The Abyss Of Time

The Abyss of Time

image

Scotland is part of the bedrock of geology, so to speak.

In the late 18th century, Scottish farmer and scientist James Hutton helped found the science of geology. Observing how wind and water weathered rocks and deposited layers of soil at his farm in Berwickshire, Hutton made a conceptual leap into a deeper and expansive view of time. After spending decades observing the processes of erosion and sedimentation, and traveling the Scottish countryside in search of fossils, stream cuts and interesting rock formations, Hutton became convinced that Earth had to be much older than 6,000 years, the common belief in Western civilization at the time.

In 1788, a boat trip to Siccar Point, a rocky promontory in Berwickshire, helped crystallize Hutton’s view. The Operational Land Imager (OLI) on Landsat 8 acquired this image of the area on June 4, 2018, top. A closer view of Siccar Point is below.

image

At Siccar Point, Hutton was confronted with the juxtaposition of two starkly different types of rock—a gently sloping bed of young red sandstone that was over a near vertical slab of older graywacke that had clearly undergone intensive heating, uplift, buckling, and folding. Hutton argued to his two companions on the boat that the only way to get the two rock formations jammed up against one another at such an odd angle was that an enormous amount of time must have elapsed between when they had been deposited at the bottom of the ocean.

He was right.

Read more: https://go.nasa.gov/2OBnyJ8

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

2 years ago

Calling Long-Distance: 10 Stellar Moments in 2022 for Space Communications and Navigation

Just like your phone needs Wi-Fi or data services to text or call – NASA spacecraft need communication services.

Giant antennas on Earth and a fleet of satellites in space enable missions to send data and images back to our home planet and keep us in touch with our astronauts in space. Using this data, scientists and engineers can make discoveries about Earth, the solar system, and beyond. The antennas and satellites make up our space communications networks: the Near Space Network and Deep Space Network.

Check out the top ten moments from our space comm community: 

NASA’s Orion spacecraft in space looking at the Moon from a camera mounted on one of its solar arrays. The Orion spacecraft appears in the foreground. The Earth and the Moon appear in the far distance against the blackness of space. The Moon appears just slightly larger than Earth. Credit: NASA

1. Space communication networks helped the Artemis I mission on its historic journey to the Moon. From the launch pad to the Moon and back, the Near Space Network and Deep Space Network worked hand-in-hand to seamlessly support Artemis I. These networks let mission controllers send commands up to the spacecraft and receive important spacecraft health data, as well as incredible images of the Moon and Earth.

The Pathfinder Technology Demonstration 3 spacecraft with hosted TeraByte InfraRed Delivery (TBIRD) payload communicating with laser links down to Earth. Credit: NASA/Ames Research Center

2. Spacecraft can range in size – from the size of a bus to the size of a cereal box. In May 2022, we launched a record-breaking communication system the size of a tissue box. TBIRD showcases the benefits of a laser communications system, which uses infrared light waves rather than radio waves to communicate more data at once. Just like we have upgraded from 3G to 4G to 5G on our phones, we are upgrading its space communications capabilities by implementing laser comms!

Image of the white DSN 34-meter antenna lit up against a dark black sky in Madrid, Spain. Credit: NASA/JPL-Caltech

3. The Deep Space Network added a new 34-meter (111-foot) antenna to continue supporting science and exploration missions investigating our solar system and beyond. Deep Space Station 53 went online in February 2022 at our Madrid Deep Space Communications Complex. It is the fourth of six antennas being added to expand the network’s capacity.

An artistic rendering of the Earth and Moon with the Moon in the forefront. Surrounding the two planetary bodies are vibrant networking lines showing robust communications on Earth and at the Moon. Credit: NASA/Dave Ryan

4. You’ve probably seen in the news that there are a lot of companies working on space capabilities. The Near Space Network is embracing the aerospace community’s innovative work and seeking out multiple partnerships. In 2022, we met with over 300 companies in hopes of beginning new collaborative efforts and increasing savings.

The ILLUMA-T payload in a Goddard cleanroom with a covered optical module and various wires and simulators. Credit: NASA/Taylor Mickal 

5. Similar to TBIRD, we're developing laser comms for the International Space Station. The terminal will show the benefits of laser comms while using a new networking technique called High Delay/Disruption Tolerant Networking that routes data four times faster than current systems. This year, engineers tested and proved the capability in a lab.

The image is divided horizontally by an undulating line between a cloudscape forming a nebula along the bottom portion and a comparatively clear upper portion. Speckled across both portions is a starfield. The upper portion of the image is blueish, and has wispy translucent cloud-like streaks rising from the nebula below. The orangish cloudy formation in the bottom half varies in density and ranges from translucent to opaque. The cloud-like structure of the nebula contains ridges, peaks, and valleys – an appearance very similar to a mountain range. Image Credit: NASA, ESA, CSA, and STScI. Image processing: J. DePasquale (STScI).

6. In 2021, we launched the James Webb Space Telescope, a state-of-the-art observatory to take pictures of our universe. This year, the Deep Space Network received the revolutionary first images of our solar system from Webb. The telescope communicates with the network’s massive antennas at three global complexes in Canberra, Australia; Madrid, Spain; and Goldstone, California.

Two engineers look across the vast Arizona desert as they test new 4G and 5G communications technologies. Credit: NASA/Glenn Research Center

7. Just like we use data services on our phone to communicate, we'll do the same with future rovers and astronauts exploring the Moon. In 2022, the Lunar LTE Studies project, or LunarLiTES, team conducted two weeks of testing in the harsh depths of the Arizona desert, where groundbreaking 4G LTE communications data was captured in an environment similar to the lunar South Pole. We're using this information to determine the best way to use 4G and 5G networking on the Moon.

From left, NASA Deputy Associate Administrator and Program Manager for Space Communications and Navigation Badri Younes, Mayor of Laingsburg Johanna Botha, and Director General of South Africa's Department of Science and Innovation Dr. Phil Mjwara break ground at the site of a new Lunar Exploration Ground Sites antenna in Matjiesfontein, South Africa Nov. 8. Credit: NASA/Al Feinberg

8. A new Near Space Network antenna site was unveiled in Matjiesfontein, South Africa. NASA and the South African Space Agency celebrated a ground-breaking at the site of a new comms antenna that will support future Artemis Moon missions. Three ground stations located strategically across the globe will provide direct-to-Earth communication and navigation capabilities for lunar missions.

Space Communications and Navigation intern, Ashwin Mishra, testing equipment in the Quantum Communications Lab. Credit: NASA/Glenn Research Center

9. Quantum science aims to better understand the world around us through the study of extremely small particles. April 14, 2022, marked the first official World Quantum Day celebration, and we participated alongside other federal agencies and the National Quantum Coordination Office. From atomic clocks to optimizing laser communications, quantum science promises to greatly improve our advances in science, exploration, and technology.

An artistic rendering of the DART mission approaching the asteroid Dimorphos, near its parent asteroid, Didymos. NASA/Johns Hopkins APL/Steve Gribben

10. We intentionally crashed a spacecraft into an asteroid to test technology that could one day be used to defend Earth from asteroids. The Double Asteroid Redirection Test, or DART, mission successfully collided with the asteroid Dimorphos at a rate of 4 miles per second (6.1 kilometers per second), with real-time video enabled by the Deep Space Network. Alongside communications and navigation support, the global network also supports planetary defense by tracking near-Earth objects.

We look forward to many more special moments connecting Earth to space in the coming year.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
5 years ago

Hi, I'm a curious Malaysian 😁 can you explain to us about your career and how do one get to the point where you are now? Thanks! Oh, and could you comment on the recent climate crises like the Australian fires and Indonesia flooding? Thank you!


Tags
6 years ago

Our Sun is More than Meets the Eye

The Sun may look unchanging to us here on Earth, but that’s not the whole story.

In visible light – the light our eyes can see – the Sun looks like an almost featureless orange disk, peppered with the occasional sunspot. (Important note: Never look at the Sun directly, and always use a proper filter for solar viewing – or tune in to our near-real time satellite feeds!)

image

But in other kinds of light, it’s a different picture. The Sun emits light across the electromagnetic spectrum, including the relatively narrow range of light we can see, as well as wavelengths that are invisible to our eyes. Different wavelengths convey information about different components of the Sun’s surface and atmosphere, so watching the Sun in multiple types of light helps us paint a fuller picture.

image

Watching the Sun in these wavelengths reveals how active it truly is. This image, captured in a wavelength of extreme ultraviolet light at 131 Angstroms, shows a solar flare. Solar flares are intense bursts of light radiation caused by magnetic events on the Sun, and often associated with sunspots. The light radiation from solar flares can disturb part of Earth’s atmosphere where radio signals travel, causing short-lived problems with communications systems and GPS.

image

Looking at the Sun in extreme ultraviolet light also reveals structures like coronal loops (magnetic loops traced out by charged particles spinning along magnetic field lines)…

image

…solar prominence eruptions…

image

…and coronal holes (magnetically open areas on the Sun from which solar wind rushes out into space).

image

Though extreme ultraviolet light shows the Sun's true colors, specialized instruments let us see some of the Sun's most significant activity in visible light.

A coronagraph is a camera that uses a solid disk to block out the Sun’s bright face, revealing the much fainter corona, a dynamic part of the Sun’s atmosphere. Coronagraphs also reveal coronal mass ejections, or CMEs, which are explosions of billions of tons of solar material into space. Because this material is magnetized, it can interact with Earth’s magnetic field and trigger space weather effects like the aurora, satellite problems, and even – in extreme cases – power outages.

image

The Sun is also prone to bursts of energetic particles. These particles are blocked by Earth’s magnetic field and atmosphere, but they could pose a threat to astronauts traveling in deep space, and they can interfere with our satellites. This clip shows an eruption of energetic particles impacting a Sun-observing satellite, creating the 'snow' in the image.

Our Sun Is More Than Meets The Eye

We keep watch on the Sun 24/7 with a fleet of satellites to monitor and better understand this activity. And this summer, we’re going one step closer with the launch of Parker Solar Probe, a mission to touch the Sun. Parker Solar Probe will get far closer to the Sun than any other spacecraft has ever gone – into the corona, within 4 million miles of the surface – and will send back unprecedented direct measurements from the regions thought to drive much of the Sun’s activity. More information about the fundamental processes there can help round out and improve models to predict the space weather that the Sun sends our way.

Keep up with the latest on the Sun at @NASASun on Twitter, and follow along with Parker Solar Probe’s last steps to launch at nasa.gov/solarprobe.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
3 years ago
Ever Wanted To Look Back In Time? This Week, We’re Launching A Kind Of Time Machine – A Telescope

Ever wanted to look back in time? This week, we’re launching a kind of time machine – a telescope so powerful it will help us see back some of the first stars and galaxies made after the Big Bang.

The James Webb Space Telescope is the largest and most advanced telescope we’ve ever put in space. With revolutionary technology, it will study 13.5 billion years of cosmic history and help humanity understand our place in the stars.

Tomorrow, Dec. 25, at 7:20 a.m. ET (12:20 UTC), the Webb Telescope is set to launch from French Guiana, beginning a 29-day journey to a spot a million miles away.

How to Watch:

In English:

Dec. 25

Live coverage starts at 6:00 a.m. ET/11:00 UTC

Facebook, YouTube, Twitter, Twitch

In Spanish:

Dec. 25

Live coverage starts at 6:30 a.m. ET/11:30 UTC

Facebook, YouTube, Twitter

Once Webb launches, the journey has only just begun. The telescope will begin a 2-week-long process of unfolding itself in space before settling in to explore the universe in ways we’ve never seen before.

Follow along on Twitter, Facebook and Instagram and with #UnfoldTheUniverse.


Tags
9 years ago

Hello, Scott? It’s President Obama.

This afternoon, President Obama spoke by phone with astronaut Scott Kelly to welcome him back to Earth from his record-breaking yearlong mission on the International Space Station. 

image

President Obama, above, is seen talking on the phone with Scott Kelly in the Oval Office on March 2, 2016. (Official White House Photo by Pete Souza)

The President thanked Kelly for his service, for sharing his journey with people across the globe through social media, for his participation in important research about what it will take for us to make long journeys in space, and for inspiring a new generation of young people to pursue studies and careers in science, technology, engineering, and mathematics. 

Hello, Scott? It’s President Obama.

The President also noted that Kelly’s year in space would provide critical data to researchers trying to understand how to keep astronauts healthy during long space voyages and fulfill the President’s vision of putting American astronauts on Mars in the 2030s. 

Thanks to Kelly’s work, in addition to that of everyone at NASA and in the U.S. space industry, the President believes the United States will be successful in that journey to Mars and will continue to lead and inspire the world in space exploration.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Solar System: Things to Know This Week

Our solar system is huge, let us break it down for you. Here are a few things to know this week:

1. Juno Eyes on Jupiter

Solar System: Things To Know This Week

After a journey of more than five years, the Juno spacecraft is ready for its detailed look at Jupiter—arrival date: July 4. Using Eyes on the Solar System and data from the Juno flight team, you can take a virtual ride onboard the spacecraft in the "Eyes on Juno" simulation.

2. Taking a Spacecraft for a Spin

Solar System: Things To Know This Week

Preparations for the launch of the OSIRIS-REx asteroid mission are spinning up, literally. Here, the spacecraft can be seen rotating on a spin table during a weight and center of gravity verification test at our Kennedy Space Center. Liftoff is scheduled for Sept. 8. This spacecraft will travel to a near-Earth asteroid called Bennu and bring a small sample back to Earth for study.

3. Long-Range (Or at Least Long-Distance) Weather Report

Solar System: Things To Know This Week

Our Mars Reconnaissance Orbiter acquires a global view of the red planet and its weather every day. Last week, dust storms continued along the south polar ice cap edge. Northern portions of Sirenum, Solis, and Noachis also experienced some local dust-lifting activity. A large dust storm propagated eastward over the plains of Arcadia at the beginning of the week, but subsided just a few days later over Acidalia.

4. Hello from the Dark Side

Solar System: Things To Know This Week

The New Horizons spacecraft took this stunning image of Pluto only a few minutes after closest approach in July 2015, with the sun on the other side of Pluto. Sunlight filters through Pluto's complex atmospheric haze layers. Looking back at Pluto with images like this gives New Horizons scientists information about Pluto's hazes and surface properties that they can't get from images taken on approach.

5. A Titanic Encounter

Solar System: Things To Know This Week

On June 7, our Cassini orbiter will fly very close by Saturn's giant, haze-shrouded moon Titan. Among the targets of its observations will be the edge of the vortex that swirls in Titan's thick atmosphere near its south pole.

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Benefits To Humanity

How does research in space help life on Earth? That’s a great question! It seems crazy that a laboratory orbiting about 200 miles over us can have a benefits on science on the ground. Here are a few ways that research aboard the International Space Station benefits humanity:

Benefits To Humanity

Improve Human Health

The space station has supported research that supports areas such as aging, trauma, disease and the environment. Advances in human health have been gained from the unique microgravity environment.

For example, crew aboard the station experience issues such as bone loss while in space. Learning about the causes and understanding the treatments can help the elderly or people prone to Osteoporosis here on Earth.

Benefits To Humanity

Are you Asthmatic? Crew aboard the space station use a tool that could be used for Asthma patients. The lightweight, easy-to-use device is used to monitor levels of asthma control and the efficiency of medication. This leads to more accurate dosing, reduced attacks and improved quality of life.

Drinkable water on the space station isn’t something just sitting in water bottles waiting to be consumed. Since storage and weight are limited in transporting things to space, crew members must recycle old, dirty water and reuse it day after day. The technology they use for this on the space station, can also be used in at-risk areas on Earth that don’t have access to clean water.

Benefits To Humanity

Earth Observations

The International Space Station has a unique vantage point for observing Earth’s ecosystems. A wide variety of payloads can be attached to the station’s exterior to collect data on things like: global climate, environmental change and natural hazards.

Farming from Space

Farmers can leverage images from the International Space Station to grow crops. The camera captures frequent images of Earth in visible and infrared light, that helps farmers monitor crop growth for disease or fertility differences.

From NASA to Napa. Some of the research on the space station has even provided benefits to the wine industry on Earth! Solutions for growing crops in space translates really well to solutions for mold prevention in wine cellars and other confined spaces on Earth.

Benefits To Humanity

For many other ways that research on the International Space Station benefits life on Earth, go HERE.

Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com


Tags
9 years ago

Pluto Continues to Amaze

image

This dwarf planet sure knows how to get a BIG reaction because we’re stunned by the latest images from our New Horizons spacecraft!

Back on July 14, the spacecraft completed it’s historic Pluto flyby, and is now in an intensive downlink phase. During this time, New Horizons will send us some of the best data and images we’ve seen!

These latest images were taken just 15 minutes after New Horizons’ closest approach to Pluto. The spacecraft looked back toward the sun and captured this near-sunset view. Icy mountains, flat plains and the horizon can all be seen in detail.

image

When we take a closer look, these features truly begin to stand out. Mountains up to 11,000 feet high are met by flat icy plains that extend out to Pluto’s horizon. There, more than a dozen layers of haze in the dwarf planet’s atmosphere can be seen. It’s almost as if we’re flying over the surface with the New Horizons spacecraft.

Speaking of flyover, this new animation of Pluto has been created from images returned from the spacecraft this month. This view shows us what it might be like to take an aerial tour through Pluto’s thin atmosphere and soar above the surface. 

These images and videos are not only stunning, but also provide us with important information about the dwarf planet. So far, scientists can tell that the weather changes from day to day on Pluto. These images, combined with others that have been downloaded, provide evidence for a remarkably Earth-like “hydrological” cycle on Pluto.

For updates on the data and images received by the New Horizons spacecraft, check our blog: https://blogs.nasa.gov/pluto/

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

10 Things: Mars Helicopter

When our next Mars rover lands on the Red Planet in 2021, it will deliver a groundbreaking technology demonstration: the first helicopter to ever fly on a planetary body other than Earth. This Mars Helicopter will demonstrate the first controlled, powered, sustained flight on another world. It could also pave the way for future missions that guide rovers and gather science data and images at locations previously inaccessible on Mars. This exciting new technology could change the way we explore Mars.

image

1. Its body is small, but its blades are mighty.

One of the biggest engineering challenges is getting the Mars Helicopter’s blades just right. They need to push enough air downward to receive an upward force that allows for thrust and controlled flight — a big concern on a planet where the atmosphere is only one percent as dense as Earth’s. “No helicopter has flown in those flight conditions – equivalent to 100,000 feet (30,000 meters) on Earth,” said Bob Balaram, chief engineer for the project at our Jet Propulsion Laboratory.

image

2. It has to fly in really thin Martian air.

To compensate for Mars’ thin atmosphere, the blades must spin much faster than on an Earth helicopter, and the blade size relative to the weight of the helicopter has to be larger too. The Mars Helicopter’s rotors measure 4 feet wide (about 1.2 meters) long, tip to tip. At 2,800 rotations per minute, it will spin about 10 times faster than an Earth helicopter. At the same time, the blades shouldn’t flap around too much, as the helicopter’s design team discovered during testing. Their solution: make the blades more rigid. “Our blades are much stiffer than any terrestrial helicopter’s would need to be,” Balaram said.   The body, meanwhile, is tiny — about the size of a softball. In total, the helicopter will weigh just under 4 pounds (1.8 kilograms).

image

3. It will make up to five flights on Mars.

Over a 30-day period on Mars, the helicopter will attempt up to five flights, each time going farther than the last. The helicopter will fly up to 90 seconds at a time, at heights of up to 10 to 15 feet (3 to 5 meters). Engineers will learn a lot about flying a helicopter on Mars with each flight, since it’s never been done before!

image

4. The Mars Helicopter team has already completed groundbreaking tests.

Because a helicopter has never visited Mars before, the Mars Helicopter team has worked hard to figure out how to predict the helicopter’s performance on the Red Planet. “We had to invent how to do planetary helicopter testing on Earth,” said Joe Melko, deputy chief engineer of Mars Helicopter, based at JPL.

The team, led by JPL and including members from JPL, AeroVironment Inc.,  Ames Research Center, and Langley Research Center, has designed, built and tested a series of test vehicles.

In 2016, the team flew a full-scale prototype test model of the helicopter in the 25-foot (7.6-meter) space simulator at JPL. The chamber simulated the low pressure of the Martian atmosphere. More recently, in 2018, the team built a fully autonomous helicopter designed to operate on Mars, and successfully flew it in the 25-foot chamber in Mars-like atmospheric density.

Engineers have also exercised the rotors of a test helicopter in a cold chamber to simulate the low temperatures of Mars at night. In addition, they have taken design steps to deal with Mars-like radiation conditions. They have also tested the helicopter’s landing gear on Mars-like terrain. More tests are coming to see how it performs with Mars-like winds and other conditions.

image

5. The camera is as good as your cell phone camera.

The helicopter’s first priority is successfully flying on Mars, so engineering information takes priority. An added bonus is its camera. The Mars Helicopter has the ability to take color photos with a 13-megapixel camera — the same type commonly found in smart phones today. Engineers will attempt to take plenty of good pictures.

6. It’s battery-powered, but the battery is rechargeable.

The helicopter requires 360 watts of power for each second it hovers in the Martian atmosphere – equivalent to the power required by six regular lightbulbs. But it isn’t out of luck when its lithium-ion batteries run dry. A solar array on the helicopter will recharge the batteries, making it a self-sufficient system as long as there is adequate sunlight. Most of the energy will be used to keep the helicopter warm, since nighttime temperatures on Mars plummet to around minus 130 degrees Fahrenheit (minus 90 Celsius). During daytime flights, temperatures may rise to a much warmer minus 13 to minus 58 degrees Fahrenheit to (minus 25 to minus 50 degrees Celsius) — still chilly by Earth standards. The solar panel makes an average of 3 watts of power continuously during a 12-hour Martian day.

7. The helicopter will be carried to Mars under the belly of the rover.

Somewhere between 60 to 90 Martian days (or sols) after the Mars 2020 rover lands, the helicopter will be deployed from the underside of the rover. Mars Helicopter Delivery System on the rover will rotate the helicopter down from the rover and release it onto the ground. The rover will then drive away to a safe distance.

image

8. The helicopter will talk to the rover.

The Mars 2020 rover will act as a telecommunication relay, receiving commands from engineers back on Earth and relaying them to the helicopter. The helicopter will then send images and information about its own performance to the rover, which will send them back to Earth. The rover will also take measurements of wind and atmospheric data to help flight controllers on Earth.

9. It has to fly by itself, with some help.

Radio signals take time to travel to Mars — between four and 21 minutes, depending on where Earth and Mars are in their orbits — so instantaneous communication with the helicopter will be impossible. That means flight controllers can’t use a joystick to fly it in real time, like a video game. Instead, they need to send commands to the helicopter in advance, and the little flying robot will follow through. Autonomous systems will allow the helicopter to look at the ground, analyze the terrain to look how fast it’s moving, and land on its own.

10. It could pave the way for future missions.

A future Mars helicopter could scout points of interest, help scientists and engineers select new locations and plan driving routes for a rover. Larger standalone helicopters could carry science payloads to investigate multiple sites at Mars. Future helicopters could also be used to fly to places on Mars that rovers cannot reach, such as cliffs or walls of craters. They could even assist with human exploration one day. Says Balaram: "Someday, if we send astronauts, these could be the eyes of the astronauts across Mars.”

Read the full version of this week’s ‘10 Things to Know’ article on the web HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

What’s Up For September 2018?

Outstanding views Venus, Jupiter, Saturn and Mars with the naked eye!

image

You'll have to look quickly after sunset to catch Venus. And through binoculars or a telescope, you'll see Venus's phase change dramatically during September - from nearly half phase to a larger thinner crescent!

image

Jupiter, Saturn and Mars continue their brilliant appearances this month. Look southwest after sunset.

image

Use the summer constellations help you trace the Milky Way.

image

Sagittarius: where stars and some brighter clumps appear as steam from the teapot.

image

Aquila: where the Eagle's bright Star Altair, combined with Cygnus's Deneb, and Lyra's Vega mark the Summer Triangle. 

image

Cassiopeia, the familiar "w"- shaped constellation completes the constellation trail through the Summer Milky Way. Binoculars will reveal double stars, clusters and nebulae. 

image

Between September 12th and the 20th, watch the Moon pass from near Venus, above Jupiter, to the left of Saturn and finally above Mars! 

image

Both Neptune and brighter Uranus can be spotted with some help from a telescope this month.

What’s Up For September 2018?

Look at about 1:00 a.m. local time or later in the southeastern sky. You can find Mercury just above Earth's eastern horizon shortly before sunrise. Use the Moon as your guide on September 7 and 8th.

What’s Up For September 2018?

And although there are no major meteor showers in September, cometary dust appears in another late summer sight, the morning Zodiacal light. Try looking for it in the east on moonless mornings very close to sunrise. To learn more about the Zodiacal light, watch "What's Up" from March 2018.

What’s Up For September 2018?

Watch the full What’s Up for September Video: 

There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • lilithm3rrell
    lilithm3rrell reblogged this · 2 months ago
  • lilithm3rrell
    lilithm3rrell reblogged this · 2 years ago
  • littlebunnyman
    littlebunnyman reblogged this · 3 years ago
  • 12-alien-wolves-stan
    12-alien-wolves-stan reblogged this · 5 years ago
  • thedragonlover
    thedragonlover reblogged this · 6 years ago
  • demonpunter
    demonpunter liked this · 6 years ago
  • superlucyjin
    superlucyjin reblogged this · 6 years ago
  • a-shell-of-light
    a-shell-of-light reblogged this · 6 years ago
  • heartfelt-elegy
    heartfelt-elegy reblogged this · 6 years ago
  • a-shell-of-light
    a-shell-of-light liked this · 6 years ago
  • fleurdebach5-blog
    fleurdebach5-blog liked this · 6 years ago
  • wanderontherocks
    wanderontherocks reblogged this · 6 years ago
  • la-super-awesome
    la-super-awesome reblogged this · 6 years ago
  • dirtygirltrashtiel-blog
    dirtygirltrashtiel-blog liked this · 6 years ago
  • machinamuros
    machinamuros reblogged this · 6 years ago
  • urbanoceanix
    urbanoceanix reblogged this · 6 years ago
  • broccolimilkshake
    broccolimilkshake reblogged this · 6 years ago
  • yami268
    yami268 liked this · 6 years ago
  • mohsthetic
    mohsthetic reblogged this · 6 years ago
  • mutant06
    mutant06 liked this · 6 years ago
  • gentianablue
    gentianablue reblogged this · 6 years ago
  • optimisticspanishinquisitio-blog
    optimisticspanishinquisitio-blog liked this · 6 years ago
  • andthencamemacdubh
    andthencamemacdubh liked this · 6 years ago
  • talkingtofastforyou
    talkingtofastforyou liked this · 6 years ago
  • bywayidler
    bywayidler liked this · 6 years ago
  • essie-and-the-boundless-sea
    essie-and-the-boundless-sea liked this · 6 years ago
  • bywayidler
    bywayidler reblogged this · 6 years ago
  • wretched-creature
    wretched-creature liked this · 6 years ago
  • alienriver888
    alienriver888 liked this · 6 years ago
  • gentianablue
    gentianablue liked this · 6 years ago
  • queer-coded-plusplus
    queer-coded-plusplus reblogged this · 6 years ago
  • queer-coded-plusplus
    queer-coded-plusplus liked this · 6 years ago
  • bleuberries-and-video-games
    bleuberries-and-video-games liked this · 6 years ago
  • coldbloodedlittlekitten
    coldbloodedlittlekitten reblogged this · 6 years ago
  • coldbloodedlittlekitten
    coldbloodedlittlekitten liked this · 6 years ago
  • mistressvioleta
    mistressvioleta reblogged this · 6 years ago
  • bibliobibulialldayeveryday
    bibliobibulialldayeveryday liked this · 6 years ago
  • razztazticffn
    razztazticffn reblogged this · 6 years ago
  • bluegely17
    bluegely17 liked this · 6 years ago
  • thepetitechiss
    thepetitechiss liked this · 6 years ago
  • predictable-much
    predictable-much reblogged this · 6 years ago
  • randomsquirrel
    randomsquirrel liked this · 6 years ago
  • hatandclogsart
    hatandclogsart liked this · 6 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags