What has been the best memory you have so far at NASA?
Our Juno spacecraft may be millions of miles from Earth, but that doesn’t mean you can’t get involved with the mission and its science. Here are a few ways that you can join in on the fun:
This July 4, our solar-powered Juno spacecraft arrives at Jupiter after an almost five-year journey. In the evening of July 4, the spacecraft will perform a suspenseful orbit insertion maneuver, a 35-minute burn of its main engine, to slow the spacecraft by about 1,212 miles per hour so it can be captured into the gas giant’s orbit. Watch live coverage of these events on NASA Television:
Pre-Orbit Insertion Briefing Monday, July 4 at 12 p.m. EDT
Orbit Insertion Coverage Monday, July 4 at 10:30 p.m. EDT
Orbit Insertion Coverage Facebook Live Monday, July 4 at 10:30 p.m. EDT
Be sure to also check out and follow Juno coverage on the NASA Snapchat account!
The Juno spacecraft will give us new views of Jupiter’s swirling clouds, courtesy of its color camera called JunoCam. But unlike previous space missions, professional scientists will not be the ones producing the processed views, or even choosing which images to capture. Instead, the public will act as a virtual imaging team, participating in key steps of the process, from identifying features of interest to sharing the finished images online.
After JunoCam data arrives on Earth, members of the public will process the images to create color pictures. Juno scientists will ensure JunoCam returns a few great shots of Jupiter’s polar regions, but the overwhelming majority of the camera’s image targets will be chosen by the public, with the data being processed by them as well. Learn more about JunoCam HERE.
Follow our Juno mission on the web, Facebook, Twitter, YouTube and Tumblr.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Ever get a random craving for a food when in space?
We recently completed a structural integrity evaluation on the test version of the Orion service module at our Plum Brook Station in Sandusky, Ohio. Designed to ensure the module can withstand launch atop the Space Launch System (SLS) rocket, the battery of tests was conducted in stages over a 16-month period.
The 13-ton European service module will power, propel and cool Orion, while supplying vital oxygen and water to its crew during future missions.
The Powerhouse: Space Launch System and Orion
Our Space Launch System is an advanced launch vehicle that will usher in a new era of human exploration beyond Earth’s orbit. SLS, with its unparalleled power and capabilities, will launch missions to explore deep-space destinations aboard our Orion spacecraft.
What is Orion? Named after one of the largest constellations in the night sky and drawing from more than 50 years of spaceflight research and development, the Orion spacecraft will be the safest, most advanced spacecraft ever built. It will be flexible and capable enough to take astronauts to a variety of deep destinations, including Mars.
Welcome to the Buckeye State
In November 2015, the full-sized test version of the Orion service module arrived at Cleveland Hopkins Airport aboard an Antonov AN-124. After being unloaded from one of the world’s largest transport aircraft, the module was shipped more than 50 miles by truck to Plum Brook for testing.
Spread Your Wings
The first step of the service module’s ground test journey at Plum Brook’s Space Power Facility, saw one of its 24-foot solar array wings deployed to verify operation of the power system. The test confirmed the array extended and locked into place, and all of the wing mechanisms functioned properly.
Can You Hear SLS Now?
The SLS will produce a tremendous amount of noise as it launches and climbs through our atmosphere. In fact, we’re projecting the rocket could produce up to 180 decibels, which is louder than 20 jet engines operating at the same time.
While at the Reverberant Acoustic Test Facility, the service module was hit with more than 150 decibels and 20-10,000 hertz of sound pressure. Microphones were placed inside the test environment to confirm it matched the expected acoustic environment during launch.
After being blasted by sound, it was time to rock the service module, literally.
Shake Without the Bake
Launching atop the most powerful rocket ever built – we’re talking more than eight million pounds of thrust – will subject Orion to stresses never before experienced in spaceflight.
To ensure the launch doesn’t damage any vital equipment, the engineering team utilized the world’s most powerful vibration table to perform nearly 100 different tests, ranging from 2.5 Hz to 100 Hz, on the module in the summer of 2016.
Gotta Keep ‘Em Separated
The team then moved the Orion test article from the vibration table into the high bay for pyroshock tests, which simulated the shock the service module will experience as it separates from the SLS during launch.
Following the sound, vibration and separation tests, a second solar array wing deployment was conducted to ensure the wing continued to properly unfurl and function.
Headed South for the Summer
The ground test phase was another crucial step toward the eventual launch of Exploration Mission-1, as it validated extensive design prep and computer modeling, and verified the spacecraft met our safety and flight requirements.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Has the COVID-19 pandemic really reduced pollution in areas participating in lockdowns? Is the environment “recovering”?
Each month, the International Space Station focuses on an area of research. In September, the research focus was biology, encompassing cells, plants, animals, genetics, biochemistry, human physiology and more.
Benefits from this research are vast and include: combating diseases, reducing our environmental footprint, feeding the world’s population and developing cleaner energy.
Here’s a recap of some topics we studied this month:
Cells
Scientists studied T-cells in orbit to better understand how human immune systems change as they age. For an immune cell, the microgravity environment mimics the aging process. Because spaceflight-induced and aging-related immune suppression share key characteristics, researchers expect the results from this study will be relevant for the general population.
NASA to Napa
We raised a glass to the space station to toast how the study of plants in space led to air purification technology that keeps the air clean in wine cellars and is also used in homes and medical facilities to help prevent mold.
One-Year Mission
This month also marked the halfway point of the One-Year Mission. NASA Astronaut Scott Kelly and Roscosmos Cosmonaut Mikhail Kornienko reached the midpoint on Sept. 15. This mission will result in valuable data about human health and the effects of microgravity on the body.
Microbes
Since microbes can threaten crew health and jeopardize equipment, scientists study them on astronauts’ skin and aboard the space station. Samples like saliva, blood, perspiration and swaps of equipment are collected to determine how microgravity, environment, diet and stress affect the microorganisms.
Model Organisms
Model organisms have characteristics that allow them to easily be maintained, reproduced and studied in a laboratory. Scientists investigate roundworms, medaka fish and rodents on the station because of this reason. They can also provide insight into the basic cellular and molecular mechanisms of the human body.
For more information about research on the International Space Station, go HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This month, at sunset, catch elusive Mercury, bright Venus, the Zodiacal Light, Mars, Saturn and Jupiter between midnight and dawn!
Both Venus and Mercury play the part of "evening stars" this month. At the beginning of the month they appear low on the western horizon.
The Moon itself joins the pair from March 18th through the 20th.
The Moon skims by the Pleiades star cluster and Taurus's bright red star Aldebaran on the next few evenings, March 21 through the 23rd.
Jupiter, king of the planets, rises just before midnight this month and earlier by month end.
Even through the smallest telescope or average binoculars, you should see the 4 Galilean moons, Europa, Io, Callisto and Ganymede.
The March morning sky offers dazzling views of Mars and Saturn all month long.
Through a telescope, you can almost make out some of the surface features on Mars.
Look a little farther into Mars' future and circle May 5th with a red marker. When our InSight spacecraft launches for its 6 month journey to the Red Planet, Mars will be easily visible to your unaided eye.
Keep watching Mars as it travels closer to Earth. It will be closest in late July, when the red planet will appear larger in apparent diameter than it has since 2003!
You are in for a real treat if you can get away to a dark sky location on a moonless night this month -- the Zodiacal Light and the Milky Way intersect!
The Zodiacal light is a faint triangular glow seen from a dark sky just after sunset in the spring or just before sunrise in the fall.
The more familiar Milky Way is one of the spiral arms of our galaxy.
What we're seeing is sunlight reflecting off dust grains that circle the Sun in the inner solar system. These dust grains journey across our sky in the ecliptic, the same plane as the Moon and the planets.
Watch the full What’s Up for March Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Why are we studying them? What’s purpose of this field for us on earth?
What would the future look like if people were regularly visiting to other planets and moons? These travel posters give a glimpse into that imaginative future. Take a look and choose your destination:
Our Voyager mission took advantage of a once-every-175-year alignment of the outer planets for a grand tour of the solar system. The twin spacecraft revealed details about Jupiter, Saturn, Uranus and Neptune – using each planet’s gravity to send them on to the next destination.
Our Mars Exploration Program seeks to understand whether Mars was, is, or can be a habitable world. This poster imagines a future day when we have achieved our vision of human exploration of the Red Planet and takes a nostalgic look back at the great imagined milestones of Mars exploration that will someday be celebrated as “historic sites.”
There’s no place like home. Warm, wet and with an atmosphere that’s just right, Earth is the only place we know of with life – and lots of it. Our Earth science missions monitor our home planet and how it’s changing so it can continue to provide a safe haven as we reach deeper into the cosmos.
The rare science opportunity of planetary transits has long inspired bold voyages to exotic vantage points – journeys such as James Cook’s trek to the South Pacific to watch Venus and Mercury cross the face of the sun in 1769. Spacecraft now allow us the luxury to study these cosmic crossings at times of our choosing from unique locales across our solar system.
Ceres is the closest dwarf planet to the sun. It is the largest object in the main asteroid belt between Mars and Jupiter, with an equatorial diameter of about 965 kilometers. After being studied with telescopes for more than two centuries, Ceres became the first dwarf planet to be explored by a spacecraft, when our Dawn probe arrived in orbit in March 2015. Dawn’s ongoing detailed observations are revealing intriguing insights into the nature of this mysterious world of ice and rock.
The Jovian cloudscape boasts the most spectacular light show in the solar system, with northern and southern lights to dazzle even the most jaded space traveler. Jupiter’s auroras are hundreds of times more powerful than Earth’s, and they form a glowing ring around each pole that’s bigger than our home planet.
The discovery of Enceladus’ icy jets and their role in creating Saturn’s E-ring is one of the top findings of the Cassini mission to Saturn. Further Cassini discoveries revealed strong evidence of a global ocean and the first signs of potential hydrothermal activity beyond Earth – making this tiny Saturnian moon one of the leading locations in the search for possible life beyond Earth.
Frigid and alien, yet similar to our own planet billions of years ago, Saturn’s largest moon, Titan has a thick atmosphere, organic-rich chemistry and surface shaped by rivers and lakes of liquid ethane and methane. Our Cassini orbiter was designed to peer through Titan’s perpetual haze and unravel the mysteries of this planet-like moon.
Astonishing geology and the potential to host the conditions for simple life making Jupiter’s moon Europa a fascinating destination for future exploration. Beneath its icy surface, Europa is believed to conceal a global ocean of salty liquid water twice the volume of Earth’s oceans. Tugging and flexing from Jupiter’s gravity generates enough heat to keep the ocean from freezing.
You can download free poster size images of these thumbnails here: http://www.jpl.nasa.gov/visions-of-the-future/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our @NASAJuno spacecraft's JunoCam captured images of the chaotic, stormy northern hemisphere of Jupiter during its 24th close pass of the giant planet on Dec. 26, 2019. Using data from the flyby, citizen scientist Kevin M. Gill created this color-enhanced image. At the time, the spacecraft was about 14,600 miles (23,500 kilometers) from the tops of Jupiter’s clouds, at a latitude of about 69 degrees north.
Image Credit: Image data: NASA/JPL-Caltech/SwRI/MSSS
Image processing by Kevin M. Gill, © CC BY
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Earth, our home planet, is the fifth largest planet in our solar system and the only planet we know of where life exists. Even though Earth seems extremely large to us, it is actually a tiny spec in the vast expanse of the universe. Here are 7 space facts that will make you feel very small.
1. Our sun is one of at least 100 BILLION stars, just in the Milky Way. Scientists calculate that there are at least 100 billion galaxies in the observable universe, each one brimming with stars. There are more stars than grains of sand on all of Earth’s beaches combined.
In 1995, the first planet beyond our solar system was discovered. Now, thousands of planets orbiting sun-like stars have been discovered, also known as exoplanets.
2. The Milky Way is a huge city of stars, so big that even at the speed of light (which is fast!), it would take 100,000 years to travel across it.
3. Roughly 70% of the universe is made of dark energy. Dark matter makes up about 25%. The rest — everything on Earth, everything ever observed with all of our instruments, all normal matter adds up to less than 5% of the universe.
4. If the sun were as tall as a typical front door, Earth would be the size of a nickel.
5. The sun accounts for almost all of the mass in our solar system. Leaving .2% for all the planets and everything else.
6. Edwin Hubble discovered that the Universe is expanding and that at one point in time (14 billion years ago) the universe was all collected in just one point of space.
7. Four American spacecraft are headed out of our solar system to what scientists call interstellar space. Voyager 1 is the farthest out — more than 11 billion miles from our sun. It was the first manmade object to leave our solar system. Voyager 2, is speeding along at more than 39,000 mph, but will still take more than 296,000 years to pass Sirius, the brightest star in our night sky.
Feeling small yet? Here’s a tool that will show you just how tiny we are compared to everything else out there: http://imagine.gsfc.nasa.gov/features/cosmic/earth.html
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts