There are many paths to a career at NASA. Here are 10 amazing people on the frontlines of deep space exploration.
“I was running a pub in the North of England after dropping out of college, and as fate would have it, I met a lovely American physics lecturer Dr. Jim Gotaas,” said Abi Rymer (shown above in the bottom right of the group photo). Abi works on the Europa Clipper mission.
“I was sold on a course he ran on Observational Astronomy and Instrumentation at the University of Central Lancashire in Preston, Lancashire and I went from there to join the second year of the Physics and Astronomy at Royal Holloway, part of London University. I loved theoretical physics but never imagined I was talented enough to do a PhD. When I graduated, I was shocked to be top of the year.”
“Within seven months of being at NASA’s Jet Propulsion Laboratory,” says Brent Buffington, a mission design manager, “I figured out we could modify the Cassini Prime Mission trajectory to fly very close to the moon Tethys—a moon that didn’t have any close flybys in the original Prime Mission—and simultaneously lower a planned 621-mile (1,000-kilometer) targeted flyby of Hyperion down to 311 miles (500 kilometers). To be this young buck fresh out of grad school standing in front of a room full of seasoned engineers and scientists, trying to convince them that this was the right thing to do with a multi-billion dollar asset, and ultimately getting the trajectory modification approved was extremely rewarding.”
“Geochemical evidence suggests that between 4 and 2.5 billion years ago, there may have been an intermittent haze in the atmosphere of Earth similar to the haze in the atmosphere of Saturn’s moon Titan,” says astrobiologist Giada Arney. “It's a really alien phase of Earth's history —our planet wouldn't have been a pale blue dot, it would have been a pale orange dot. We thought about questions like: What would our planet look like if you were looking at it as an exoplanet? How you might infer biosignatures—the signs of life—from looking at such an alien planet?”
“I spent the summer after graduating from studying Mars' remnant magnetic field in the Planetary Magnetospheres Lab at NASA Goddard Space Flight Center,” says planetary geophysicist Lynnae Quick. “My advisor, Mario Acuña, showed me how to bring up Mars Global Surveyor (MGS) images of the Martian surface on my computer. This was the first time I'd ever laid eyes, firsthand, on images of another planet's surface returned from a spacecraft. I remember just being in awe.
“My second favorite moment has to be pouring over mosaics of Europa and learning to identify and map chaos regions, impact craters and other surface units during my first summer at APL. Once again, I felt that there was a whole other alien world at my fingertips.”
“A few months after NASA was formed I was asked if I knew anyone who would like to set up a program in space astronomy,” says Nancy Roman, a retired NASA astronomer. “I knew that taking on this responsibility would mean that I could no longer do research, but the challenge of formulating a program from scratch that I believed would influence astronomy for decades to come was too great to resist.”
“I took Planetary Surfaces with Bruce Murray (whom I later found out had been JPL’s fifth director) and did a presentation on Europa's chaos terrains,” say Serina Diniega, an investigation scientist on the Europa Clipper mission. “I was fascinated to learn about the different models proposed for the formation of these enigmatic features and the way in which scientists tried to discriminate between the models while having very limited observational data. In this, I realized I’d found my application: modeling the evolution of planetary landforms."
“I admire people who dedicate themselves 110 percent to what they do,” says Warren Kaye, a software engineer. “People like the recently deceased Stephen Hawking, who rose above his own physical limitations to develop new scientific theories, or Frank Zappa, who was able to produce something like 50 albums worth of music over a 20-year span.”
“I got to pick what the camera took pictures of in a given week, and then analyze those pictures from the standpoint of a geologist,” says Tanya Harrison, a planetary scientist. “There aren't many people in the world who get paid to take pictures of Mars every day! Seeing the first images...It was almost surreal -- not only are you picking what to take pictures of on Mars, you're also typically the first person on Earth to see those pictures when they come back from Mars.”
As a child, what did you want to be when you grew up?
“A scientist,” says Casey Lisse, a scientist on our New Horizons mission to Pluto and the Kuiper Belt.
At what point did you determine that you would become a scientist?
“Age 5.”
“Throughout my life, I’ve gone from being an extremely shy introvert to more of an outgoing extrovert,” says science writer Elizabeth Landau. “It’s been a gradual uphill climb. I used to be super shy. When I was really young, I felt like I didn't know how to talk to other kids. I was amazed by how people fluidly spoke to each other without thinking too hard about it, without appearing to have any kind of embarrassment or reservation about what they were saying. I've definitely developed confidence over time—now I can very quickly and comfortably switch from talking about something like physics to personal matters, and be totally open to listening to others as well.”
Check out the full version of “Solar System: 10 Things to Know This Week” HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Today, we tested the RS-25 engine at Stennis Space Center in Mississippi, and boy was it hot! Besides the fact that it was a hot day, the 6,000 degree operating temperature of the hot fire test didn’t help things. This engine is one of four that will power the core stage of our Space Launch System (SLS) into deep space and to Mars. Today’s test reached 109% power and burned 150,000 gallons of liquid oxygen and 60,000 gallons of liquid hydrogen. When SLS launches with all 4 of its engines, it will be the most powerful rocket in the world!
This engine was previously used to to fly dozens of successful missions on the space shuttle, so you might be asking, “Why are we spending time testing it again if we already know it’s awesome?” Well, it’s actually really important that we test them specifically for use with SLS for a number of reasons, including the fact that we will be operating at 109% power, vs. the 104% power previously used.
If you missed the 535-second, ground rumbling test today -- you’re in luck. We’ve compiled all the cool stuff (fire, steam & loud noises) into a recap video. Check it out here:
On #WorldTeachersDay, we are recognizing our two current astronauts who are former classroom teachers, Joe Acaba and Ricky Arnold, as well as honoring teachers everywhere. What better way to celebrate than by learning from teachers who are literally out-of-this-world!
During the past Year of Education on Station, astronauts connected with more than 175,000 students and 40,000 teachers during live Q & A sessions.
Let’s take a look at some of the questions those students asked:
Taking a look at our home planet from the International Space Station is one of the most fascinating things to see! The views and vistas are unforgettable, and you want to take everyone you know to the Cupola (window) to experience this. Want to see what the view is like? Check out earthkam to learn more.
There are several experiments that take place on a continuous basis aboard the orbiting laboratory - anything from combustion to life sciences to horticulture. Several organizations around the world have had the opportunity to test their experiments 250 miles off the surface of the Earth.
If you are a good listener and follower, you can be successful on the space station. As you work with your team, you can rely on each other’s strengths to achieve a common goal. Each astronaut needs to have expeditionary skills to be successful. Check out some of those skills here.
Nothing excites Serena Auñón-Chancellor more than seeing a living, green plant on the International Space Station. She can’t wait to use some of the lettuce harvest to top her next burger! Learn more about the plants that Serena sees on station here.
While aboard the International Space Station, taste buds may not react the same way as they do on earth but the astronauts have access to a variety of snacks and meals. They have also grown 12 variants of lettuce that they have had the opportunity to taste.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
On June 10, people in parts of the northern hemisphere will have the chance to witness a solar eclipse.
Watch the full visualization of the eclipse.
The June 10 eclipse is an annular solar eclipse, meaning that the Sun will never be completely covered by the Moon. The Moon’s orbit around the Earth is not a perfect circle, so throughout each month, the Moon’s distance from Earth varies. During an annular eclipse, the Moon is far enough away from Earth that the Moon appears smaller than the Sun in the sky. Since the Moon does not block the entire view of the Sun, it will look like a dark disk on top of a larger, bright disk. This creates what looks like a ring of fire around the Moon.
People in the narrow path of annularity — which, for this eclipse, cuts through Canada, Greenland, and northern Russia — will see the ring of fire effect as the Moon passes across the Sun.
Credit: Dale Cruikshank
Outside this path of annularity, many people in the northern hemisphere have a chance to see a partial solar eclipse. The partial eclipse will fall on parts of the eastern United States, as well as northern Alaska. Some locations will only see a very small piece of the Sun covered, while locations closer to the path of annularity can see the Moon cover most of the Sun.
To learn which times the eclipse may be visible in certain areas, you can click anywhere on the map here. (Note that the maximum obscuration and maximum eclipse timing noted on this map may occur before sunrise in many locations.)
This solar eclipse is a pair with the total lunar eclipse that happened on May 26.
Both solar and lunar eclipses happen when the Sun, Moon, and Earth line up in the same plane — a lunar eclipse happens when Earth is in the middle and casts its shadow on the Moon, and a solar eclipse happens when the Moon is in the middle and casts its shadow on Earth. The Moon’s orbit is tilted, so it’s usually too high or too low for this alignment to work out.
The May 26 lunar eclipse was a supermoon lunar eclipse, meaning that the full moon happened while the Moon was near its closest point to Earth, making the Moon appear larger in the sky. The solar eclipse happens at the opposite point of the Moon’s orbit, during the new moon — and in this case, the new moon happens near the Moon’s farthest point from Earth, making the Moon appear smaller and resulting in an annular (rather than total) solar eclipse.
From anywhere: Watch the eclipse online with us! Weather permitting, we’ll be sharing live telescope views of the partial eclipse courtesy of Luc Boulard of the Royal Astronomical Society of Canada Sudbury Centre. Tune in starting at 5 a.m. EDT on June 10 at nasa.gov/live.
From the path of the annular or partial eclipse: Be sure to take safety precuations if you plan to watch in person!
It is never safe to look directly at the Sun's rays, even if the Sun is partly or mostly obscured, like during a partial or annular eclipse — doing so can severely harm your eyes. If you’re planning to watch the eclipse on June 10, you should use solar viewing glasses or an indirect viewing method at all points during the eclipse if you want to face the Sun. Solar viewing glasses, sometimes called eclipse glasses, are NOT regular sunglasses; regular sunglasses are not safe for viewing the Sun.
If you don’t have solar viewing or eclipse glasses, you can use an alternate indirect method like a pinhole projector. Pinhole projectors shouldn’t be used to look at the Sun; instead, they’re an easy way to project an image of the Sun onto a surface. Read more about how to create a pinhole projector.
This is a sunrise eclipse in the contiguous U.S. At locations in the lower 48 states that can see the partial eclipse, the show starts before sunrise, when the Sun is still below the horizon. That means the best chance to see the eclipse in these locations will be during and shortly after sunrise, when the Sun is very low in the sky. In northern Alaska, the eclipse happens in the very early hours of June 10 when the Sun is low on the horizon.
Bottom line: If you’re trying to watch the eclipse in the contiguous U.S., look for a location with a clear view of the horizon to the northeast, and plan to watch starting at sunrise with your solar filter or indirect viewer.
The next two eclipses in the continental U.S. are in 2023 and 2024. The annular solar eclipse of Oct. 14, 2023, will cut from Oregon to Texas, and the total solar eclipse of April 8, 2024, will pass from Texas to Maine. Keep up with the latest on eclipses and eclipse science at nasa.gov/eclipse.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Here are a few things you should know about our solar system this week:
1. Gearing Up for a Grand Finale
There’s just a year left until the Cassini mission begins its Grand Finale – the final phase of its mission, during which the spacecraft will dive repeatedly between the planet and the rings. To get ready, the Cassini team has launched an enhanced, mobile device-friendly version of the mission website. The site includes information about Cassini, Saturn, the moons and the rings – but it also tells the human stories behind one of the most ambitions expeditions of all time.
2.Caught in Transit
On Monday, May 9, the planet Mercury will cross directly in front of the sun, an event that hasn’t occurred since 2006 and won’t happen again until 2019. Find out how to watch HERE.
3. A Moon for Makemake
Our Hubble Space Telescope has spotted a small, dark moon orbiting Makemake (pronounced “MAH-kay MAH-kay). Make make is the second brightest icy dwarf planet – after Pluto – in the faraway Kuiper Belt.
4. The Age of the Aquarids
The Eta Aquarid meteor shower is the first of two showers that occur each year as a result of Earth passing through dust released by Halley’s Comet. This year, it should peak on the night of May 5/6. Get tips for watching HERE.
5. The Southern Lights of Saturn
On May 4, Cassini will reach periapse, the closest point to Saturn in the spacecraft’s orbit. At about this time, Cassini’s cameras will monitor Saturn’s south polar aurorae, and also image the bright limb of the planet to better understand its upper haze layers.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our James Webb Space Telescope is the most ambitious and complex space science observatory ever built. It will study every phase in the history of our universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.
In order to carry out such a daring mission, many innovative and powerful new technologies were developed specifically to enable Webb to achieve its primary mission.
Here are 5 technologies that were developed to help Webb push the boundaries of space exploration and discovery:
Microshutters are basically tiny windows with shutters that each measure 100 by 200 microns, or about the size of a bundle of only a few human hairs.
The microshutter device will record the spectra of light from distant objects (spectroscopy is simply the science of measuring the intensity of light at different wavelengths. The graphical representations of these measurements are called spectra.)
Other spectroscopic instruments have flown in space before but none have had the capability to enable high-resolution observation of up to 100 objects simultaneously, which means much more scientific investigating can get done in less time.
Read more about how the microshutters work HERE.
Webb's backplane is the large structure that holds and supports the big hexagonal mirrors of the telescope, you can think of it as the telescope’s “spine”. The backplane has an important job as it must carry not only the 6.5 m (over 21 foot) diameter primary mirror plus other telescope optics, but also the entire module of scientific instruments. It also needs to be essentially motionless while the mirrors move to see far into deep space. All told, the backplane carries more than 2400kg (2.5 tons) of hardware.
This structure is also designed to provide unprecedented thermal stability performance at temperatures colder than -400°F (-240°C). At these temperatures, the backplane was engineered to be steady down to 32 nanometers, which is 1/10,000 the diameter of a human hair!
Read more about the backplane HERE.
One of the Webb Space Telescope's science goals is to look back through time to when galaxies were first forming. Webb will do this by observing galaxies that are very distant, at over 13 billion light years away from us. To see such far-off and faint objects, Webb needs a large mirror.
Webb's scientists and engineers determined that a primary mirror 6.5 meters across is what was needed to measure the light from these distant galaxies. Building a mirror this large is challenging, even for use on the ground. Plus, a mirror this large has never been launched into space before!
If the Hubble Space Telescope's 2.4-meter mirror were scaled to be large enough for Webb, it would be too heavy to launch into orbit. The Webb team had to find new ways to build the mirror so that it would be light enough - only 1/10 of the mass of Hubble's mirror per unit area - yet very strong.
Read more about how we designed and created Webb’s unique mirrors HERE.
Wavefront sensing and control is a technical term used to describe the subsystem that was required to sense and correct any errors in the telescope’s optics. This is especially necessary because all 18 segments have to work together as a single giant mirror.
The work performed on the telescope optics resulted in a NASA tech spinoff for diagnosing eye conditions and accurate mapping of the eye. This spinoff supports research in cataracts, keratoconus (an eye condition that causes reduced vision), and eye movement – and improvements in the LASIK procedure.
Read more about the tech spinoff HERE.
Webb’s primary science comes from infrared light, which is essentially heat energy. To detect the extremely faint heat signals of astronomical objects that are incredibly far away, the telescope itself has to be very cold and stable. This means we not only have to protect Webb from external sources of light and heat (like the Sun and the Earth), but we also have to make all the telescope elements very cold so they don't emit their own heat energy that could swamp the sensitive instruments. The temperature also must be kept constant so that materials aren't shrinking and expanding, which would throw off the precise alignment of the optics.
Each of the five layers of the sunshield is incredibly thin. Despite the thin layers, they will keep the cold side of the telescope at around -400°F (-240°C), while the Sun-facing side will be 185°F (85°C). This means you could actually freeze nitrogen on the cold side (not just liquify it), and almost boil water on the hot side. The sunshield gives the telescope the equivalent protection of a sunscreen with SPF 1 million!
Read more about Webb’s incredible sunshield HERE.
Learn more about the Webb Space Telescope and other complex technologies that have been created for the first time by visiting THIS page.
For the latest updates and news on the Webb Space Telescope, follow the mission on Twitter, Facebook and Instagram.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
In celebration of the 50th anniversary of Apollo 11, we’ll be sharing answers to some frequently asked questions about the first time humans voyaged to the Moon. Answers have been compiled from archivists in the NASA History Office.
At the height of Apollo in 1965, about 409,900 people worked on some aspect of the program, but that number doesn’t capture it all.
It doesn’t represent the people who worked on mission concepts or spacecraft design, such as the engineers who did the wind tunnel testing of the Apollo Command Module and then moved on to other projects. The number also doesn’t represent the NASA astronauts, mission controllers, remote communications personnel, etc. who would have transferred to the Apollo program only after the end of Gemini program (1966-1967). There were still others who worked on the program only part-time or served on temporary committees. In the image above are three technicians studying an Apollo 14 Moon rock in the Lunar Receiving Laboratory at Johnson Space Center. From left to right, they are Linda Tyler, Nancy Trent and Sandra Richards.
This artwork portrait done by spaceflight historian Ed Hengeveld depicts the 12 people who have walked on the Moon so far. In all, 24 people have flown to the Moon and three of them, John Young, Jim Lovell and Gene Cernan, have made the journey twice.
But these numbers will increase.
Every successful Apollo lunar landing mission left a flag on the Moon but we don’t know yet whether all are still standing. Some flags were set up very close to the Lunar Module and were in the blast radius of its ascent engine, so it’s possible that some of them could have been knocked down. Neil Armstrong and Buzz Aldrin both reported that the flag had been knocked down following their ascent.
Our Lunar Reconnaissance Orbiter took photographs of all the Apollo lunar landing sites. In the case of the Apollo 17 site, you can see the shadow of the upright flag.
The flags appear to “wave” or “flap” but actually they’re swinging. Swinging motions on Earth are dampened due to gravity and air resistance, but on the Moon any swinging motion can continue for much longer. Once the flags settled (and were clear of the ascent stage exhaust), they remained still. And how is the flag hanging? Before launching, workers on the ground had attached a horizontal rod to the top of each flag for support, allowing it to be visible in pictures and television broadcasts to the American public. Armstrong and Aldrin did not fully extend the rod once they were on the Moon, giving the flag a ripple effect. The other astronauts liked the ripple effect so much that they also did not completely extend the rod.
Have you ever taken a photo of the night sky with your phone or camera? You likely won’t see any stars because your camera’s settings are likely set to short exposure time which only lets it quickly take in the light off the bright objects closest to you. It’s the same reason you generally don’t see stars in spacewalk pictures from the International Space Station. There’s no use for longer exposure times to get an image like this one of Bruce McCandless in 1984 as seen from Space Shuttle Challenger (STS-41B).
The Hasselblad cameras that Apollo astronauts flew with were almost always set to short exposure times. And why didn’t the astronauts photograph the stars? Well, they were busy exploring the Moon!
The first giant leap was only the beginning. Work is under way to send the first woman and the next man to the Moon in five years. As we prepare to launch the next era of exploration, the new Artemis program is the first step in humanity’s presence on the Moon and beyond.
Keep checking back for more answers to Apollo FAQs.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Fourteen new Astronaut Candidates have reported to our Johnson Space Center in Houston for duty on Monday, Aug. 21! Two astronauts from the Canadian Space Agency (CSA), along with our 12 new astronaut candidates arrived for their first day of work. We selected these 12 individuals from a record number of more than 18,000 applicants.
This excited group of outstanding individuals will begin 2 years of training, along with 2 Canadian astronauts, in 5 key areas before being assigned to a mission.
What 5 areas? Let’s take a look...
1. Operate in T-38 Jets
Astronauts must be able to safely operate in the T-38 jets as either a pilot or back seater.
2. Operate + Maintain the International Space Station
Astronauts learn to operate and maintain the complex systems aboard the International Space Station. Did you know they recycle their water there? Today’s coffee is...well, tomorrow’s coffee too.
3. Learn How to Spacewalk
Or should we say waterwalk? Astronauts demonstrate the skills to complete complex spacewalk tasks in our Neutral Buoyancy Laboratory. This 6.2 million gallon pool contains a mockup of the space station and is a close simulation to microgravity.
4. Learn to Operate a Robot
Astronauts train in Canada for 2 weeks to learn how to capture visiting vehicles and more with the space station’s Canadarm 2 robotic arm.
5. Learn a Foreign Language
Astronauts must be fluent in both English and Russian, the two official languages on the International Space Station.
But before they begin all this training...they had to report for duty...
This group reported for Johnson Space Center on eclipse day and was sworn in as NASA’s Astronaut Candidate Class of 2017.
They even got to experience the partial solar eclipse together, what a great first day!
Follow their training journey online by following @NASA_Astronauts on Twitter.
Get to know them better and watch their individual interviews here: go.nasa.gov/NewAstronauts.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
About 45 million light-years away, in another corner of the cosmos, lies spiral galaxy NGC 1097. Though this Hubble Space Telescope image zooms in toward the core, the galaxy’s vast spiral arms span over 100,000 light-years as they silently sweep through space. At the heart of this galaxy lurks a black hole that is about 100 million times as massive as the Sun.
The supermassive black hole is voraciously eating up surrounding matter, which forms a doughnut-shaped ring around it. Matter that's pulled into the black hole releases powerful radiation, making the star-filled center of the galaxy even brighter. Hubble’s observations have led to the discovery that while the material that is drawn toward NGC 1097’s black hole may be doomed to die, new stars are bursting into life in the ring around it.
This sparkling spiral galaxy is especially interesting to both professional scientists and amateur astronomers. It is a popular target for supernova hunters ever since the galaxy experienced three supernovas in relatively rapid succession — just over a decade, between 1992 and 2003. Scientists are intrigued by the galaxy’s satellites — smaller “dwarf” galaxies that orbit NGC 1097 like moons. Studying this set of galaxies could reveal new information about how galaxies interact with each other and co-evolve.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
March 20 marks the spring equinox. It’s the first day of astronomical spring in the Northern Hemisphere, and one of two days a year when day and night are just about equal lengths across the globe.
Because Earth is tilted on its axis, there are only two days a year when the sun shines down exactly over the equator, and the day/night line – called the terminator – runs straight from north to south.
In the Northern Hemisphere, the March equinox marks the beginning of spring – meaning that our half of Earth is slowly tilting towards the sun, giving us longer days and more sunlight, and moving us out of winter and into spring and summer.
An equinox is the product of celestial geometry, and there’s another big celestial event coming up later this year: a total solar eclipse.
A solar eclipse happens when the moon blocks our view of the sun. This can only happen at a new moon, the period about once each month when the moon’s orbit positions it between the sun and Earth — but solar eclipses don’t happen every month.
The moon’s orbit around Earth is inclined, so, from Earth's view, on most months we see the moon passing above or below the sun. A solar eclipse happens only on those new moons where the alignment of all three bodies are in a perfectly straight line.
On Aug. 21, 2017, a total solar eclipse will be visible in the US along a narrow, 70-mile-wide path that runs from Oregon to South Carolina. Throughout the rest of North America – and even in parts of South America, Africa, Europe and Asia – the moon will partially obscure the sun.
Within the path of totality, the moon will completely cover the sun’s overwhelmingly bright face, revealing the relatively faint outer atmosphere, called the corona, for seconds or minutes, depending on location.
It’s essential to observe eye safety during an eclipse. Though it’s safe to look at the eclipse ONLY during the brief seconds of totality, you must use a proper solar filter or indirect viewing method when any part of the sun’s surface is exposed – whether during the partial phases of an eclipse, or just on a regular day.
Learn more about the August eclipse at eclipse2017.nasa.gov.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This International Women’s Day join us in celebrating the women whose grit, ingenuity and talent drives us forward in our mission to boldly expand frontiers in air and space. Thank you for pushing boundaries, serving as role models and shaping space, science and discovery every day!
The women at NASA are making history everyday! Keep up with their work and learn more about their stories, HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts