Earth: It’s our oasis in space, the one place we know that harbors life. That makes it a weird place -- so far, we haven’t found life anywhere else in the solar system...or beyond. We study our home planet and its delicate balance of water, atmosphere and comfortable temperatures from space, the air, the ocean and the ground.
To celebrate our home, we want to see what you love about our planet. Share a picture, or several, of Earth with #PictureEarth on social media. In return, we’ll share some of our best views of our home, like this one taken from a million miles away by the Earth Polychromatic Imaging Camera (yes, it’s EPIC).
From a DC-8 research plane flying just 1500 feet above Antarctic sea ice, we saw a massive iceberg newly calved off Pine Island Glacier. This is one in a series of large icebergs Pine Island has lost in the last few years – the glacier is one of the fastest melting in Antarctica.
It’s not just planes. We also saw the giant iceberg, known as B-46, from space. Landsat 8 tracked B-46’s progress after it broke off from Pine Island Glacier and began the journey northward, where it began to break apart and melt into the ocean.
Speaking of change, we’ve been launching Earth-observing satellites since 1958. In that time, we’ve seen some major changes. Cutting through soft, sandy soil on its journey to the Bay of Bengal, the Padma River in Bangladesh dances across the landscape in this time-lapse of 30 years’ worth of Landsat images.
Our space-based view of Earth helps us track other natural activities, too. With both a daytime and nighttime view, the Aqua satellite and the Suomi NPP satellite helped us see where wildfires were burning in California, while also tracking burn scars and smoke plumes..
Astronauts have an out-of-this-world view of Earth, literally. A camera mounted on the International Space Station captured this image of Hurricane Florence after it intensified to Category 4.
It’s not just missions studying Earth that capture views of our home planet. Parker Solar Probe turned back and looked at our home planet while en route to the Sun. Earth is the bright, round object.
Want to learn more about our home planet? Check out our third episode of NASA Science Live where we talked about Earth and what makes it so weird.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko returned from their One-Year Mission on March 1. When you spend a year doing anything, you’re bound to accumulate some crazy stats. Here are a few:
During their year in space, Kelly and Kornienko traveled over 143 million miles, conducting research to prepare us for our journey to Mars, which will be about 140,000,000 miles from Earth.
The International Space Station travels at a speed of 5 miles per second and orbits the Earth every 90 minutes.
These visiting vehicles brought food, supplies, experiments and more crew members to the space station.
Since the space station is orbiting the Earth at 17,500 miles per hour, the crew onboard sees 16 sunrises and sunsets each day.
Water is a precious and limited resource in space, so crew members recycle it whenever possible. That includes recycling their own urine.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
They say a picture is worth a thousand words, but no images have left a greater impact on our understanding of the universe quite like the Hubble Space Telescope’s deep fields. Like time machines, these iconic images transport humanity billions of light-years back in time, offering a glimpse into the early universe and insight into galaxy evolution!
You’ve probably seen these images before, but what exactly do we see within them? Deep field images are basically core samples of our universe. By peering into a small portion of the night sky, we embark on a journey through space and time as thousands of galaxies appear before our very eyes.
So, how can a telescope the size of a school bus orbiting 340 miles above Earth uncover these mind-boggling galactic masterpieces? We’re here to break it down. Here’s Hubble’s step-by-step guide to viewing deep fields:
Believe it or not, capturing the light of a thousand galaxies actually begins in the dark. To observe extremely faint galaxies in the farthest corners of the cosmos, we need minimal light interference from nearby stars and other celestial objects. The key is to point Hubble’s camera at a dark patch of sky, away from the outer-edge glow of our own galaxy and removed from the path of our planet, the Sun, or the Moon. This “empty” black canvas of space will eventually transform into a stunning cosmic mosaic of galaxies.
The first deep field image was captured in 1995. In order to see far beyond nearby galaxies, Hubble’s camera focused on a relatively empty patch of sky within the constellation Ursa Major. The results were this step-shaped image, an extraordinary display of nearly 3,000 galaxies spread across billions of light-years, featuring some of the earliest galaxies to emerge shortly after the big bang.
The universe is vast, and peering back billions of years takes time. Compared to Hubble’s typical exposure time of a few hours, deep fields can require hundreds of hours of exposure over several days. Patience is key. Capturing and combining several separate exposures allows astronomers to assemble a comprehensive core slice of our universe, providing key information about galaxy formation and evolution. Plus, by combining exposures from different wavelengths of light, astronomers are able to better understand galaxy distances, ages, and compositions.
The Hubble Ultra Deep Field is the deepest visible-light portrait of our universe. This astonishing display of nearly 10,000 galaxies was imaged over the course of 400 Hubble orbits around Earth, with a total of 800 exposures captured over 11.3 days.
The ability to see across billions of light-years and observe the farthest known galaxies in our universe requires access to wavelengths beyond those visible to the human eye. The universe is expanding and light from distant galaxies is stretched far across space, taking a long time to reach us here on Earth. This phenomenon, known as “redshift,” causes longer wavelengths of light to appear redder the farther they have to travel through space. Far enough away, and the wavelengths will be stretched into infrared light. This is where Hubble’s infrared vision comes in handy. Infrared light allows us to observe light from some of the earliest galaxies in our universe and better understand the history of galaxy formation over time.
In 2009, Hubble observed the Ultra Deep Field in the infrared. Using the Near Infrared Camera and Multi-Object Spectrometer, astronomers gathered one of the deepest core samples of our universe and captured some of the most distant galaxies ever observed.
Apart from their remarkable beauty and impressive imagery, deep field images are packed with information, offering astronomers a cosmic history lesson billions of years back in time within a single portrait. Since light from distant galaxies takes time to reach us, these images allow astronomers to travel through time and observe these galaxies as they appear at various stages in their development. By observing Hubble’s deep field images, we can begin to discover the questions we’ve yet to ask about our universe.
Credit: NASA, ESA, R. Bouwens and G. Illingworth (University of California, Santa Cruz)
Hubble’s deep field images observe galaxies that emerged as far back as the big bang. This image of the Hubble Ultra Deep Field showcases 28 of over 500 early galaxies from when the universe was less than one billion years old. The light from these galaxies represent different stages in their evolution as their light travels through space to reach us.
Hubble’s deep fields have opened a window to a small portion of our vast universe, and future space missions will take this deep field legacy even further. With advancements in technologies and scientific instruments, we will soon have the ability to further uncover the unimaginable.
Slated for launch in late 2021, NASA’s James Webb Space Telescope will offer a new lens to our universe with its impressive infrared capabilities. Relying largely on the telescope’s mid-infrared instrument, Webb will further study portions of the Hubble deep field images in greater detail, pushing the boundaries of the cosmic frontier even further.
And there you have it, Hubble’s guide to unlocking the secrets of the cosmos! To this day, deep field images remain fundamental building blocks for studying galaxy formation and deepening not only our understanding of the universe, but our place within it as well.
Still curious about Hubble Deep Fields? Explore more and follow along on Twitter, Facebook, and Instagram with #DeepFieldWeek!
Make sure to follow us on Tumblr for your regular dose of space!
Butterfly Nebula
When you look at pictures of space, do you know what you’re actually seeing? A lot of the time the answer is dust!
HII region seen by Chandra X-ray Observatory
Clouds of dust drift through our galaxy. Telescopes can take pictures of these clouds when stars light them up. Who knew dust could be so beautiful? But it’s more than just pretty – we can learn a lot from it, too!
Stars like our Sun are born in dust clouds. Over time, leftover dust clumps together to help form planets. That makes it a little less dusty.
At certain times of the year, a band of sun-reflecting dust from the inner Solar System appears prominently just after sunset -- or just before sunrise -- and is called zodiacal light. Credit: Ruslan Merzlyakov/astrorms
But later, objects like comets and asteroids can create new dust by breaking up into tiny rocks. In our solar system, these rocky grains are called zodiacal dust. That’s because it’s mostly visible near the constellations of the zodiac. We can see the hazy glow it creates just after sunset or shortly before dawn sometimes, like in the picture above.
Around other stars, it’s called exozodiacal dust. Try saying that five times fast! It makes it hazy there too, so it can be hard to see distant planets.
Our Nancy Grace Roman Space Telescope will be really good at seeing how much of this dust is swirling around nearby stars. That will help future telescopes know the best places to look to find planets like Earth!
Roman will also see more distant objects. It will peer inside dust clouds where new stars are bursting into life. That will help our James Webb Space Telescope know where to look to find baby planets. Webb can zoom in for a more detailed look at these young worlds by seeing how they filter their host star’s light.
Roman will see huge patches of the sky – much bigger than our Hubble and Webb telescopes can see. These missions will team up to explore all kinds of cosmic mysteries!
Learn more about the exciting science Roman will investigate on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space!
Location: In the Scorpius constellation
Distance from Earth: About 44,000 light-years
Object type: Globular star cluster
Discovered by: James Dunlop in 1826
Each tiny point of light in this image is its own star - and there are more than a million of them! This stunning image captured by the Hubble Telescope depicts NGC 6441, a globular cluster that weighs about 1.6 million times the mass of our Sun. Globular clusters like NGC 6441 are groups of old stars held together by their mutual gravitational attraction, appearing nearly spherical in shape due to the density of stars that comprises them. This particular cluster is one of the most massive and luminous in our Milky Way Galaxy. It is also home to a planetary nebula and four pulsars (rotating neutron stars that emit beams of radiation at steady intervals, detected when the beams are aimed at Earth).
Read more information about NGC 6441 here.
Right now, the Hubble Space Telescope is delving into its #StarrySights campaign! Find more star cluster content and spectacular new images by following along on Hubble’s Twitter, Facebook, and Instagram.
Make sure to follow us on Tumblr for your regular dose of space!
Over the next 14 months, our scientists will join a group of international researchers to explore a special region — Earth's northern polar cusp, one of just two places on our planet where particles from the Sun have direct access to our atmosphere.
Earth is surrounded by a giant magnetic bubble known as a magnetosphere, which protects our planet from the hot, electrically charged stream of particles from the Sun known as the solar wind. The northern and southern polar cusps are two holes in this protection — here, Earth's magnetic field lines funnel the solar wind downwards, concentrating its energy before injecting it into Earth’s atmosphere, where it mixes and collides with particles of Earthly origin.
The cusp is the only place where dayside auroras are found — a special version of northern and southern lights, visible when the Sun is out and formed by a different process than the more familiar nighttime aurora. That's what makes this region so interesting for scientists to study: The more we learn about auroras, the more we understand about the fundamental processes that drive near-Earth space — including those processes that disrupt our technology and endanger our astronauts.
Photo credit: Violaene Kaeser
The teams working on the Grand Challenge Initiative — Cusp will fly sounding rockets from two Norwegian rocket ranges that fall under the cusp for a short time each day. Sounding rockets are sub-orbital rockets that shoot up into space for a few minutes before falling back to Earth, giving them access to Earth's atmosphere between 30 and 800 miles above the surface. Cheaper and faster to develop than large satellite missions, sounding rockets often carry the latest scientific instruments on their first-ever flights, allowing for unmatched speed in the turnaround from design to implementation.
Each sounding rocket mission will study a different aspect of Earth's upper atmosphere and its connection to the Sun and particles in space. Here's a look at the nine missions coming up.
The cusp isn’t just the inroad into our atmosphere — it’s a two-way street. Counteracting the influx of particles from the Sun is a process called atmospheric escape, in which Earthly particles acquire enough energy to escape into space. Of all the particles that escape Earth’s atmosphere, there’s one that presents a particular mystery: oxygen.
At 16 times the mass of hydrogen, oxygen should be too heavy to escape Earth’s gravity. But scientists have found singly ionized oxygen in near-Earth space, which suggests that it came from Earth. The two VISIONS-2 rockets, led by NASA's Goddard Space Flight Center in Greenbelt, Maryland, will create maps of the oxygen outflow in the cusp, tracking where these heavy ions are and how they’re moving to provide a hint at how they escape.
If the cusp is like a funnel, then magnetic reconnection is what turns on the faucet. When the solar wind collides with Earth’s magnetic field, magnetic reconnection breaks open the previously closed magnetic field lines, allowing some solar wind particles to stream into Earth’s atmosphere through the cusp.
But researchers have noticed that the stream of particles coming in isn’t smooth: instead, it has abrupt breaks in it. Is magnetic reconnection turning on and off? Or is the solar wind shooting in from different locations? TRICE-2, led by the University of Iowa in Iowa City, will fly two separate rockets through a single magnetic field line in the cusp, to help distinguish these possibilities. If reconnection sputters on and off over time, then the two rockets should get quite different measurements, like noting how it feels to run your finger back and forth under a faucet that is being turned on and off. If instead reconnection happens consistently in multiple locations — like having ten different faucets, all running constantly — then the two rockets should have similar measurements whenever they pass through the same locations.
Magnetic reconnection is a process by which magnetic field lines explosively realign
The CAPER-2 rocket, led by Dartmouth College in Hanover, New Hampshire, will examine how fast-moving electrons — particles that can trigger aurora — get up to such high speeds. The team will zero in on the role that Alfvén waves, a special kind of low-frequency wave that oscillates along magnetic field lines, play in accelerating auroral electrons.
An illustration of rippling Alfvén waves
G-CHASER is made up entirely of student researchers from universities in the United States, Norway and Japan, many of whom are flying their experiments for the first time. The mission, led by the Colorado Space Grant Consortium at the University of Colorado Boulder, is a collaboration between seven different student-led missions, providing a unique opportunity for students to design, test and ultimately fly their experiment from start to finish. The students involved in the mission — mostly undergraduates but including some graduate teams — are responsible for all aspects of the mission, from developing the initial idea, to securing the funding, to making sure it passes all the tests before flight.
When the aurora shine, they don’t just emit light — they also release thermal and kinetic energy into the atmosphere. Some of this energy escapes back into space, but some of it stays with us. Which way this balance tips depends, in part, on the winds in the cusp. AZURE, led by Clemson University in South Carolina, will measure the vertical winds that swish energy and particles around within the auroral oval, the larger ring around the pole where the aurora are most common.
Later that year, the same team will launch the CHI mission, using a methodology similar to AZURE to measure the flow of charged and neutral gases inside the cusp. The goal is to better understand how particles, flowing in horizontal and vertical directions, interact with each other to produce heating and acceleration.
The cusp is a place where strange physics happens, producing some anomalies in the physical structure of the atmosphere that can make our technology go haywire. For satellites that pass through the cusp, density increases act like potholes, shaking up their orbits. Scientists don’t currently understand what causes these density increases, but they have some clues. C-REX-2, led by the University of Alaska Fairbanks, aims to figure out which variables — wind, temperature or ion velocity — are responsible.
Recent research has uncovered mysterious hot patches of turbulent plasma inside the auroral region that rain energetic particles towards Earth. GPS signals become garbled as they pass through these turbulent plasma patches, affecting so many of today’s technologies that depend on them. ICI-5, led by the University of Oslo, will launch into the cusp to take measurements from inside these hot patches. To measure their structure as several scales, the rocket will eject 12 daughter payloads in concentric squares which will achieve a variety of different separations.
Exploring the phenomenon of atmospheric escape, the Japan Aerospace Exploration Agency's SS-520-3 mission will fly 500 miles high over the cusp to take measurements of the electrostatic waves that heat ions up and get them moving fast enough to escape Earth.
For updates on the Grand Challenge Initiative and other sounding rocket flights, visit nasa.gov/soundingrockets or follow along with NASA Wallops and NASA heliophysics on Twitter and Facebook.
@NASA_Wallops | NASA's Wallops Flight Facility | @NASASun | NASA Sun Science
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What kind of math is needed to get to Mars? How is the path of the lander calculated?
All three months of summer 2023 broke records. July 2023 was the hottest month ever recorded, and the hottest July. June 2023 was the hottest June, and August 2023 was the hottest August.
NASA’s temperature record, GISTEMP, starts in 1880, when consistent, modern recordkeeping became possible. Our record uses millions of measurements of surface temperature from weather stations, ships and ocean buoys, and Antarctic research stations. Other agencies and organizations who keep similar global temperature records find the same pattern of long-term warming.
Global temperatures are rising from increased emissions of greenhouse gasses, like carbon dioxide and methane. Over the last 200 years, humans have raised atmospheric CO2 by nearly 50%, primarily through the burning of fossil fuels.
Drivers of climate change, both natural and human-caused, leave distinct fingerprints. Through observations and modeling, NASA researchers confirm that the current warming is the result of human activities, particularly increased greenhouse gas emissions.
4th Hottest
2018 was the fourth hottest year since modern recordkeeping began. NASA and the National Oceanic and Atmospheric Administration work together to track temperatures around the world and study how they change from year to year. For decades, the overall global temperature has been increasing.
Over the long term, world temperatures are warming, but each individual year is affected by things like El Niño ocean patterns and specific weather events.
1.5 degrees
Globally, Earth’s temperature was more than 1.5 degrees Fahrenheit warmer than the average from 1951 to 1980.
139 years
Since 1880, we can put together a consistent record of temperatures around the planet and see that it was much colder in the late-19th century. Before 1880, uncertainties in tracking global temperatures were too large. Temperatures have increased even faster since the 1970s, the result of increasing greenhouse gases in the atmosphere.
Five Hottest
The last five years have been the hottest in the modern record.
6,300 Individual Observations
Scientists from NASA use data from 6,300 weather stations and Antarctic research stations, together with ship- and buoy-based observations of sea surface temperatures to track global temperatures.
605,830 swimming pools
As the planet warms, polar ice is melting at an accelerated rate. The Greenland and Antarctic ice sheets lost about 605,830 Olympic swimming pools (400 billion gallons) of water between 1993 and 2016.
8 inches
Melting ice raises sea levels around the world. While ice melts into the ocean, heat also causes the water to expand. Since 1880, sea levels around the world have risen approximately 8 inches.
71,189 acres burned
One symptom of the warmer climate is that fire seasons burn hotter and longer. In 2018, wildfires burned more than 71,189 acres in the U.S. alone.
46% increase in CO2 levels
CO2 levels have increased 46 percent since the late 19th Century, which is a dominant factor causing global warming.
The Artemis I mission was the first integrated test of the Orion spacecraft, the Space Launch System (SLS) rocket, and Exploration Ground Systems at NASA’s Kennedy Space Center in Florida. We’ll use these deep space exploration systems on future Artemis missions to send astronauts to the Moon and prepare for our next giant leap: sending the first humans to Mars.
Take a visual journey through the mission, starting from launch, to lunar orbit, to splashdown.
The SLS rocket carrying the Orion spacecraft launched on Nov. 16, 2022, from Launch Complex 39B at NASA’s Kennedy Space Center in Florida. The world’s most powerful rocket performed with precision, meeting or exceeding all expectations during its debut launch on Artemis I.
Following the successful launch of Artemis I, Launch Director Charlie Blackwell-Thompson congratulates the launch team.
“The harder the climb, the better the view,” she said. “We showed the space coast tonight what a beautiful view it is.”
On Orion’s first day of flight, a camera on the tip of one of Orion’s solar arrays captured this image of Earth.
On the third day of the mission, Artemis I engineers activated the Callisto payload, a technology demonstration developed by Lockheed Martin, Amazon, and Cisco that tested a digital voice assistant and video conferencing capabilities in a deep space environment. In the image, Commander Moonikin Campos occupies the commander’s seat inside the spacecraft. The Moonikin is wearing an Orion Crew Survival System suit, the same spacesuit that Artemis astronauts will use during launch, entry, and other dynamic phases of their missions. Campos is also equipped with sensors that recorded acceleration and vibration data throughout the mission that will help NASA protect astronauts during Artemis II. The Moonikin was one of three “passengers” that flew aboard Orion. Two female-bodied model human torsos, called phantoms, were aboard. Zohar and Helga, named by the Israel Space Agency (ISA) and the German Aerospace Center (DLR) respectively, supported the Matroshka AstroRad Radiation Experiment (MARE), an experiment to provide data on radiation levels during lunar missions. Snoopy, wearing a mock orange spacesuit, also can be seen floating in the background. The character served as the zero-gravity indicator during the mission, providing a visual signifier that Orion is in space.
A portion of the far side of the Moon looms large in this image taken by a camera on the tip of one of Orion’s solar arrays on the sixth day of the mission.
The Orion spacecraft captured some of the closest photos of the Moon from a spacecraft built for humans since the Apollo era — about 80 miles (128 km) above the lunar surface. This photo was taken using Orion’s optical navigational system, which captures black-and-white images of the Earth and Moon in different phases and distances.
Orion entered a distant retrograde orbit around the Moon almost two weeks into the mission. The orbit is “distant” in the sense that it’s at a high altitude approximately 50,000 miles (80,467 km) from the surface of the Moon. Orion broke the record for farthest distance of a spacecraft designed to carry humans to deep space and safely return them to Earth, reaching a maximum distance of 268,563 miles (432,210 km).
On the 20th day of the mission, the spacecraft made its second and final close approach to the Moon flying 79.2 miles (127.5 km) above the lunar surface to harness the Moon’s gravity and accelerate for the journey back to Earth.
Cameras mounted on the crew module of the Orion spacecraft captured these views of the Moon’s surface before its return powered flyby burn.
After passing behind the far side of the Moon on Flight Day 20, Orion powered a flyby burn that lasted approximately 3 minutes and 27 seconds to head home. Shortly after the burn was complete, the Orion spacecraft captured these views of the Moon and Earth, which appears as a distant crescent.
Prior to entering the Earth’s atmosphere, Orion’s crew module separated from its service module, which is the propulsive powerhouse provided by ESA (European Space Agency). During re-entry, Orion endured temperatures about half as hot as the surface of the Sun at about 5,000 degrees Fahrenheit (2,760 degrees Celsius). Within about 20 minutes, Orion slowed from nearly 25,000 mph (40,236 kph) to about 20 mph (32 kph) for its parachute-assisted splashdown.
On Dec. 11, the Orion spacecraft splashed down in the Pacific Ocean off the coast of California after traveling 1.4 million miles (2.3 million km) over a total of 25.5 days in space. Teams are in the process of returning Orion to Kennedy Space Center in Florida. Once at Kennedy, teams will open the hatch and unload several payloads, including Commander Moonikin Campos, the space biology experiments, Snoopy, and the official flight kit. Next, the capsule and its heat shield will undergo testing and analysis over the course of several months.
Make sure to follow us on Tumblr for your regular dose of space!
To find the perfect perch for Earth observation research, just look up – about 240 miles up. The International Space Station serves as an optimal platform for studying our dynamic planet, where spectacular views support science.
With currently active instruments and facilities like High Definition Earth Viewing, Crew Earth Observations, Lightning Imaging Sensor, SAGE-III and Meteor, researchers on the ground are able to use the station’s unique (and useful!) vantage point to track Earth’s weather patterns, obtain images documenting changes on the planet’s surface, understand the origin of meteors falling towards Earth, and better understand the atmosphere.
The space station’s 90-minute orbit allows it to cover 90% of the Earth’s populated surfaces. That means we are able to study A LOT of that big blue marble.
Let’s talk a little about how the space station serves as a platform for Earth observation:
Each day, as the space station passes over regions of the Earth, crew members photograph the area below as a part of the Crew Earth Observations Facility investigation, one of the longest-running experiments on the orbiting laboratory. Crew members are able to photograph large-scale weather events like the recent Hurricane Harvey from the space station’s Cupola. These little science postcards from space can be used by researchers and the public to learn more about our home planet.
Want to see a picture of your hometown from space? Search for it in the Gateway to Astronaut Photography of Earth (GAPE).
The High Definition Earth Viewing (HDEV) experiment streams live video of Earth for online viewing. This investigation not only provides hours and hours of footage of the Earth below, but also demonstrates how the technology holds up against the harsh environment of space. High school students helped design some of the cameras' components, through the High Schools United with NASA to Create Hardware (HUNCH) program, and student teams perform most of the HDEV operation. (Whoa! Check out HUNCH and STEM on Station for more opportunities for student involvement!)
Useful for weather forecasting, hurricane monitoring, and observations of large-scale climate phenomena such as El Niño, RapidScat used radar pulses reflected off the ocean to measure wind speed and direction over the ocean.
RapidScat completed its successful two-year mission, outlasting its original decommission date before suffering a power loss. Although RapidScat is no longer transmitting data back to Earth, the station hosts many other Earth-observation tools the Cyclone Intensity Measurements from the ISS (CyMISS) an experiment that seeks to develop detailed information on tropical storm structure to better estimate storm intensity, which will help government agencies to better prepare communities for impending natural disasters; and the Cloud-Aerosol Transport System (CATS), a previously-flown lidar instrument which measured atmospheric profiles of aerosols and clouds to better understand their properties and interactions, as well as provided data useful to improving climate change models.
Learn more about RapidScat’s mission conclusion HERE! Take a look at CATS mission data HERE!
Watch more inspiring videos and learn about how we’re capturing the beauty of Earth HERE.
Crew members are able to photograph large-scale weather events like the recent Hurricane Harvey from the space station’s Cupola. These little science postcards from space can be used by researchers and the public to learn more about our home planet.
Plants in space!
Future long-duration missions into the solar system will require a fresh food supply to supplement crew diets, which means growing crops in space. Growing food in such a harsh environment also teaches us a little bit about growing in harsh environments here on Earth.
Here are a few plant-based investigations currently happening aboard the orbiting laboratory:
Veggie is a chamber on the space station that helps scientists grow, harvest and study different space crops. This experiment is called VEG-03D and they’ve been able to grow six rounds of crops so far.
SpaceX's 13th Commercial Resupply vehicle carried many valuable items to the orbiting laboratory, including Plant Gravity Perception, an investigation that uses the European Modular Cultivation System (EMCS) to simulate gravity to help plants grow its roots downward, and shoots upwards. The shoots need to face upwards, towards the light, so they can absorb sunlight and nutrients. Without this, plants wouldn’t know which way to grow. Yikes!
Learn more about Plant Gravity Perception HERE!
The Advanced Plant Habitat is a large chamber that supports commercial and fundamental plant research for at least one year of continuous use. A great feature to this habitat is that the astronauts can view the plant’s progress through a window on the door.
Whether astronauts are taking pictures of the planet or growing crops in space, all science aboard the space station plants seeds for a better life on Earth. Biology investigations directly grow our knowledge of agricultural techniques for harsh environments and imagery from space can give us a clearer idea of our planet’s health and emerging weather patterns.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts