What does it feel like to be up there and look down at the Earth? I've always imagined it would send me into a moment where I feel so small compared to the expanse and beauty of Earth.
Labor Day reflections: the Nancy Grace Roman Space Telescope’s primary mirror reflects an American flag hanging overhead. The mirror, which will collect and focus light from cosmic objects near and far, has been completed. Renamed after our first chief astronomer and "Mother of Hubble," the Roman Space Telescope will capture stunning space vistas with a field of view 100 times greater than Hubble Space Telescope images. The spacecraft will study the universe using infrared light, which human eyes can’t detect without assistance. This Labor Day, we thank all the people who work to advance the future for humanity. Credit: L3Harris Technologies Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
A human journey to Mars, at first glance, offers an inexhaustible amount of complexities. To bring a mission to the Red Planet from fiction to fact, NASA’s Human Research Program has organized some of the hazards astronauts will encounter on a continual basis into five classifications.
A spacecraft is not only a home, it’s also a machine. NASA understands that the ecosystem inside a vehicle plays a big role in everyday astronaut life.
Important habitability factors include temperature, pressure, lighting, noise, and quantity of space. It’s essential that astronauts are getting the requisite food, sleep and exercise needed to stay healthy and happy. The space environment introduces challenges not faced on Earth.
Technology, as often is the case with out-of-this-world exploration, comes to the rescue! Technology plays a big role in creating a habitable home in a harsh environment and monitoring some of the environmental conditions.
Astronauts are also asked to provide feedback about their living environment, including physical impressions and sensations so that the evolution of spacecraft can continue addressing the needs of humans in space.
Exploration to the Moon and Mars will expose astronauts to five known hazards of spaceflight, including hostile and closed environments, like the closed environment of the vehicle itself. To learn more, and find out what NASA’s Human Research Program is doing to protect humans in space, check out the "Hazards of Human Spaceflight" website. Or, check out this week’s episode of “Houston We Have a Podcast,” in which host Gary Jordan further dives into the threat of hostile and closed environments with Brian Crucian, NASA immunologist at the Johnson Space Center.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
If you’re looking for other ways to enjoy #EarthDayatHome, check out this feature: https://www.nasa.gov/feature/goddard/2020/earthdayathome-with-nasa/
Don’t forget to follow NASA Earth on Twitter, Facebook and Instagram.
You can follow Sandra Cauffman on Twitter, HERE.
You can follow Dr. Thomas Zurbuchen “Dr. Z” on Twitter, HERE.
Happy Earth Day!
What made you want to become a pilot for NASA? What’s your favorite part of this job?
The Shaped Sonic Boom Demonstrator and the Quest for Quiet Supersonic Flight.
Download it HERE
A comprehensive History of the F-16XL Experimental Prototype and its Role in our Flight Research.
Download it HERE
Selected National Advisory Committee for Aeronautics (NACA) Research Airplanes and Their Contributions to Flight.
Download it HERE
The huge Langley Full-Scale Tunnel building dominated the skyline of Langley Air Force Base for 81 years (1930–2011). Explore how the results of critical tests conducted within its massive test section contributed to many of the Nation's most important aeronautics and space programs.
Download it HERE
A New Twist in Flight Research describes the origins and design development of aeroelastic wing technology, its application to research aircraft, the flight-test program, and follow-on research and future applications.
Download it HERE
Developing & Flight Testing the Grumman X-29A Forward Swept Wing Research Aircraft.
Download it HERE
Robert T. Jones, the Oblique Wing, our AD-1 Demonstrator, and its Legacy.
Download it HERE
The fuel crisis of the 1970s threatened not only the airline industry but also the future of American prosperity itself. It also served as the genesis of technological ingenuity and innovation from a group of scientists and engineers at NASA, who initiated planning exercises to explore new fuel-saving technologies.
Download it HERE
X-15: Extending the Frontiers of Flight describes the genesis of the program, the design and construction of the aircraft, years of research flights and the experiments that flew aboard them.
Download it HERE
Delve into the story of the Ikhana, a remotely piloted vehicle used by NASA researchers to conduct Earth science research, which became an unexpected flying and imaging helper to emergency workers battling California wildfires.
Download it HERE
This first volume in a two-volume set includes case studies and essays on NACA-NASA research for contributions such as high-speed wing design, the area rule, rotary-wing aerodynamics research, sonic boom mitigation, hypersonic design, computational fluid dynamics, electronic flight control and environmentally friendly aircraft technology.
Download it HERE
Continue your journey into the world of NASA's Contributions to Aeronautics with case studies and essays on NACA-NASA research for contributions including wind shear and lightning research, flight operations, human factors, wind tunnels, composite structures, general aviation aircraft safety, supersonic cruise aircraft research and atmospheric icing.
Download it HERE
Interested in other free e-books on topics from space, science, research and more? Discover the other e-books HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We call it a spacesuit, almost as if it’s something an astronaut pulls out of the closet. It’s more accurate to think of it as an astronaut’s personal spacecraft: self-contained and functional, with a design focused on letting astronauts work safely in space. Just as we’ve been able to improve rockets, satellites and data systems over 60 years, we’ve made great improvements to spacesuits.
When the first woman and next man step foot on the Moon in 2024, they will be wearing the next generation of spacesuit, called the Exploration Extravehicular Mobility Unit, or xEMU for short. The new suit can be used under different conditions for various tasks, including walking, driving rovers or collecting samples. The design will also allow the suits to be used for spacewalks on the space station, or Gateway – our upcoming spaceship that will orbit the Moon. Future missions to Mars can build on the core suit technologies with additional upgrades for use in the Martian atmosphere and greater gravity.
Even before we had astronauts, pilots were using pressurized suits to fly at high speeds at altitudes where the air was too thin to breathe. Our first spacesuits – shown here worn by the first NASA astronauts in 1959 – were variations of the suit used by Navy test pilots.
The Gemini spacesuit – shown here in a photo of astronaut Ed White making the first American spacewalk in 1965 – added a line that could connect the astronaut to the spacecraft for oxygen, and which also served as a tether when they left the capsule for a spacewalk.
The Apollo astronauts had to completely separate themselves from the lunar module, so we added a portable life support unit, which the astronauts carried on their backs. The photo above shows the life support system on the suit of Apollo 11 astronaut Buzz Aldrin as he deploys lunar experiments in 1969.
Though the bulky suits weren’t exactly easy to maneuver, astronauts still managed to get their jobs done and enjoy themselves doing it.
What, you wouldn’t sing if you were on the moon?
We have used different suits for different purposes. During the Space Shuttle program, astronauts inside the shuttle wore these orange “pumpkin” suits, which were designed to be worn within the cabin.
On spacewalks, special suits – made to be worn only outside the spacecraft – provided high mobility, more flexibility and life support as the astronauts worked in zero gravity.
During construction of the International Space Station, we should have issued a hard hat and a pair of steel-toed boots with each suit. Astronauts conducted more than 200 spacewalks as part of building the station, which took place from 1998 until 2011. Above, an astronaut at the end of the shuttle’s robotic arm is maneuvered back into the shuttle’s payload bay with a failed pump during the shuttle’s final flight in 2011.
Spacesuits are rarely the story themselves, but they make it possible for our astronauts to get their jobs done, even when they have to improvise. In the picture above, astronauts on a 1992 space shuttle mission are conducting a spacewalk they hadn’t originally planned on. The crew was originally supposed to use a specially designed grab bar to capture the INTELSAT VI satellite. Two attempts to use the grab bar on two-person spacewalks failed, so we improvised a plan to add a third spacewalker and have all three go outside and literally grab the satellite.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
How visible will the stars be compared to a normal night sky if I'm in the path of totality? (Sun completely covered)
I’m not entirely sure, but you will be able to see some stars that you normally wouldn’t see. https://eclipse2017.nasa.gov/sites/default/files/publications/Eclipse_brochure-bookmark_508.pdf In fact, during the 1919 eclipse, Sir Arthur Eddington and others used our ability to see stars close to the Sun during the eclipse to help confirm Einstines’ theory of general relativity. https://eclipse2017.nasa.gov/testing-general-relativity
I’m sure you’re trained so that nothing in space is really a surprise, but: was there anything about spacewalking that surprised you when you did it for the first time?
What do you see in Jupiter's hazy atmosphere?
Our NASA JunoCam mission captured this look at the planet’s thunderous northern region during the spacecraft’s close approach to the planet on Feb. 17, 2020.
Some notable features in this view are the long, thin bands that run through the center of the image from top to bottom. Juno has observed these long streaks since its first close pass by Jupiter in 2016.
Image Credits: Image data: NASA / JPL / SwRI / MSSS Image Processing: Citizen Scientist Eichstädt
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
A new image from NASA's James Webb Space Telescope reveals a remarkable cosmic sight: at least 17 concentric dust rings emanating from a pair of stars. Just 5,300 light-years from Earth, the star duo are collectively known as Wolf-Rayet 140. Each ring was created when the two stars came close together and their stellar winds (streams of gas they blow into space) collided so forcefully that some of the gas was compressed into dust. The stars' orbits bring them together about once every eight years, and forms a half-shell of dust that looks like a ring from our perspective. Like a cosmic fingerprint, the 17 rings reveal more than a century of stellar interactions—and the "fingerprint" belonging to Wolf-Rayet 140 may be equally unique. Other Wolf-Rayet stars produce dust, but no other pair are known to produce rings quite like Wolf-Rayet 140.
Learn more about Wolf-Rayet 140.
Make sure to follow us on Tumblr for your regular dose of space!
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts