Questions About The 2017 Astronaut Class

Each applicant selected to become an astronaut receives a phone call from the head of the Flight Operations Directorate at our Johnson Space Center and the chief of the astronaut office. They’re asked to share the good news with only their immediate family until their selection has been officially announced.

10. How does the on boarding process work?

10 Questions About The 2017 Astronaut Class

Astronaut candidates will report for duty at Johnson Space Center in August 2017, newly fitted flight suits in tow, and be sworn into civil service. Between their selection and their report for duty, they will make arrangements to leave their current positions and relocate with their family to Houston, Texas.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Solar System: Things to Know This Week

Not to be—ahem—eclipsed, the Perseids meteor shower peaks annually in mid-August and is considered the most popular meteor shower of the year. 

This week, 10 things you need to know about this beautiful nighttime show and how to catch a front-row seat.

1. Light in August

image

In this 30 second exposure, a meteor streaks across the sky during the annual Perseid meteor shower Friday, Aug. 12, 2016 in Spruce Knob, West Virginia. The Perseids show up every year in August when Earth ventures through trails of debris left behind by an ancient comet. Image Credit: NASA/Bill Ingalls

With very fast and bright meteors, Perseids (pronounced PURR-see-ids) frequently leave long "wakes" of light and color behind them as they streak through Earth's atmosphere. Perseids are one of the most plentiful showers, with between 50-100 meteors seen each hour, and occur with warm summer nighttime weather, allowing sky watchers to easily view them.

2. Show Schedule

You can see the Perseids this year between now and Aug. 24, 2017, but mark your calendars for peak dates Aug. 12 and 13. This year, the waning gibbous moon rises about midnight local time, which will cut the expected rates in half this year (25 to 50 per hour at the peak from a very dark sky). But the Perseids are so bright and numerous that it should still be a good show.

3. Night Owls Welcome

The Perseids (and every meteor shower) are best viewed in the Northern Hemisphere between 11 p.m. - 3 a.m. Come prepared with a sleeping bag, blanket or lawn chair.

4. Look Up

Solar System: Things To Know This Week

Find an area well away from city or street lights and set up where you're shadowed from the moon's glare. Face whatever direction you like, ideally the one unobstructed by trees, buildings or moonlight. Look up, taking in as much of the sky as possible. If you have a group, each person should look in different parts of the sky. After about 30 minutes in the dark, your eyes will adapt, and you'll begin to see fainter objects, including meteors. Be patient; the show will last until dawn, so you have plenty of time to catch a glimpse.

5. Functional Fashion

Pack a baseball cap and wear it sideways to cover any glare from the moon. The waning gibbous moon will block out many of the fainter meteors this year, but the Perseids are so bright and numerous that it should still be a good show.

6. Meteor Matters

Where do meteors come from? Some originate from leftover comet particles and bits of broken asteroids. When comets come around the sun, they leave a dusty trail behind them. Every year, Earth passes through these debris trails, which allows the bits to collide with our atmosphere and disintegrate to create fiery and colorful streaks in the sky. But the vast majority of meteors don't come from meteor showers—instead, they randomly fall all of the time.

7. Origins

Solar System: Things To Know This Week

The pieces of space debris that interact with our atmosphere to create the Perseids originate from Comet 109P/Swift-Tuttle. Swift-Tuttle takes 133 years to orbit the sun once, and Comet Swift-Tuttle last visited the inner solar system in 1992. Swift-Tuttle is a large comet: its nucleus is 16 miles (26 kilometers) across. This is almost twice the size of the object hypothesized to have wiped out the dinosaurs.

8. Discoverers

Comet Swift-Tuttle was discovered in 1862 by Lewis Swift and Horace Tuttle. In 1865, Giovanni Schiaparelli realized that this comet was the source of the Perseids.

9. Great Balls of Fire

Solar System: Things To Know This Week

The Perseids are known for fireballs, which are large explosions of light and color that last longer than an average meteor streak. Why? They originate from bigger particles of cometary material.

10. Sky Map

The point in the sky from which the Perseids appear to come from—also known as their radiant—is the constellation Perseus. But don't get confused: The constellation name only helps viewers figure out which shower they're viewing on a given night; it's not the source of the meteors (see #6 for that answer!).

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
2 years ago

The Artemis I Mission: To the Moon and Back

The Artemis I mission was the first integrated test of the Orion spacecraft, the Space Launch System (SLS) rocket, and Exploration Ground Systems at NASA’s Kennedy Space Center in Florida. We’ll use these deep space exploration systems on future Artemis missions to send astronauts to the Moon and prepare for our next giant leap: sending the first humans to Mars.

Take a visual journey through the mission, starting from launch, to lunar orbit, to splashdown.

Liftoff

The Space Launch System rocket can be seen launching off the pad at Kennedy Space Center against a dark sky. The glow of the ignition illuminates the launch site and lightning towers. Credit: NASA/Joel Kowsky

The SLS rocket carrying the Orion spacecraft launched on Nov. 16, 2022, from Launch Complex 39B at NASA’s Kennedy Space Center in Florida. The world’s most powerful rocket performed with precision, meeting or exceeding all expectations during its debut launch on Artemis I.

"This is Your Moment"

Artemis I Launch Director Charlie Blackwell-Thompson holds a microphone and addresses the launch team inside of the Launch Control Center. Members of the launch team are standing by their desks and looking up at where she is standing. Credit: NASA/Kim Shiflett

Following the successful launch of Artemis I, Launch Director Charlie Blackwell-Thompson congratulates the launch team.

“The harder the climb, the better the view,” she said. “We showed the space coast tonight what a beautiful view it is.”

That's Us

The white and metallic gray Orion spacecraft with solar arrays deployed looks back on the Earth in the distance. The blue and white swirls of Earth’s surface stand in stark contrast to the blackness of space. Credit: NASA

On Orion’s first day of flight, a camera on the tip of one of Orion’s solar arrays captured this image of Earth.

Inside Orion

Commander Moonikin Campos is visible in the commander’s seat in this image inside of the Orion spacecraft. You can also spot Snoopy, the zero-gravity indicator aboard, floating in the background. Credit: NASA

On the third day of the mission, Artemis I engineers activated the Callisto payload, a technology demonstration developed by Lockheed Martin, Amazon, and Cisco that tested a digital voice assistant and video conferencing capabilities in a deep space environment. In the image, Commander Moonikin Campos occupies the commander’s seat inside the spacecraft. The Moonikin is wearing an Orion Crew Survival System suit, the same spacesuit that Artemis astronauts will use during launch, entry, and other dynamic phases of their missions. Campos is also equipped with sensors that recorded acceleration and vibration data throughout the mission that will help NASA protect astronauts during Artemis II. The Moonikin was one of three “passengers” that flew aboard Orion. Two female-bodied model human torsos, called phantoms, were aboard. Zohar and Helga, named by the Israel Space Agency (ISA) and the German Aerospace Center (DLR) respectively, supported the Matroshka AstroRad Radiation Experiment (MARE), an experiment to provide data on radiation levels during lunar missions. Snoopy, wearing a mock orange spacesuit, also can be seen floating in the background. The character served as the zero-gravity indicator during the mission, providing a visual signifier that Orion is in space.

Far Side of the Moon

A portion of the far side of the Moon looms large just beyond the Orion spacecraft in this image taken by a camera on the tip of one of Orion’s solar arrays. The Moon can be seen against the darkness of space on the right side of the image. On the left side of the image, part of the Orion spacecraft can be seen, with its dark-colored solar array jutting out from the European Service Module. Credit: NASA

A portion of the far side of the Moon looms large in this image taken by a camera on the tip of one of Orion’s solar arrays on the sixth day of the mission.

First Close Approach

A close black-and-white photo of the surface of the Moon showing craters of various sizes dotting its surface. The Moon appears in shades of gray on the left side of the image, with the blackness of space on the right third of the photo. Credit: NASA

The Orion spacecraft captured some of the closest photos of the Moon from a spacecraft built for humans since the Apollo era — about 80 miles (128 km) above the lunar surface. This photo was taken using Orion’s optical navigational system, which captures black-and-white images of the Earth and Moon in different phases and distances.

Distant Retrograde Orbit

The Orion spacecraft appears in the foreground. The Earth and the Moon appear in the far distance against the blackness of space. The Moon appears just slightly larger than Earth. Credit: NASA

Orion entered a distant retrograde orbit around the Moon almost two weeks into the mission. The orbit is “distant” in the sense that it’s at a high altitude approximately 50,000 miles (80,467 km) from the surface of the Moon. Orion broke the record for farthest distance of a spacecraft designed to carry humans to deep space and safely return them to Earth, reaching a maximum distance of 268,563 miles (432,210 km).

Second Close Approach

The lunar landscape varies from dark gray craters to white patches of plains. The blackness of space can be seen in the top left corner of the image. Credit: NASA

On the 20th day of the mission, the spacecraft made its second and final close approach to the Moon flying 79.2 miles (127.5 km) above the lunar surface to harness the Moon’s gravity and accelerate for the journey back to Earth.

Cameras mounted on the crew module of the Orion spacecraft captured these views of the Moon’s surface before its return powered flyby burn.

Heading Home

The Orion spacecraft appears on the left, and the nearby cratered Moon in the center, along with the distant crescent Earth, all washed in glare from the Sun, which is outside of the frame just below. Credit: NASA

After passing behind the far side of the Moon on Flight Day 20, Orion powered a flyby burn that lasted approximately 3 minutes and 27 seconds to head home. Shortly after the burn was complete, the Orion spacecraft captured these views of the Moon and Earth, which appears as a distant crescent.

Parachutes Deployed

The Orion spacecraft parachutes down toward splashdown. The three main parachutes are patterned with white and red stripes. Orion stands out against a backdrop of a bright blue ocean. Steam comes off the crew module as it passes through the cloud layer. Credit: NASA

Prior to entering the Earth’s atmosphere, Orion’s crew module separated from its service module, which is the propulsive powerhouse provided by ESA (European Space Agency). During re-entry, Orion endured temperatures about half as hot as the surface of the Sun at about 5,000 degrees Fahrenheit (2,760 degrees Celsius). Within about 20 minutes, Orion slowed from nearly 25,000 mph (40,236 kph) to about 20 mph (32 kph) for its parachute-assisted splashdown.

Splashdown

The Orion spacecraft floats in the ocean shortly after splashdown. Five orange airbags are strapped to the top of the capsule. The outside of the spacecraft appears silver and brown. The ocean is a deep blue. Credit: NASA

On Dec. 11, the Orion spacecraft splashed down in the Pacific Ocean off the coast of California after traveling 1.4 million miles (2.3 million km) over a total of 25.5 days in space. Teams are in the process of returning Orion to Kennedy Space Center in Florida. Once at Kennedy, teams will open the hatch and unload several payloads, including Commander Moonikin Campos, the space biology experiments, Snoopy, and the official flight kit. Next, the capsule and its heat shield will undergo testing and analysis over the course of several months.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
Loading...
End of content
No more pages to load
  • lubom
    lubom liked this · 3 years ago
  • questioningcharlie
    questioningcharlie liked this · 3 years ago
  • evilmoriarty
    evilmoriarty liked this · 3 years ago
  • acopywrittenfool
    acopywrittenfool reblogged this · 3 years ago
  • stupideffinbee
    stupideffinbee liked this · 3 years ago
  • iwannaruinthisfriendship
    iwannaruinthisfriendship liked this · 3 years ago
  • ewigenschlaf788
    ewigenschlaf788 liked this · 3 years ago
  • maurohussein-blog
    maurohussein-blog liked this · 3 years ago
  • boyist
    boyist liked this · 3 years ago
  • chryso-poeia
    chryso-poeia liked this · 4 years ago
  • interkellar
    interkellar liked this · 4 years ago
  • nebelung-dragon
    nebelung-dragon liked this · 4 years ago
  • shadowylemon
    shadowylemon liked this · 4 years ago
  • skydisneylover
    skydisneylover liked this · 4 years ago
  • skydisneylover
    skydisneylover reblogged this · 4 years ago
  • maxdark158
    maxdark158 reblogged this · 4 years ago
  • crashcitycentral
    crashcitycentral liked this · 4 years ago
  • thelostweasley77
    thelostweasley77 reblogged this · 4 years ago
  • shaunarcanine
    shaunarcanine reblogged this · 4 years ago
  • shaunarcanine
    shaunarcanine reblogged this · 4 years ago
  • shaunarcanine
    shaunarcanine liked this · 4 years ago
  • dinamicus
    dinamicus liked this · 4 years ago
  • dinamicus
    dinamicus reblogged this · 4 years ago
  • queencfthestars
    queencfthestars reblogged this · 4 years ago
  • queencfthestars
    queencfthestars liked this · 4 years ago
  • oshinytomato
    oshinytomato reblogged this · 4 years ago
  • dick92121
    dick92121 liked this · 5 years ago
  • iamgtmb
    iamgtmb reblogged this · 5 years ago
  • iamgtmb
    iamgtmb liked this · 5 years ago
  • geistluft
    geistluft reblogged this · 5 years ago
  • guavira
    guavira reblogged this · 5 years ago
  • seoseungsung
    seoseungsung liked this · 5 years ago
  • calwhitebark
    calwhitebark reblogged this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags