Extreme Science: Launching Sounding Rockets From The Arctic

Extreme Science: Launching Sounding Rockets from The Arctic

This winter, our scientists and engineers traveled to the world's northernmost civilian town to launch rockets equipped with cutting-edge scientific instruments.

image

This is the beginning of a 14-month-long campaign to study a particular region of Earth's magnetic field — which means launching near the poles. What's it like to launch a science rocket in these extreme conditions?

image

Our planet is protected by a natural magnetic field that deflects most of the particles that flow out from the Sun — the solar wind — away from our atmosphere. But near the north and south poles, two oddities in Earth's magnetic field funnel these solar particles directly into our atmosphere. These regions are the polar cusps, and it turns out they're the ideal spot for studying how our atmosphere interacts with space.

image

The scientists of the Grand Challenge Initiative — Cusp are using sounding rockets to do their research. Sounding rockets are suborbital rockets that launch to a few hundred miles in altitude, spending a few minutes in space before falling back to Earth. That means sounding rockets can carry sensitive instruments above our atmosphere to study the Sun, other stars and even distant galaxies.

They also fly directly through some of the most interesting regions of Earth's atmosphere, and that's what scientists are taking advantage of for their Grand Challenge experiments.

image

One of the ideal rocket ranges for cusp science is in Ny-Ålesund, Svalbard, off the coast of Norway and within the Arctic circle. Because of its far northward position, each morning Svalbard passes directly under Earth's magnetic cusp.

But launching in this extreme, remote environment puts another set of challenges on the mission teams. These launches need to happen during the winter, when Svalbard experiences 24/7 darkness because of Earth's axial tilt. The launch teams can go months without seeing the Sun.

image

Like for all rocket launches, the science teams have to wait for the right weather conditions to launch. Because they're studying upper atmospheric processes, some of these teams also have to wait for other science conditions, like active auroras. Auroras are created when charged particles collide with Earth’s atmosphere — often triggered by solar storms or changes in the solar wind — and they're related to many of the upper-atmospheric processes that scientists want to study near the magnetic cusp.

image

But even before launch, the extreme conditions make launching rockets a tricky business — it's so cold that the rockets must be encased in styrofoam before launch to protect them from the low temperatures and potential precipitation.

image

When all is finally ready, an alarm sounds throughout the town of Ny-Ålesund to alert residents to the impending launch. And then it's up, up and away! This photo shows the launch of the twin VISIONS-2 sounding rockets on Dec. 7, 2018 from Ny-Ålesund.

image

These rockets are designed to break up during flight — so after launch comes clean-up. The launch teams track where debris lands so that they can retrieve the pieces later.

image

The next launch of the Grand Challenge Initiative is AZURE, launching from Andøya Space Center in Norway in March 2019.

 For even more about what it's like to launch science rockets in extreme conditions, check out one scientist's notes from the field: https://go.nasa.gov/2QzyjR4

image

For updates on the Grand Challenge Initiative and other sounding rocket flights, visit nasa.gov/soundingrockets or follow along with NASA Wallops and NASA heliophysics on Twitter and Facebook.

@NASA_Wallops | NASA’s Wallops Flight Facility | @NASASun | NASA Sun Science

More Posts from Nasa and Others

6 years ago

Solar System: 10 Ways Interns Are Exploring Space With Us

Simulating alien worlds, designing spacecraft with origami and using tiny fossils to understand the lives of ancient organisms are all in a day’s work for interns at NASA.

Here’s how interns are taking our missions and science farther.

1. Connecting Satellites in Space

image

Becca Foust looks as if she’s literally in space – or, at least, on a sci-fi movie set. She’s surrounded by black, except for the brilliant white comet model suspended behind her. Beneath the socks she donned just for this purpose, the black floor reflects the scene like perfectly still water across a lake as she describes what happens here: “We have five spacecraft simulators that ‘fly’ in a specially designed flat-floor facility,” she says. “The spacecraft simulators use air bearings to lift the robots off the floor, kind of like a reverse air hockey table. The top part of the spacecraft simulators can move up and down and rotate all around in a similar way to real satellites.” It’s here, in this test bed on the Caltech campus, that Foust is testing an algorithm she’s developing to autonomously assemble and disassemble satellites in space. “I like to call it space K’nex, like the toys. We're using a bunch of component satellites and trying to figure out how to bring all of the pieces together and make them fit together in orbit,” she says. A NASA Space Technology Research Fellow, who splits her time between Caltech and NASA’s Jet Propulsion Laboratory (JPL), working with Soon-Jo Chung and Fred Hadaegh, respectively, Foust is currently earning her Ph.D. at the University of Illinois at Urbana-Champaign. She says of her fellowship, “I hope my research leads to smarter, more efficient satellite systems for in-space construction and assembly.”

2. Diving Deep on the Science of Alien Oceans

image

Three years ago, math and science were just subjects Kathy Vega taught her students as part of Teach for America. Vega, whose family emigrated from El Salvador, was the first in her family to go to college. She had always been interested in space and even dreamed about being an astronaut one day, but earned a degree in political science so she could get involved in issues affecting her community. But between teaching and encouraging her family to go into science, It was only a matter of time before she realized just how much she wanted to be in the STEM world herself. Now an intern at NASA JPL and in the middle of earning a second degree, this time in engineering physics, Vega is working on an experiment that will help scientists search for life beyond Earth. 

“My project is setting up an experiment to simulate possible ocean compositions that would exist on other worlds,” says Vega. Jupiter’s moon Europa and Saturn’s moon Enceladus, for example, are key targets in the search for life beyond Earth because they show evidence of global oceans and geologic activity. Those factors could allow life to thrive. JPL is already building a spacecraft designed to orbit Europa and planning for another to land on the icy moon’s surface. “Eventually, [this experiment] will help us prepare for the development of landers to go to Europa, Enceladus and another one of Saturn’s moons, Titan, to collect seismic measurements that we can compare to our simulated ones,” says Vega. “I feel as though I'm laying the foundation for these missions.”

3. Unfolding Views on Planets Beyond Our Solar System

image

“Origami is going to space now? This is amazing!” Chris Esquer-Rosas had been folding – and unfolding – origami since the fourth grade, carefully measuring the intricate patterns and angles produced by the folds and then creating new forms from what he’d learned. “Origami involves a lot of math. A lot of people don't realize that. But what actually goes into it is lots of geometric shapes and angles that you have to account for,” says Esquer-Rosas. Until three years ago, the computer engineering student at San Bernardino College had no idea that his origami hobby would turn into an internship opportunity at NASA JPL. That is, until his long-time friend, fellow origami artist and JPL intern Robert Salazar connected him with the Starshade project. Starshade has been proposed as a way to suppress starlight that would otherwise drown out the light from planets outside our solar system so we can characterize them and even find out if they’re likely to support life. Making that happen requires some heavy origami – unfurling a precisely-designed, sunflower-shaped structure the size of a baseball diamond from a package about half the size of a pitcher’s mound. It’s Esquer-Rosas’ project this summer to make sure Starshade’s “petals” unfurl without a hitch. Says Esquer-Rosas, “[The interns] are on the front lines of testing out the hardware and making sure everything works. I feel as though we're contributing a lot to how this thing is eventually going to deploy in space.”

4. Making Leaps in Extreme Robotics

image

Wheeled rovers may be the norm on Mars, but Sawyer Elliott thinks a different kind of rolling robot could be the Red Planet explorer of the future. This is Elliott’s second year as a fellow at NASA JPL, researching the use of a cube-shaped robot for maneuvering around extreme environments, like rocky slopes on Mars or places with very little gravity, like asteroids. A graduate student in aerospace engineering at Cornell University, Elliott spent his last stint at JPL developing and testing the feasibility of such a rover. “I started off working solely on the rover and looking at can we make this work in a real-world environment with actual gravity,” says Elliott. “It turns out we could.” So this summer, he’s been improving the controls that get it rolling or even hopping on command. In the future, Elliott hopes to keep his research rolling along as a fellow at JPL or another NASA center. “I'm only getting more and more interested as I go, so I guess that's a good sign,” he says.

5. Starting from the Ground Up

image

Before the countdown to launch or the assembling of parts or the gathering of mission scientists and engineers, there are people like Joshua Gaston who are helping turn what’s little more than an idea into something more. As an intern with NASA JPL’s project formulation team, Gaston is helping pave the way for a mission concept that aims to send dozens of tiny satellites, called CubeSats, beyond Earth’s gravity to other bodies in the solar system. “This is sort of like step one,” says Gaston. “We have this idea and we need to figure out how to make it happen.” Gaston’s role is to analyze whether various CubeSat models can be outfitted with the needed science instruments and still make weight. Mass is an important consideration in mission planning because it affects everything from the cost to the launch vehicle to the ability to launch at all. Gaston, an aerospace engineering student at Tuskegee University, says of his project, “It seems like a small role, but at the same time, it's kind of big. If you don't know where things are going to go on your spacecraft or you don't know how the spacecraft is going to look, it's hard to even get the proposal selected.”

6. Finding Life on the Rocks

image

By putting tiny samples of fossils barely visible to the human eye through a chemical process, a team of NASA JPL scientists is revealing details about organisms that left their mark on Earth billions of years ago. Now, they have set their sights on studying the first samples returned from Mars in the future. But searching for signatures of life in such a rare and limited resource means the team will have to get the most science they can out of the smallest sample possible. That’s where Amanda Allen, an intern working with the team in JPL’s Astrobiogeochemistry, or abcLab, comes in. “Using the current, state-of-the-art method, you need a sample that’s 10 times larger than we’re aiming for,” says Allen, an Earth science undergraduate at the University of California, San Diego, who is doing her fifth internship at JPL. “I’m trying to get a different method to work.” Allen, who was involved in theater and costume design before deciding to pursue Earth science, says her “superpower” has always been her ability to find things. “If there’s something cool to find on Mars related to astrobiology, I think I can help with that,” she says.

7. Taking Space Flight Farther

image

If everything goes as planned and a thruster like the one Camille V. Yoke is working on eventually helps send astronauts to Mars, she’ll probably be first in line to play the Mark Watney role. “I'm a fan of the Mark Watney style of life [in “The Martian”], where you're stranded on a planet somewhere and the only thing between you and death is your own ability to work through problems and engineer things on a shoestring,” says Yoke. A physics major at the University of South Carolina, Yoke is interning with a team that’s developing a next-generation electric thruster designed to accelerate spacecraft more efficiently through the solar system. “Today there was a brief period in which I knew something that nobody else on the planet knew – for 20 minutes before I went and told my boss,” says Yoke. “You feel like you're contributing when you know that you have discovered something new.”

8. Searching for Life Beyond Our Solar System

image

Without the option to travel thousands or even tens of light-years from Earth in a single lifetime, scientists hoping to discover signs of life on planets outside our solar system, called exoplanets, are instead creating their own right here on Earth. This is Tre’Shunda James’ second summer simulating alien worlds as an intern at NASA JPL. Using an algorithm developed by her mentor, Renyu Hu, James makes small changes to the atmospheric makeup of theoretical worlds and analyzes whether the combination creates a habitable environment. “This model is a theoretical basis that we can apply to many exoplanets that are discovered,” says James, a chemistry and physics major at Occidental College in Los Angeles. “In that way, it's really pushing the field forward in terms of finding out if life could exist on these planets.” James, who recently became a first-time co-author on a scientific paper about the team’s findings, says she feels as though she’s contributing to furthering the search for life beyond Earth while also bringing diversity to her field. “I feel like just being here, exploring this field, is pushing the boundaries, and I'm excited about that.”

9. Spinning Up a Mars Helicopter

image

Chloeleen Mena’s role on the Mars Helicopter project may be small, but so is the helicopter designed to make the first flight on the Red Planet. Mena, an electrical engineering student at Embry-Riddle Aeronautical University, started her NASA JPL internship just days after NASA announced that the helicopter, which had been in development at JPL for nearly five years, would be going to the Red Planet aboard the Mars 2020 rover. This summer, Mena is helping test a part needed to deploy the helicopter from the rover once it lands on Mars, as well as writing procedures for future tests. “Even though my tasks are relatively small, it's part of a bigger whole,” she says.

10. Preparing to See the Unseen on Jupiter's Moon Europa

image

In the 2020s, we’re planning to send a spacecraft to the next frontier in the search for life beyond Earth: Jupiter’s moon Europa. Swathed in ice that’s intersected by deep reddish gashes, Europa has unveiled intriguing clues about what might lie beneath its surface – including a global ocean that could be hospitable to life. Knowing for sure hinges on a radar instrument that will fly aboard the Europa Clipper orbiter to peer below the ice with a sort of X-ray vision and scout locations to set down a potential future lander. To make sure everything works as planned, NASA JPL intern Zachary Luppen is creating software to test key components of the radar instrument. “Whatever we need to do to make sure it operates perfectly during the mission,” says Luppen. In addition to helping things run smoothly, the astronomy and physics major says he hopes to play a role in answering one of humanity’s biggest questions. “Contributing to the mission is great in itself,” says Luppen. “But also just trying to make as many people aware as possible that this science is going on, that it's worth doing and worth finding out, especially if we were to eventually find life on Europa. That changes humanity forever!”

Read the full web version of this week’s ‘Solar System: 10 Things to Know” article HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Eclipse 2017 From Space

On Aug. 21, 2017, a total solar eclipse passed over North America. People throughout the continent captured incredible images of this celestial phenomenon. We and our partner agencies had a unique vantage point on the eclipse from space. Here are a few highlights from our fleet of satellites that observe the Sun, the Moon and Earth.

image

Our Solar Dynamics Observatory, or SDO, which watches the Sun nearly 24/7 from its orbit 3,000 miles above Earth, saw a partial eclipse on Aug. 21.

SDO sees the Moon cross in front of the Sun several times a year. However, these lunar transits don’t usually correspond to an eclipse here on Earth, and an eclipse on the ground doesn’t guarantee that SDO will see anything out of the ordinary. In this case, on Aug. 21, SDO did see the Moon briefly pass in front of the Sun at the same time that the Moon’s shadow passed over the eastern United States. From its view in space, SDO only saw 14 percent of the Sun blocked by the Moon, while most U.S. residents saw 60 percent blockage or more.

image

Six people saw the eclipse from the International Space Station. Viewing the eclipse from orbit were NASA’s Randy Bresnik, Jack Fischer and Peggy Whitson, the European Space Agency’s Paolo Nespoli, and Roscosmos’ Commander Fyodor Yurchikhin and Sergey Ryazanskiy. The space station crossed the path of the eclipse three times as it orbited above the continental United States at an altitude of 250 miles.

image

From a million miles out in space, our Earth Polychromatic Imaging Camera, or EPIC, instrument captured 12 natural color images of the Moon’s shadow crossing over North America. EPIC is aboard NOAA’s Deep Space Climate Observatory, or DSCOVR, where it photographs the full sunlit side of Earth every day, giving it a unique view of the shadow from total solar eclipses. EPIC normally takes about 20 to 22 images of Earth per day, so this animation appears to speed up the progression of the eclipse.

image

A ground-based image of the total solar eclipse – which looks like a gray ring – is superimposed over a red-toned image of the Sun’s atmosphere, called the corona. This view of the corona was captured by the European Space Agency and our Solar and Heliospheric Observatory, or SOHO. At center is an orange-toned image of the Sun’s surface as seen by our Solar Dynamics Observatory in extreme ultraviolet wavelengths of light.

During a total solar eclipse, ground-based telescopes can observe the lowest part of the solar corona in a way that can’t be done at any other time, as the Sun’s dim corona is normally obscured by the Sun’s bright light. The structure in the ground-based corona image — defined by giant magnetic fields sweeping out from the Sun’s surface — can clearly be seen extending into the outer image from the space-based telescope. The more scientists understand about the lower corona, the more they can understand what causes the constant outward stream of material called the solar wind, as well as occasional giant eruptions called coronal mass ejections.

image

As millions of Americans watched the total solar eclipse that crossed the continental United States, the international Hinode solar observation satellite captured its own images of the awe-inspiring natural phenomenon. The images were taken with Hinode's X-ray telescope, or XRT, as it flew above the Pacific Ocean, off the west coast of the United States, at an altitude of approximately 422 miles. Hinode is a joint endeavor by the Japan Aerospace Exploration Agency, the National Astronomical Observatory of Japan, the European Space Agency, the United Kingdom Space Agency and NASA.

image

During the total solar eclipse our Lunar Reconnaissance Orbiter, or LRO, in orbit around the Moon, turned one of its instruments towards Earth to capture an image of the Moon’s shadow over a large region of the United States.

As LRO crossed the lunar south pole heading north at 3,579 mph, the shadow of the Moon was racing across the United States at 1,500 mph. A few minutes later, LRO began a slow 180-degree turn to look back at Earth, capturing an image of the eclipse very near the location where totality lasted the longest. The spacecraft’s Narrow Angle Camera began scanning Earth at 2:25:30 p.m. EDT and completed the image 18 seconds later.

image

Sensors on the polar-orbiting Terra and Suomi NPP satellites gathered data and imagery in swaths thousands of miles wide. The Moderate Resolution Imaging Spectroradiometer, or MODIS, sensor on Terra and Visible Infrared Imaging Radiometer Suite, or VIIRS, on Suomi NPP captured the data used to make this animation that alternates between two mosaics. Each mosaic is made with data from different overpasses that was collected at different times.

image

This full-disk geocolor image from NOAA/NASA’s GOES-16 shows the shadow of the Moon covering a large portion of the northwestern U.S. during the eclipse.

image

Our Interface Region Imaging Spectrograph, or IRIS, mission captured this view of the Moon passing in front of the Sun on Aug. 21.  

Check out nasa.gov/eclipse to learn more about the Aug. 21, 2017, eclipse along with future eclipses, and follow us on Twitter for more satellite images like these: @NASASun, @NASAMoon, and @NASAEarth.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
4 years ago

Hilary Swank cartwheeling through Mission Control >>>  the feel good content we’re looking for. 

To get some insight on playing an astronaut going to Mars, Hilary took a trip to Johnson Space Center and spoke with astronaut Jessica Meir who lived aboard the International Space Station for over 200 days!

Watch the duo talk about living in space, life on Earth after a mission and more! Check out her whole visit HERE: https://youtu.be/8NRJvUlpuKI

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Benefits To Humanity

How does research in space help life on Earth? That’s a great question! It seems crazy that a laboratory orbiting about 200 miles over us can have a benefits on science on the ground. Here are a few ways that research aboard the International Space Station benefits humanity:

Benefits To Humanity

Improve Human Health

The space station has supported research that supports areas such as aging, trauma, disease and the environment. Advances in human health have been gained from the unique microgravity environment.

For example, crew aboard the station experience issues such as bone loss while in space. Learning about the causes and understanding the treatments can help the elderly or people prone to Osteoporosis here on Earth.

Benefits To Humanity

Are you Asthmatic? Crew aboard the space station use a tool that could be used for Asthma patients. The lightweight, easy-to-use device is used to monitor levels of asthma control and the efficiency of medication. This leads to more accurate dosing, reduced attacks and improved quality of life.

Drinkable water on the space station isn’t something just sitting in water bottles waiting to be consumed. Since storage and weight are limited in transporting things to space, crew members must recycle old, dirty water and reuse it day after day. The technology they use for this on the space station, can also be used in at-risk areas on Earth that don’t have access to clean water.

Benefits To Humanity

Earth Observations

The International Space Station has a unique vantage point for observing Earth’s ecosystems. A wide variety of payloads can be attached to the station’s exterior to collect data on things like: global climate, environmental change and natural hazards.

Farming from Space

Farmers can leverage images from the International Space Station to grow crops. The camera captures frequent images of Earth in visible and infrared light, that helps farmers monitor crop growth for disease or fertility differences.

From NASA to Napa. Some of the research on the space station has even provided benefits to the wine industry on Earth! Solutions for growing crops in space translates really well to solutions for mold prevention in wine cellars and other confined spaces on Earth.

Benefits To Humanity

For many other ways that research on the International Space Station benefits life on Earth, go HERE.

Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com


Tags
5 years ago
Say Hello To The Helix Nebula 👋

Say hello to the Helix Nebula 👋

In 2001 and 2002, our Hubble Space Telescope looked at the Helix Nebula and it looked right back! This planetary nebula is right in our cosmic neighborhood, only about 650 light-years away. Gigantic for this type of cosmic object, the Helix Nebula stretches across 2 to 3 light-years.

With no actual connection to planets, planetary nebulas like this one are produced when a medium-mass star dies and sloughs off its outer layers. These gaseous layers are expelled into space at astonishing speeds where they light up like fireworks. The Helix Nebula is one of the closest planetary nebulas to Earth, giving scientists an up-close view of its strange affairs.

Through Hubble’s observations, scientists have learned that the Helix Nebula isn’t doughnut-shaped as it appears. Instead it consists of two disks that are nearly perpendicular to each other — the nebula looks like an eye and bulges out like one too!

Hubble has also imaged comet-like tendrils that form a pattern around the central star like the spokes on a wagon wheel, likely resulting from a collision between gases. The dying star spews hot gas from its surface, which crashes into the cooler gas that it ejected 10,000 years before. Eventually the knots will dissipate into the cold blackness of interstellar space.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

What’s Up for November?

image

November weather can be challenging for backyard astronomers, but the moon is a reliable target, even when there are clouds.

Did you know that the moon takes about 29 days to go around the Earth once? It also takes the moon about 29 days to spin on its axis. This causes the same side of the moon to always face Earth.

image

On Nov. 3, the moon reaches last quarter when it rises at midnight and sets at noon. This is a great time to see the moon in the morning sky.

image

On Nov. 11, the new moon isn’t visible, because it’s between Earth and the sun, and the unlit side faces Earth. In the days after the new moon, the slender crescent gets bigger and brighter. Look just after sunset on Nov. 13 and 14 near the setting sun in the western sky.

image

The next phase on Nov. 19 is called the first quarter, because the moon has traveled one quarter of its 29-day orbit around Earth. The moon rises at noon and sets at midnight, so you can see it in the afternoon sky. It will rise higher in the sky after dark. That’s when you can look for the areas where four of the six Apollo missions landed on the moon! You won’t see the landers, flag or footprints, but it’s fun and easy to see these historic places with your own eyes or with binoculars.

image

To see the area: Look for three dark, smooth maria, or seas. The middle one is the Sea of Tranquility. Apollo 11 landed very near a bright crater on the edge of this mare in 1969. The Apollo 15, 16 and 17 landing areas form the points of a triangle above and below the Apollo 11 site.

image

On Nov. 25, you can see the full moon phase, which occurs on the 14th day of the lunar cycle. The moon will rise at sunset and will be visible all night long, setting at sunrise.

image

On Thanksgiving (Nov. 26), the 15-day-old moon will rise an hour after sunset. You may even see some interesting features! And this is a great time to see the impact rays of some of the larger craters.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
6 years ago

Two Steps Forward in the Search for Life on Mars

We haven’t found aliens but we are a little further along in our search for life on Mars thanks to two recent discoveries from our Curiosity Rover.

image

We detected organic molecules at the harsh surface of Mars! And what’s important about this is we now have a lot more certainty that there’s organic molecules preserved at the surface of Mars. We didn’t know that before.

One of the discoveries is we found organic molecules just beneath the surface of Mars in 3 billion-year-old sedimentary rocks.

image

Second, we’ve found seasonal variations in methane levels in the atmosphere over 3 Mars years (nearly 6 Earth years). These two discoveries increase the chances that the record of habitability and potential life has been preserved on the Red Planet despite extremely harsh conditions on the surface.

image

Both discoveries were made by our chem lab that rides aboard the Curiosity rover on Mars.

image

Here’s an image from when we installed the SAM lab on the rover. SAM stands for “Sample Analysis at Mars” and SAM did two things on Mars for this discovery.

One - it tested Martian rocks. After the arm selects a sample of pulverized rock, it heats up that sample and sends that gas into the chamber, where the electron stream breaks up the chemicals so they can be analyzed.

What SAM found are fragments of large organic molecules preserved in ancient rocks which we think come from the bottom of an ancient Martian lake. These organic molecules are made up of carbon and hydrogen, and can include other elements like nitrogen and oxygen. That’s a possible indicator of ancient life…although non-biological processes can make organic molecules, too.

The other action SAM did was ‘sniff’ the air.

image

When it did that, it detected methane in the air. And for the first time, we saw a repeatable pattern of methane in the Martian atmosphere. The methane peaked in the warm, summer months, and then dropped in the cooler, winter months.

image

On Earth, 90 percent of methane is produced by biology, so we have to consider the possibility that Martian methane could be produced by life under the surface. But it also could be produced by non-biological sources. Right now, we don’t know, so we need to keep studying the Mars!

image

One of our upcoming Martian missions is the InSight lander. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is a Mars lander designed to give the Red Planet its first thorough checkup since it formed 4.5 billion years ago. It is the first outer space robotic explorer to study in-depth the "inner space" of Mars: its crust, mantle, and core.

Finding methane in the atmosphere and ancient carbon preserved on the surface gives scientists confidence that our Mars 2020 rover and ESA’s (European Space Agency's) ExoMars rover will find even more organics, both on the surface and in the shallow subsurface.

Read the full release on today’s announcement HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
9 years ago

The One-Year Mission

First off, what is the One-Year Crew? Obviously, they’re doing something for a year, but what, and why?

Two crew members on the International Space Station have just met the halfway point of their year in space. NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko are living in space for 342 days and will help us better understand the effects of microgravity on the human body.

Why 342 days and not 365? Thought you might ask. Due to crew rotation schedules, which involve training timelines and dictate when launches and landings occur, the mission was confined to 342 days. Plenty of time to conduct great research though!

image

The studies performed throughout their stay will yield beneficial knowledge on the medical, psychological and biomedical challenges faced by astronauts during long-duration spaceflight.

The weightlessness of the space environment has various effects on the human body, including: Fluid shifts that cause changes in vision, rapid bone loss, disturbances to sensorimotor ability, weakened muscles and more.

The goal of the One-Year Mission is to understand and minimize these effects on humans while in space.

The Twins Study

image

A unique investigation that is being conducted during this year in space is the Twins Study. NASA Astronaut Scott Kelly’s twin brother Mark Kelly will spend the year on Earth while Scott is in space. Since their genetic makeup is as close to identical as we can get, this allows a unique research perspective. We can now compare all of the results from Scott Kelly in space to his brother Mark on Earth.

But why are we studying all of this? If we want to move forward with our journey to Mars and travel into deep space, astronauts will need to live in microgravity for long periods of time. In order to mitigate the effects of long duration spaceflight on the human body, we need to understand the causes. The One-Year mission hopes to find these answers.

Halfway Point

image

Today, September 15 marks the halfway point of their year in space, and they now enter the final stretch of their mission. 

Here are a few fun tidbits on human spaceflight to put things in perspective:

1) Scott Kelly has logged 180 days in space on his three previous flights, two of which were Space Shuttle missions. 

2) The American astronaut with the most cumulative time in space is Mkie Fincke, with 382 days in space on three flights. Kelly will surpass this record for most cumulative time in space by a U.S. astronaut on October 16.

3) Kelly will pass Mike Lopez-Alegria’s mark for most time on a single spaceflight (215 days) on October 29.

4) By the end of this one-year mission, Kelly will have traveled for 342 days, made 5,472 orbits and traveled 141.7 million miles in a single mission. 

Have you seen the amazing images that Astronaut Scott Kelly has shared during the first half of his year in space? Check out this collection, and also follow him on social media to see what he posts for the duration of his #YearInSpace: Facebook, Twitter, Instagram. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Solar System: Things to Know This Week

Learn about supermoons, read the monthly blog from the Dawn mission’s chief engineer and more.

image

1. This Is the Season for Supermoons 

The second of three fall supermoons occurred on November 14 and the final one is December. What are supermoons? Since the moon’s orbit is elliptical, one side (perigee) is about 30,000 miles closer to Earth than the other (apogee). The word syzygy, in addition to being useful in word games, is the scientific name for when the Earth, sun, and moon line up as the moon orbits Earth. When perigee-syzygy of the Earth-moon-sun system occurs and the moon is on the opposite side of the Earth from the sun, we get a perigee moon or more commonly, a supermoon!

+ Learn more 

image

2. Dawn Mission Blog

When Dawn arrived at Ceres in March 2015, it became the first spacecraft to reach a dwarf planet  Meet the Dawn mission’s chief engineer Dr. Marc Rayman and read his insightful blogs about the mission. 

+ Latest Blog

+  All Mission Managers Blogs

image

3. The Seas of Titan

On its penultimate close flyby of Saturn’s largest moon Titan, Cassini will use its radio science instrument to scan the great seas of methane near the moon’s North Pole. Titan’s three large northern seas, Punga Mare, Ligeia Mare and Kraken Mare, are each hundreds of miles across, but imaging cameras can’t see them very well because the moon’s surface is veiled by a thick haze. Radio signals, however, can penetrate the moon’s atmosphere, and Cassini has an instrument that uses radio signals to reveal Titan's dramatic landscapes.

+ See a map of Titan’s methane seas

image

4.  Spot the Station!

Have you ever seen the International Space Station fly over your town? Do you want to? 

+ Here's how and where and when to look

image

5. The Science of Light, Celebrating Dark Skies in Our National Parks

Learning more about the science of light and human vision will help us understand the value and fragility of natural lightscapes. During the day, the surface of the planet is bathed in light from the sun. The energy in sunlight drives weather, the water cycle, and ecosystems. But at night, in the absence of bright light, our atmosphere turns transparent and allows us to see beyond our planet into the vastness of the cosmos.

+ More

Discover the full list of 10 things to know about our solar system this week HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

It’s Pi Day!

Pi Day, the informal holiday beloved by math enthusiasts — and even by the math averse — is here! March 14 marks the yearly celebration of the mathematical constant π (pi).

It’s Pi Day!

What is Pi?

Pi (3.1415….) is the ratio of circumference to diameter in a circle. Any time you want to find out the distance around a circle when you have the distance across it, you will need this formula.

Despite its frequent appearance in math and science, you can’t write pi as a simple fraction or calculate it by dividing two integers. For this reason, pi is said to be “irrational.” Pi’s digits extend infinitely and without any pattern, adding to its intrigue and mystery.

How Do We Use Pi at NASA?

It’s Pi Day!

Measurements: Pi can be used to make measurements – like perimeter, area and volume. 

For example, sometimes we use lasers to explode ice samples and study their composition. In this scenario, we can uses pi to calculate the width of the laser beam, which in turn can be used to calculate the amount of energy, or fluence, that hits the ice sample. A larger fluence equals a bigger explosion in the ice.

It’s Pi Day!

Commanding Rovers: Pi is also used every day commanding rovers on the Red Planet. Everything from taking images, turning the wheels, driving around, operating the robotic arm and even talking to Earth!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • barelyatouch
    barelyatouch liked this · 11 months ago
  • kryptic-psychotic
    kryptic-psychotic reblogged this · 1 year ago
  • brandon1997
    brandon1997 liked this · 1 year ago
  • mountain-crazed-snead
    mountain-crazed-snead liked this · 1 year ago
  • battlemage94
    battlemage94 liked this · 3 years ago
  • pushkinua
    pushkinua liked this · 3 years ago
  • dutifullyperfectcoffee
    dutifullyperfectcoffee liked this · 3 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags