Navigating Space By The Stars

Navigating Space by the Stars

image
image
image
image
image

A sextant is a tool for measuring the angular altitude of a star above the horizon and has helped guide sailors across oceans for centuries. It is now being tested aboard the International Space Station as a potential emergency navigation tool for guiding future spacecraft across the cosmos. The Sextant Navigation investigation will test the use of a hand-held sextant that utilizes star sighting in microgravity. 

Read more about how we’re testing this tool in space!  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

7 years ago

Solar System: Things To Know This Week

Weather permitting, you can observe the Moon most nights, unless it's a new moon, when the lighted side of the Moon faces away from Earth. The Moon is by far the brightest object in the night sky and there's plenty to see. But this week is special...

image

...October 28 is International Observe the Moon Night (also known as InOMN).

Here's all you need to know to join in and celebrate:

1. One Planet. One Moon. One Night.

image

Everyone on Earth is invited to join the celebration by hosting or attending an InOMN event and uniting on one day each year to look at and learn about the Moon together.

2. What's Up?

image

October's night skies are full of sights, from the first quarter Moon on InOMN to Saturn making a cameo appearance above the Moon October 23 and 24. Watch our What's Up video for details.

3. Be Social

image

Hundreds of events are planned around the globe. Click the top link on this page for a handy map. You can also register your own event.

4. Don't Just Stand There

image

Here are some activities for enhanced Moon watching.

5. Impress Your Friends with Moon Knowledge

image

Download InOMN flyers and handouts, Moon maps and even some pre-made presentations. There's even a certificate to mark your participation.

6. Guide to the Face of the Moon

image

Almost dead center on the Earth-facing side of the Moon is the Surveyor 6 robotic spacecraft impact side. Apollo 12 and 14 are a bit to the left. And Apollo 11 - the first steps on the moon - are to the right. This retro graphic tells the whole story.

7. Moon Shots

image

NASA photographers have done some exceptional work capturing views of the Moon from Earth. Here are a few galleries:

You can't have a solar eclipse without the Moon.

The 2016 "Supermoon" was pretty spectacular.

The Moon gets eclipsed, too.

That IS a Moon - AND the International Space Station.

The Moon is always a great photo subject.

Some spooky shots of the 2014 "Supermoon."

And 2013.

Tips from a NASA pro for photographing the Moon.

8. Walking on the Moon

image

Twelve human beings walked on the face of the Moon. Here are some of the best shots from the Apollo program.

9. Moon Watch

image

Our Lunar Reconnaissance Orbiter is up there right now, mapping the moon and capturing some spectacular high-resolution shots.

10. Keep Exploring

image

Make our Moon portal your base for further lunar exploration.

Check out the full version of ‘Ten Things to Know This Week’ HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
1 year ago

5 Myths About Becoming an Astronaut

Editor’s Note: This post was updated on March 15, 2024, to reflect new URLs and updated qualifications for applicants.

Have you ever wondered if you have what it takes to become a NASA astronaut? The term “astronaut” derives from the Greek word meaning “star sailor.”

We’re looking for a new class of astronauts to join the NASA team, and if you’re thinking about applying, there are a few things you should know.

Here are a few myths about becoming an astronaut:

MYTH: All astronauts have piloting experience.

FACT: You don’t need to be a pilot to be an astronaut. Flying experience is not a requirement, but it could be beneficial to have.

image

MYTH: All astronauts have perfect vision.

FACT: It’s OK if you don’t have 20/20 vision. As of September 2007, corrective surgical procedures of the eye (PRK and LASIK), are now allowed, providing at least one year has passed since the date of the procedure with no permanent adverse aftereffects.

image

MYTH: All astronauts have advanced degrees, like a PhD.

FACT: While a master’s degree from an accredited university is typically necessary to become an astronaut, an exception exists if you have completed a medical degree or test pilot school.

image

MYTH: Astronauts are required to have military experience to be selected.

FACT: Military experience is not required to become an astronaut.

image

MYTH: You must be a certain age to be an astronaut. 

FACT: There are no age restrictions. Astronaut candidates selected in the past have ranged between the ages of 26 and 46, with the average age being 34.

image

OK, but what are the requirements?

image

Basic Qualification Requirements

Applicants must meet the following minimum requirements before submitting an application:

Be a U.S. citizen.

Have completed a master’s degree (or foreign equivalent) in an accredited college or university with major study in an appropriate technical field of engineering, biological science, physical science, computer science, or mathematics.

The master’s degree requirement can also be met by having:

Completed at least two years (36 semester hours or 54 quarter hours) in an accredited PhD or related doctoral degree program (or foreign equivalent) with major study in an appropriate technical field of engineering, biological science, physical science, computer science, or mathematics.

Completed a Doctor of Medicine, Doctor of Osteopathic Medicine, or related medical degree (or foreign equivalent) in an accredited college or university.

Completed or be currently enrolled in a Test Pilot School (TPS) program (nationally or internationally recognized) and will have completed this program by June 2025. (Must submit proof of completion or enrollment.)

If TPS is your only advanced technical degree, you must have also completed a bachelor’s degree or higher (or foreign equivalent) at an accredited college or university with major study in an appropriate technical field of engineering, biological science, physical science, computer science, or mathematics.

Have at least three years of related professional experience obtained after degree completion (or 1,000 Pilot-in-Command hours with at least 850 of those hours in high-performance jet aircraft for pilots). For medical doctors, time in residency can count toward experience and must be completed by June 2025.

Be able to pass the NASA long-duration flight astronaut physical.

Applications for our next astronaut class are open through April 2! Learn more about our Astronaut Selection Program and check out current NASA astronaut Anne McClain’s advice in “An Astronaut’s Guide to Applying to Be an Astronaut.”

Make sure to follow us on Tumblr for your regular dose of space!

Keep reading

8 years ago

10 Space & Football Facts You Probably Didn’t Know

There are more connections between space and football than you may have originally thought. Here are a few examples of how...

1. The International Space Station and a football field are basically the same size

image

Yes, that’s right! The International Space Station measures 357 feet end-to-end. That’s almost equivalent to the length of a football field including the end zones (360 feet).

2. It would take over 4,000 footballs to fill the Orion spacecraft

image

Our Orion spacecraft is being designed to carry astronauts to deep space destinations, like Mars! It will launch atop the most powerful rocket ever built, the Space Launch System rocket. If you were to fill the Orion spacecraft with footballs instead of crew members, you would fit a total of 4,625!

3. Our new Space Launch System rocket is taller than a football field is long

image

We’re building the most powerful rocket ever, the Space Launch System. At its full height it will stand 384 feet – 24 feet taller than a football field is long.

4. The crew living on space station will see the day begin and end…twice…during the Super Bowl

image

An average NFL game lasts more than three hours. Traveling at 17,500 mph, the crew on the space station will see two sunrises and two sunsets in that time…they see 16 sunrises and sunsets each day!

5. Playing football on Mars would be…lighter

image

On Mars, a football would weigh less than half a pound, while a 200-pund football player would weigh just about 75 pounds.

6. It would take over 3,000 hours for a football to reach the Moon

image

Talk about going long…if you threw a football to the Moon at 60 mph, the average speed of an NFL pass, it would take 3,982 hours, or 166 days, to get there. The quickest trip to the Moon was the New Horizons probe, which zipped pass the Moon in just 8 hours 35 minutes on its way to Pluto 

7. The longest field goal kick in history would’ve been WAY easier to make on Mars

image

The longest field goal kick in NFL history is 64 yards. On Mars, at 1/3 the gravity of Earth, that same field goal, ignoring air resistance, could have been made from almost two football fields away (192 yards).

8. A quarterback would be able to throw even further on Mars

image

Aerodynamic drag doesn’t happen on Mars. With a very thin atmosphere and low gravity to drag the ball down, a quarterback could throw the football three times as far as he could on Earth. A receiver would have to be much further down the field to catch the throw 

9. Football players and astronauts both need to exercise every day

image

Football players must be quick and powerful, honing the physical skills necessary for their unique positions. In space, maintaining physical fitness is a top priority, since astronauts will lose bone and muscle mass if they do not keep up their strength and conditioning.

10. Clear team communication is important on the football field AND in space

image

During football games, calling plays and relaying information from coaches on the sidelines or in the booth to players on the field is essential. Coaches communicate directly with quarterbacks and a defensive player between plays via radio frequencies. They must have a secure and reliable system that keeps their competitors from listening in and also keeps loud fan excitement from drowning out what can be heard. Likewise, reliable communication with astronauts in space and robotic spacecraft exploring far into the solar system is key to our mission success.

A radio and satellite communications network allows space station crew members to talk to the ground-based team at control centers, and for those centers to send commands to the orbital complex.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

The 2021 Perseid Meteor Shower Is Here!

image

Image Credit: NASA/Bill Ingalls 

The Perseids are at their peak this week!

The Perseid meteor shower, one of the biggest meteor showers of the year, will be at its brightest early in the morning on Thursday, August 12, 2021 and Friday, August 13, 2021. Read on for some tips on how to watch the night sky this week – and to find out: what exactly are the Perseids, anyway?

image

Credit: NASA/Bill Ingalls

Your best chance to spot the Perseids will be between 2 AM and dawn (local time) the morning of August 12 or 13. Find a dark spot, avoid bright lights (yes, that includes your phone) and get acclimated to the night sky.

Your eyes should be at peak viewing capacity after about 30 minutes; with a clear, dark sky, you could see more than 40 Perseids an hour! If you’re not an early bird, you can try and take a look soon after sunset (around 9 PM) on the 12th, though you may not see as many Perseids then.

image

Credit: NASA/MEO

If it’s too cloudy, or too bright, to go skywatching where you are, just stay indoors and watch the Perseids online!

Our Meteor Watch program will be livestreaming the Perseids from Huntsville, Alabama on Facebook (weather permitting), starting around 11 p.m. EDT on August 11 and continuing through sunrise.

So… why are they called the Perseids?

Because all of a meteor shower’s meteors have similar orbits, they appear to come from the same place in the sky – a point called the radiant. 

image

The radiant for the Perseids, as you might guess from the name, is in the constellation Perseus, found near Aries and Taurus in the night sky.

But they’re not actually coming from Perseus, right?

image

Credit: NASA/Joel Kowsky

Right! The Perseids are actually fragments of the comet Swift-Tuttle, which orbits within our solar system.

If you want to learn more about the Perseids, visit our Watch the Skies blog or check out our monthly “What’s Up” video series. Happy viewing!

Make sure to follow us on Tumblr for your regular dose of space!


Tags
8 years ago

Hearing a lot about ocean worlds today? Let’s dive in and see what this news is all about...

We once thought oceans made our planet unique, but we’re now coming to realize that ‘ocean worlds’ are all around us.

Two veteran NASA missions are providing new details about icy, ocean-bearing moons of Jupiter and Saturn, further heightening the scientific interest of these and other ‘ocean worlds’ in our solar system and beyond. The findings are presented in papers published Thursday by researchers with our Cassini mission to Saturn and Hubble Space Telescope. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Water, Water Everywhere; We Track Drops to Drink!

When we think about what makes a planet habitable, we’re often talking about water. With abundant water in liquid, gas (vapor) and solid (ice) form, Earth is a highly unusual planet. Almost 70% of our home planet’s surface is covered in water!

image

But about 97% of Earth’s water is salty – only a tiny amount is freshwater: the stuff humans, pets and plants need to survive.

Water on our planet is constantly moving, and not just geographically. Water shifts phases from ice to water to vapor and back, moving through the planet’s soils and skies as it goes.

That’s where our satellites come in.

image

Look at the Midwestern U.S. this spring, for example. Torrential rain oversaturated the soil and overflowed rivers, which caused severe flooding, seen by Landsat.

image

Our satellites also tracked a years-long drought in California. Between 2013 and 2014, much of the state turned brown, without visible green.  

image

It’s not just rain. Where and when snow falls – and melts – is changing, too. The snow that falls and accumulates on the ground is called snowpack, which eventually melts and feeds rivers used for drinking water and crop irrigation. When the snow doesn’t fall, or melts too early, communities go without water and crops don’t get watered at the right time.

image

Even when water is available, it can become contaminated by blooms of phytoplankton, like cyanobacteria . Also known as blue-green algae, these organisms can make humans sick if they drink the water. Satellites can help track algae from space, looking for the brightly colored blooms against blue water.

image
image

Zooming even farther back, Earth’s blue water is visible from thousands of miles away. The water around us makes our planet habitable and makes our planet shine blue among the darkness of space.

image

Knowing where the water is, and where it’s going, helps people make better decisions about how to manage it. Earth’s climate is changing rapidly, and freshwater is moving as a result. Some places are getting drier and some are getting much, much wetter. By predicting droughts and floods and tracking blooms of algae, our view of freshwater around the globe helps people manage their water.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

What future missions are you looking forward to the most?


Tags
9 years ago

What You Should Know About Scott Kelly’s #YearInSpace

1. It’s Actually More Like a Three-Year Mission

What You Should Know About Scott Kelly’s #YearInSpace

NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko may have had a year-long stay in space, but the science of their mission will span more than three years. One year before they left Earth, Kelly and Kornienko began participating in a suite of investigations aimed at better understanding how the human body responds to long-duration spaceflight. Samples of their blood, urine, saliva, and more all make up the data set scientists will study. The same kinds of samples continued to be taken throughout their stay in space, and will continue for a year or more once they return.

2. What We Learn is Helping Us Get to Mars

What You Should Know About Scott Kelly’s #YearInSpace

One of the biggest hurdles of getting to Mars is ensuring humans are “go” for a long-duration mission and that crew members will maintain their health and full capabilities for the duration of a Mars mission and after their return to Earth. Scientists have solid data about how bodies respond to living in microgravity for six months, but significant data beyond that timeframe had not been collected…until now. A mission to Mars will likely last about three years, about half the time coming and going to Mars and about half the time on Mars. We need to understand how human systems like vision and bone health are affected by the 12 to 16 months living on a spacecraft in microgravity and what countermeasures can be taken to reduce or mitigate risks to crew members during the flight to and from Mars. Understanding the challenges facing humans is just one of the ways research aboard the space station helps our journey to Mars.

3. The Science Will Take Some Time

What You Should Know About Scott Kelly’s #YearInSpace

While scientists will begin analyzing data from Kelly and Kornienko as soon as they return to Earth, it could be anywhere from six months to six years before we see published results from the research. The scientific process takes time, and processing the data from all the investigations tied to the one-year mission will be no easy task. Additionally, some blood, urine and saliva samples from Kelly and Kornienko will still be stored in the space station freezers until they can be returned on the SpaceX Dragon spacecraft. Early on in the analytical process scientists may see indications of what we can expect, but final results will come long after Kelly and Kornienko land.

4. This Isn’t the First Time Someone Has Spent a Year in Space

What You Should Know About Scott Kelly’s #YearInSpace

This is the first time that extensive research using exciting new techniques like genetic studies has been conducted on very long-duration crew members. Astronaut Scott Kelly is the first American to complete a continuous, year-long mission in space and is now the American who has spent the most cumulative time in space, but it’s not the first time humans have reached this goal. Previously, only four humans have spent a year or more in orbit on a single mission, all aboard the Russian Mir Space Station. They all participated in significant research proving that humans are capable of living and working in space for a year or more.

Russian cosmonaut Valery Polyakov spent 438 days aboard Mir between January 1994 and March 1995 and holds the all-time record for the most continuous days spent in space.

Cosmonaut Sergei Avdeyev spent 380 days on Mir between August 1998 and August 1999.

Cosmonauts Vladimir Titov and Musa Manarov completed a 366-day mission from December 1987 to December 1988.

5. International Collaboration is Key

What You Should Know About Scott Kelly’s #YearInSpace

The International Space Station is just that: international. The one-year mission embodies the spirit of collaboration across countries in the effort to mitigate as many risks as possible for humans on long-duration missions. Data collected on both Kelly and Kornienko will be shared between the United States and Russia, and international partners. These kinds of collaborations help increase more rapidly the biomedical knowledge necessary for human exploration, reduce costs, improve processes and procedures, and improve efficiency on future space station missions.

6. So Much Science!

What You Should Know About Scott Kelly’s #YearInSpace

During Kelly’s year-long mission aboard the orbiting laboratory, his participation in science wasn’t limited to the one-year mission investigations. In all, he worked on close to 400 science studies that help us reach for new heights, reveal the unknown, and benefit all of humanity. His time aboard the station included blood draws, urine collection, saliva samples, computer tests, journaling, caring for two crops in the Veggie plant growth facility, ocular scans, ultrasounds, using the space cup, performing runs with the SPHERES robotic satellites, measuring sound, assisting in configuring cubesats to be deployed, measuring radiation, participating in fluid shifts testing in the Russian CHIBIS pants, logging his sleep and much, much more. All of this was in addition to regular duties of station maintenance, including three spacewalks!

7. No More Food in Pouches

What You Should Know About Scott Kelly’s #YearInSpace

After months of eating food from pouches and cans and drinking through straws, Kelly and Kornienko will be able to celebrate their return to Earth with food of their choice. While aboard the space station, their food intake is closely monitored and designed to provide exactly the nutrients they need. Crew members do have a say in their on-orbit menus but often miss their favorite meals from back home. Once they return, they won’t face the same menu limitations as they did in space. As soon as they land on Earth and exit the space capsule, they are usually given a piece of fruit or a cucumber to eat as they begin their initial health checks. After Kelly makes the long flight home to Houston, he will no doubt greatly savor those first meals.

8. After the Return Comes Reconditioning

What You Should Know About Scott Kelly’s #YearInSpace

You’ve likely heard the phrase, “Use it or lose it.” The same thing can be said for astronauts’ muscles and bones. Muscles and bones can atrophy in microgravity. While in space, astronauts have a hearty exercise regimen to fight these effects, and they continue strength training and reconditioning once they return to Earth. They will also participate in Field Tests immediately after landing. Once they are back at our Johnson Space Center, Functional Task Tests will assess how the human body responds to living in microgravity for such a long time. Understanding how astronauts recover after long-duration spaceflight is a critical piece in planning for missions to deep space.

9. Twins Studies Have Researchers Seeing Double

What You Should Know About Scott Kelly’s #YearInSpace

One of the unique aspects of Kelly’s participation in the one-year mission is that he has an identical twin brother, Mark, who is a former astronaut. The pair have taken part in a suite of studies that use Mark as a human control on the ground during Scott’s year-long stay in space. The Twins Study is comprised of 10 different investigations coordinating together and sharing all data and analysis as one large, integrated research team. The investigations focus on human physiology, behavioral health, microbiology/microbiome and molecular/omics. The Twins Study is multi-faceted national cooperation between investigations at universities, corporations, and government laboratories.

10. This Mission Will Help Determine What Comes Next

What You Should Know About Scott Kelly’s #YearInSpace

The completion of the one-year mission and its studies will help guide the next steps in planning for long-duration deep space missions that will be necessary as humans move farther into the solar system. Kelly and Kornienko’s mission will inform future decisions and planning for other long-duration missions, whether they are aboard the space station, a deep space habitat in lunar orbit, or a mission to Mars.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
1 year ago

Our Answer Time with flight directors Diane Dailey and Chloe Mehring is now scheduled for Dec. 7 at 12 p.m. EST (9 a.m. PST). Join us then to see your questions answered!

At top is Chloe Mehring, a woman with shoulder-length brown hair, poses for a picture in the Mission Control Center at NASA’s Johnson Space Center in Houston. She wears a black blazer, and her arms are crossed as she smiles. The words "Chloe Mehring" are underneath her arms. Behind her are several desks lining an aisle. On the desks are many computer screens. Large screens line the walls with the logos of NASA and other space agencies, times, maps, and more information.

Diane Dailey (bottom), a woman with brown hair, poses for a picture in the Mission Control Center at NASA’s Johnson Space Center in Houston. She wears a black blazer, and her arms are crossed as she smiles. Her name, "Diane Dailey" is written below her. Dailey stands at a desk with three monitors on it, as well as a telephone and several cords. Her nameplate, reading “Flight Director” is visible at the center of the photo. Behind her are several large screens lining the walls. Various information is displayed on those screens, but a map of the world and the Horizon Flight logo are most prominent. There are also people working at other desks in the room. 

In the center of the image is an orange many-pointed star shape. The text in the sticker says "Tumblr answer time." Credit: NASA, Tumblr

What’s It Like to Work in NASA’s Mission Control Center?

In the latest installment of our First Woman graphic novel series, we see Commander Callie Rodriguez embark on the next phase of her trailblazing journey, as she leaves the Moon to take the helm at Mission Control.

Two panels from the second issue of First Woman, NASA’s graphic novel series following fictional astronaut Callie Rodriguez. In the first panel, Callie, dressed in a suit, speaks to an astronaut while working at Mission Control. She says, “Commander! We’re getting updated readings from the surface. The weather’s changing rapidly. There’s a new dust storm at the landing site. You may have to assume manual control as you approach the surface. The decision will be yours.” The speech bubble overlaps into the second panel, which shows the many desks and computer monitors in Mission Control. On the screen, we can see the astronaut Callie is speaking to. Credit: NASA

Flight directors work in Mission Control to oversee operations of the International Space Station and Artemis missions to the Moon. They have a unique, overarching perspective focused on integration between all the systems that make a mission a success – flight directors have to learn a little about a lot.

Diane Dailey and Chloe Mehring were selected as flight directors in 2021. They’ll be taking your questions about what it’s like to lead teams of flight controllers, engineers, and countless professionals, both agencywide and internationally, in an Answer Time session on Nov. 28, 2023, from noon to 1 p.m. EST (9-10 a.m. PST) here on our Tumblr!

Like Callie, how did their unique backgrounds and previous experience, prepare them for this role? What are they excited about as we return to the Moon?

🚨 Ask your questions now by visiting https://nasa.tumblr.com/ask.

Diane Dailey started her career at NASA in 2006 in the space station Environmental Control and Life Support Systems (ECLSS) group. As an ECLSS flight controller, she logged more than 1,700 hours of console time, supported 10 space shuttle missions, and led the ECLSS team. She transitioned to the Integration and System Engineering (ISE) group, where she was the lead flight controller for the 10th and 21st Commercial Resupply Services missions for SpaceX. In addition, she was the ISE lead for NASA’s SpaceX Demo-1 and Demo-2 crew spacecraft test flights. Dailey was also a capsule communicator (Capcom) controller and instructor.

She was selected as a flight director in 2021 and chose her call sign of “Horizon Flight” during her first shift in November of that year. She has since served as the Lead Flight director for the ISS Expedition 68, led the development of a contingency spacewalk, and led a spacewalk in June to install a new solar array on the space station. She is currently working on development of the upcoming Artemis II mission and the Human Lander Systems which will return humanity to the moon. Dailey was raised in Lubbock, Texas, and graduated from Texas A&M University in College Station with a bachelor’s degree in biomedical engineering. She is married and a mother of two. She enjoys cooking, traveling, and spending time outdoors.

Chloe Mehring started her NASA career in 2008 in the Flight Operations’ propulsion systems group and supported 11 space shuttle missions. She served as propulsion support officer for Exploration Flight Test-1, the first test flight of the Orion spacecraft that will be used for Artemis missions to the Moon. Mehring was also a lead NASA propulsion officer for SpaceX’s Crew Dragon spacecraft and served as backup lead for the Boeing Starliner spacecraft. She was accepted into the 2021 Flight Director class and worked her first shift in February 2022, taking on the call sign “Lion Flight”. Since becoming certified, she has worked over 100 shifts, lead the NG-17 cargo resupply mission team, and executed two United States spacewalks within 10 days of each other. She became certified as a Boeing Starliner Flight Director, sat console for the unmanned test flight in May 2022 (OFT-2) and will be leading the undock team for the first crewed mission on Starliner in the spring of next year. She originally is from Mifflinville, Pennsylvania, and graduated with a bachelor’s degree in aerospace engineering from The Pennsylvania State University in State College. She is a wife, a mom to one boy, and she enjoys fitness, cooking and gardening.


Tags
9 years ago

Things You Might Not Know About Our Sun

image

The sun is a star, a hot ball of glowing gases at the heart of our solar system. Its influence extends far beyond the orbits of distant Neptune and Pluto. Without the sun’s intense energy and heat, there would be no life on Earth. And though it is special to us, there are billions of stars like our sun scattered across the Milky Way galaxy.

image

Impress Your Friends with These Sun Facts:

If the sun were as tall as a typical front door, the Earth would be the size of a U.S. nickel

The temperature at the sun’s core is about 27 million degrees Fahrenheit

Our sun is more massive than the average star in its neighborhood. Nearly 90% of stars are less massive, making them cooler and dimmer

The sun contains 99.9% of all matter in our solar system

During a single second, the sun converts 4 million tons of matter to pure energy

It would take about 1 million Earths to fill the sun if it were a hollow ball

The sun rotates on its axis approximately once every 27 days

The sun is 93 million miles away from Earth and is almost 5 billion years old

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • nightcat2609
    nightcat2609 reblogged this · 1 year ago
  • nightcat2609
    nightcat2609 liked this · 1 year ago
  • charliewfell96
    charliewfell96 liked this · 1 year ago
  • telemarcs
    telemarcs liked this · 3 years ago
  • catsandboobies
    catsandboobies liked this · 3 years ago
  • cantuiakuq8
    cantuiakuq8 liked this · 4 years ago
  • saeminentodor65zkc
    saeminentodor65zkc liked this · 4 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags