What Are The Different Fields Of Earth Science? Are They Related To Each Other?

What are the different fields of Earth Science? Are they related to each other?

More Posts from Nasa and Others

6 years ago

Meet Parker Solar Probe, Our Mission to Touch the Sun

In just a few weeks, we're launching a spacecraft to get closer to the Sun than any human-made object has ever gone.

The mission, called Parker Solar Probe, is outfitted with a lineup of instruments to measure the Sun's particles, magnetic and electric fields, solar wind and more – all to help us better understand our star, and, by extension, stars everywhere in the universe.

image

Parker Solar Probe is about the size of a small car, and after launch – scheduled for no earlier than Aug. 6, 2018 – it will swing by Venus on its way to the Sun, using a maneuver called a gravity assist to draw its orbit closer to our star. Just three months after launch, Parker Solar Probe will make its first close approach to the Sun – the first of 24 throughout its seven-year mission.

image

Though Parker Solar Probe will get closer and closer to the Sun with each orbit, the first approach will already place the spacecraft as the closest-ever human-made object to the Sun, swinging by at 15 million miles from its surface. This distance places it well within the corona, a region of the Sun's outer atmosphere that scientists think holds clues to some of the Sun's fundamental physics.

For comparison, Mercury orbits at about 36 million miles from the Sun, and the previous record holder – Helios 2, in 1976 – came within 27 million miles of the solar surface. 

image

Humanity has studied the Sun for thousands of years, and our modern understanding of the Sun was revolutionized some 60 years ago with the start of the Space Age. We've come to understand that the Sun affects Earth in more ways than just providing heat and light – it's an active and dynamic star that releases solar storms that influence Earth and other worlds throughout the solar system. The Sun's activity can trigger the aurora, cause satellite and communications disruptions, and even – in extreme cases – lead to power outages.

Much of the Sun's influence on us is embedded in the solar wind, the Sun's constant outflow of magnetized material that can interact with Earth's magnetic field. One of the earliest papers theorizing the solar wind was written by Dr. Gene Parker, after whom the mission is named.

image

Though we understand the Sun better than we ever have before, there are still big questions left to be answered, and that's where scientists hope Parker Solar Probe will help.  

First, there's the coronal heating problem. This refers to the counterintuitive truth that the Sun's atmosphere – the corona – is much, much hotter than its surface, even though the surface is millions of miles closer to the Sun's energy source at its core. Scientists hope Parker Solar Probe's in situ and remote measurements will help uncover the mechanism that carries so much energy up into the upper atmosphere.

image

Second, scientists hope to better understand the solar wind. At some point on its journey from the Sun out into space, the solar wind is accelerated to supersonic speeds and heated to extraordinary temperatures. Right now, we measure solar wind primarily with a group of satellites clustered around Lagrange point 1, a spot in space between the Sun and Earth some 1 million miles from us. 

By the time the solar wind reaches these satellites, it has traveled about 92 million miles already, blending together the signatures that could shed light on the acceleration process. Parker Solar Probe, on the other hand, will make similar measurements less than 4 million miles from the solar surface – much closer to the solar wind's origin point and the regions of interest.

image

Scientists also hope that Parker Solar Probe will uncover the mechanisms at work behind the acceleration of solar energetic particles, which can reach speeds more than half as fast as the speed of light as they rocket away from the Sun! Such particles can interfere with satellite electronics, especially for satellites outside of Earth's magnetic field.

Parker Solar Probe will launch from Space Launch Complex 37 at Cape Canaveral Air Force Station, adjacent to NASA’s Kennedy Space Center in Florida. Because of the enormous speed required to achieve its solar orbit, the spacecraft will launch on a United Launch Alliance Delta IV Heavy, one of the most powerful rockets in the world.

image

Stay tuned over the next few weeks to learn more about Parker Solar Probe's science and follow along with its journey to launch. We'll be posting updates here on Tumblr, on Twitter and Facebook, and at nasa.gov/solarprobe.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
2 years ago

The Adventures of Commander Moonikin Campos

Artemis I will be an enormous step toward humanity’s return to the Moon. This mission will be the first flight test of the integrated Space Launch System rocket and the Orion spacecraft — the same system that will send future Artemis astronauts to the Moon. That’s why NASA needs someone capable to test the vehicle. Someone with the necessary experience. Someone with the Right Stuff. (Or... stuffing).

The Adventures Of Commander Moonikin Campos

Meet Commander Moonikin Campos. He is a manikin, or a replica human body. Campos is named after Arturo Campos, a trailblazing NASA employee who worked on Apollo missions. Arturo Campos’ skill as an electrical engineer was pivotal in the rescue efforts to help guide the Apollo 13 astronauts home.

The Adventures Of Commander Moonikin Campos

As the leader of the mission, Commander Campos will be flying in the pilot’s seat for the length of the mission: a journey of 1.3 million miles (~2 million km) around the Moon and back to Earth. He's spent years training for this mission and he loves a challenge. Campos will be equipped with two radiation sensors and will have additional sensors under his headrest and behind his seat to record acceleration and vibration data throughout the mission.

The Adventures Of Commander Moonikin Campos

Traveling with Campos are his quirky companions, Zohar and Helga. They’re part of a special experiment to measure radiation outside of the protective bubble of Earth’s atmosphere. Together with their commander, they’re excited to play a role in humanity’s next great leap. (And hopefully they can last the entire flight without getting on each other's nerves.)

The Adventures Of Commander Moonikin Campos

Will our brave explorers succeed on their mission and ensure the success of future Artemis operations? Can Commander Moonikin Campos live up to the legacy of his heroic namesake?? And did anyone remember to bring snacks??? Get the answers in this thrilling three-part series!

The Adventures Of Commander Moonikin Campos

In the first part of Commander Moonikin Campos’ journey, our trailblazing hero prepares for liftoff from NASA’s spaceport at Kennedy Space Center  in Florida, gets acquainted with the new hardware aboard the Orion spacecraft, and meets his crewmates: Helga and Zohar!

The Adventures Of Commander Moonikin Campos

In the second part of the trio’s adventure, Campos, Helga, and Zohar blast out of the Earth’s atmosphere with nearly 8.8 million pounds (4 million kg) of thrust powering their ascent. Next stop: the Moon!

The Adventures Of Commander Moonikin Campos

In the final chapter of the Artemis I mission, Campos and friends prepare for their return home, including the last and most dangerous part of their journey: reentering Earth’s atmosphere at a screeching 25,000 miles per hour (40,000 kph).

Make sure to follow us on Tumblr for your regular dose of space!


Tags
8 years ago

Solar System: Things to Know

Help us find the most interesting spots to image on Jupiter, learn how Hubble is helping the Voyager craft find their way and more!

1. Calling All Citizen Scientists!

image

Join the Mission Juno virtual imaging team by helping us to determine the best locations in Jupiter's atmosphere that JunoCam will capture. Voting is open January 19-23, 2017. Visit www.missionjuno.swri.edu/junocam for more information about JunoCam voting.

2. Leading the Way

image

Our Hubble Space Telescope is providing a road map for the two Voyager spacecraft as they hurtle through unexplored territory on their trip beyond our solar system. Along the way, the Voyager craft are measuring the interstellar medium, the mysterious environment between stars. Hubble is measuring the material along the probes' future trajectories and even after the Voyagers run out of electrical power and are unable to send back new data, which may happen in about a decade, astronomers can use Hubble observations to characterize the environment of through which these silent ambassadors will glide.

3. Explorers Wanted

image

Mars needs YOU! In the future, Mars will need all kinds of explorers, farmers, surveyors, teachers . . . but most of all YOU! Join us on the Journey to Mars as we explore with robots and send humans there one day. Download a Mars poster that speaks to you. Be an explorer!

4. Tracking Every Sol

image

Each sol, or Martian day, the Mars Curiosity Team tracks the rover’s progress. And you can track them too at: http://mars.nasa.gov/msl/mission/mars-rover-curiosity-mission-updates/. 

5. Happy 425th birthday,  Pierre Gassendi

image

January 22 is the 425th birthday of Pierre Gassendi, French philosopher, priest, scientist, astronomer, mathematician and an active observational scientist. He was the first to publish data on the 1631 transit of Mercury. The Lunar Crater Gassendi is named for him.

Discover the full list of 10 things to know about our solar system this week HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

It’s Friday...Come Space Out with Us

It’s Friday…which seems like a great excuse to take a look at some awesome images from space.

First, let’s start with our home planet: Earth.

It’s Friday...Come Space Out With Us

This view of the entire sunlit side of Earth was taken from one million miles away…yes, one MILLION! Our EPIC camera on the Deep Space Climate Observatory captured this image in July 2015 and the picture was generated by combining three separate images to create a photographic-quality image.

Next, let’s venture out 4,000 light-years from Earth.

It’s Friday...Come Space Out With Us

This image, taken by the Hubble Space Telescope, is not only stunning…but shows the colorful “last hurrah” of a star like our sun. This star is ending its life by casting off its outer layers of gas, which formed a cocoon around the star’s remaining core. Our sun will eventually burn out and shroud itself with stellar debris…but not for another 5 billion years.

The material expelled by the star glows with different colors depending on its composition, its density and how close it is to the hot central star. Blue samples helium; blue-green oxygen, and red nitrogen and hydrogen.

Want to see some rocks on Mars?

It’s Friday...Come Space Out With Us

Here’s an image of the layered geologic past of Mars revealed in stunning detail. This color image was returned by our Curiosity Mars rover, which is currently “roving” around the Red Planet, exploring the “Murray Buttes” region.

In this region, Curiosity is investigating how and when the habitable ancient conditions known from the mission’s earlier findings evolved into conditions drier and less favorable for life.

Did you know there are people currently living and working in space?

It’s Friday...Come Space Out With Us

Right now, three people from three different countries are living and working 250 miles above Earth on the International Space Station. While there, they are performing important experiments that will help us back here on Earth, and with future exploration to deep space.

This image, taken by NASA astronaut Kate Rubins shows the stunning moonrise over Earth from the perspective of the space station.

Lastly, let’s venture over to someplace REALLY hot…our sun.

It’s Friday...Come Space Out With Us

The sun is the center of our solar system, and makes up 99.8% of the mass of the entire solar system…so it’s pretty huge. Since the sun is a star, it does not have a solid surface, but is a ball of gas held together by its own gravity. The temperature at the sun’s core is about 27 million degrees Fahrenheit (15 million degrees Celsius)…so HOT!

This awesome visualization appears to show the sun spinning, as if stuck on a pinwheel. It is actually the spacecraft, SDO, that did the spinning though. Engineers instructed our Solar Dynamics Observatory (SDO) to roll 360 degrees on one axis, during this seven-hour maneuver, the spacecraft took an image every 12 seconds.

This maneuver happens twice a year to help SDO’s imager instrument to take precise measurements of the solar limb (the outer edge of the sun as seen by SDO).

Thanks for spacing out with us...you may now resume your Friday. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Solar System: Things to Know This Week

From the people who work for us, to ESA’s ExoMars, to phases of the moon, learn more about the solar system. 

1. NASA Is More Than Astronauts

image

Our employees engage in a very wide range of work, and they come from a variety of backgrounds. To meet some of them and learn how they came to work for us, follow the #NASAProud tag on social media.

+ Learn about job opportunities and why NASA employees love working there + Get to know the people who explore the solar system

2. ExoMars Is Cleared for Landing 

image

A joint project between the European Space Agency and Russia's Roscosmos space agency, ExoMars 2016 will enter orbit around the Red Planet on Oct. 19. The mission includes the Trace Gas Orbiter (TGO) and the Schiaparelli entry, descent and landing demonstrator. TGO will make a detailed inventory of Mars' atmospheric gases, looking especially for rare gases like methane to help determine whether that methane stems from a geological or biological source. The orbiter also carries a pair of transmitters provided by NASA. The Schiaparelli lander separated from TGO on Oct. 16, entering the atmosphere for a six-minute descent to a region in Meridiani Planum, not far from NASA's Opportunity rover. Schiaparelli will test landing technologies in preparation for future missions, including a heatshield, parachute, propulsion system and a crushable structure.

+ Go along for the ride

3. This Just in From Jupiter

Solar System: Things To Know This Week

Mission managers for our Juno mission to Jupiter have decided to postpone the burn of its main rocket motor originally scheduled for Oct. 19. Engineers want to carefully examine telemetry from a pair of sticky helium valves before the maneuver, which will reduce the time it takes Juno to orbit Jupiter from about 53 days to 14 days. The next opportunity for the burn would be during its close flyby of Jupiter on Dec. 11. Meanwhile, the spacecraft is still gathering data about Jupiter, and Juno will still swing close by the giant planet on Oct. 19.

+ Read more

4. It's Just a Phase 

Solar System: Things To Know This Week

The moon was full on Oct. 16. This month's full moon is sometimes called the Harvest Moon or Hunter's Moon.

+ See a video showing all of this year's lunar + Learn what causes the moon's phases

5. Free to Ride

Solar System: Things To Know This Week

Did you know that NASA offers several other fascinating (and free) online experiences, all based on actual data from real missions. Here are a few to explore:

+ Mars Trek + Vesta Trek + Lunaserv Global Explorer + Deep Space Network (DSN) Now + Spacecraft 3D app

Discover the full list of 10 things to know about our solar system this week HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago
Pew! Pew! Pew! 

Pew! Pew! Pew! 

Imagine slow-motion fireworks that started exploding 170 years ago and are still continuing. This type of firework is not launched into Earth's atmosphere, but rather into space by a doomed super-massive star, called Eta Carinae. 

Enjoy the the latest view from our Hubble Space Telescope. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

NASA: 2016 Look Ahead

image

The work we do, and will continue in 2016, helps the United States maintain its world leadership in space exploration and scientific discovery. Here’s an overview of what we have planned for the coming year:

Our Journey to Mars

image

We’re developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Mars is a rich destination for scientific discovery and robotic and human exploration as we expand our presence into the solar system. Its formation and evolution are comparable to Earth, helping us learn more about our own planet’s history and future.

Work and Research on the International Space Station

image

The International Space Station is a unique place – a convergence of science, technology and human innovation that demonstrates new technologies and makes research breakthroughs not possible on Earth. In 2016, we will continue our groundbreaking research on the orbiting laboratory.

Returning Human Spaceflight Launches to American Soil

NASA: 2016 Look Ahead

Our Commercial Crew Program is working with the American aerospace industry as companies develop and operate a new generation of spacecraft and launch systems capable of carrying crews to low-Earth orbit and the International Space Station. Commercial transportation to and from the station will provide expanded utility, additional research time and broader opportunities of discovery on the orbiting laboratory.

Studying Our Earth Right Now

image

We use the vantage point of space to increase our understanding of our home planet, improve lives and safeguard our future. In 2016, we will continue to monitor Earth’s vital signs from land, air and space with a fleet of satellites and ambitious airborne and ground-based observation campaigns.

Fostering Groundbreaking Technology Development

image

Sustained investments in NASA technology advances our space exploration, science and aeronautics capabilities. Our technology development also supports the nation's innovation economy by creating solutions that generate tangible benefits for life on earth. In 2016, we will continue to invest in the future of innovation.

Breakthroughs in Aeronautics

image

Thanks to our advancements in aeronautics, today’s aviation industry is better equipped than ever to safely and efficiently transport all those passengers to their destinations. In fact, every U.S. aircraft flying today and every U.S. air traffic control tower uses NASA-developed technology in some way. In 2016, we will continue making these breakthroughs in aeronautics.

Discoveries in Our Solar System and Beyond

image

This year we will continue exploring our solar system and beyond to unravel the mysteries of our universe. We are looking to answer key questions about our home planet, neighboring planets in our solar system and more!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Five Things to Know About NASA Astronaut Kate Rubins

image

Among the newest crew on the International Space Station is U.S. astronaut Kate Rubins, who will assume the role of Flight Engineer for Expeditions 48 and 49. Here are five things you should know about her:

1. She was chosen from a pool of over 3,500 applicants to receive a spot on our 2009 astronaut training class.

image

After being selected, Rubins spent years training at Johnson Space Center to become an astronaut. She learned how to use the complex station systems, perform spacewalks, exercise in space and more. Some training even utilized virtual reality.

2. She has a degree in cancer biology.

image

After earning a Bachelor of Science degree in Molecular Biology from the University of California, San Diego in 1999, Rubins went on to receive a doctorate in Cancer Biology from Stanford University Medical School Biochemistry Department and Microbiology and Immunology Department in 2005. In other words, she’s extremely smart.

3. Her research has benefited humanity.

image

Rubins helped to create therapies for Ebola and Lassa viruses by conducting research collaboratively with the U.S. Army. She also aided development of the first smallpox infection model with the U.S. Army Medical Research Institute of Infectious Diseases and the Centers for Disease Control and Prevention. NBD. It will be exciting to see the research come out of a mission with a world-class scientist using a world-class, out-of-this-world laboratory!

4. She is scheduled to be the first person to sequence DNA in space.

image

During her time at the space station, Rubins will participate in several science experiments. Along with physical science, Earth and space science and technology development work, she will conduct biological and human research investigations. Research into sequencing the first genome in microgravity and how the human body’s bone mass and cardiovascular systems are changed by living in space are just two examples of the many experiments in which Rubins may take part.

5. In her spare time, she enjoys scuba diving and triathlons...among other things.

image

Rubins was on the Stanford Triathlon team, and also races sprint and Olympic distance. She is involved with health care/medical supply delivery to Africa and started a non-profit organization to bring supplies to Congo. Her recent pursuits involve flying airplanes and jumping out of them -- not simultaneously. 

image

Rubins is scheduled to arrive at the International Space Station at 12:12 a.m. Saturday, July 9. After her launch on Wednesday, July 6, the three crew members traveled 2 days before docking to the space station’s Rassvet module. 

Watch live coverage of docking and their welcoming starting at 11:30 p.m. EDT Friday, July 8 on NASA Television.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Space Telescope Gets to Work

Our latest space telescope, Transiting Exoplanet Survey Satellite (TESS), launched in April. This week, planet hunters worldwide received all the data from the first two months of its planet search. This view, from four cameras on TESS, shows just one region of Earth’s southern sky.

image

The Transiting Exoplanet Survey Satellite (TESS) captured this strip of stars and galaxies in the southern sky during one 30-minute period in August. Created by combining the view from all four of its cameras, TESS images will be used to discover new exoplanets. Notable features in this swath include the Large and Small Magellanic Clouds and a globular cluster called NGC 104. The brightest stars, Beta Gruis and R Doradus, saturated an entire column of camera detector pixels on the satellite’s second and fourth cameras.

Credit: NASA/MIT/TESS

The data in the images from TESS will soon lead to discoveries of planets beyond our solar system – exoplanets. (We’re at 3,848 so far!)

image

But first, all that data (about 27 gigabytes a day) needs to be processed. And where do space telescopes like TESS get their data cleaned up? At the Star Wash, of course!

image

TESS sends about 10 billion pixels of data to Earth at a time. A supercomputer at NASA Ames in Silicon Valley processes the raw data, turning those pixels into measures of a star’s brightness.

image

And that brightness? THAT’S HOW WE FIND PLANETS! A dip in a star’s brightness can reveal an orbiting exoplanet in transit.

image

TESS will spend a year studying our southern sky, then will turn and survey our northern sky for another year. Eventually, the space telescope will observe 85 percent of Earth’s sky, including 200,000 of the brightest and closest stars to Earth.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Solar System: Things to Know This Week

We love Lucy—our spacecraft that will visit the ancient Trojan asteroids near Jupiter, that is. This week, let us count the ways this 2021 mission could revolutionize what we know about the origins of Earth and ourselves.

1. Lucky Lucy 

image

Earlier this year, we selected the Lucy mission to make the first-ever visit to a group of asteroids known as the Trojans. This swarm of asteroids orbits in two loose groups around the Sun, with one group always ahead of Jupiter in its path, and the other always behind. The bodies are stabilized by the Sun and Jupiter in a gravitational balancing act, gathering in locations known as Lagrange points.

2. Old. Really, Really Old

image

Jupiter's swarms of Trojan asteroids may be remnants of the material that formed our outer planets more than 4 billion years ago—so these fossils may help reveal our most distant origins. "They hold vital clues to deciphering the history of the solar system," said Dr. Harold F. Levison, Lucy principal investigator from Southwest Research Institute (SwRI) in Boulder, Colorado.

3. A Link to The Beatles

image

Lucy takes its name from the fossilized human ancestor, called "Lucy" by her discoverers, whose skeleton provided unique insight into humanity's evolution. On the night it was discovered in 1974, the team's celebration included dancing and singing to The Beatles' song "Lucy In The Sky With Diamonds." At some point during that evening, expedition member Pamela Alderman named the skeleton "Lucy," and the name stuck. Jump ahead to 2013 and the mission's principal investigator, Dr. Levison, was inspired by that link to our beginnings to name the spacecraft after Lucy the fossil. The connection to The Beatles' song was just icing on the cake.

4. Travel Itinerary

One of two missions selected in a highly competitive process, Lucy will launch in October 2021. With boosts from Earth's gravity, it will complete a 12-year journey to seven different asteroids: a Main Belt asteroid and six Trojans.

5. Making History

image

No other space mission in history has been launched to as many different destinations in independent orbits around the Sun. Lucy will show us, for the first time, the diversity of the primordial bodies that built the planets.

6. What Lies Beneath 

Lucy's complex path will take it to both clusters of Trojans and give us our first close-up view of all three major types of bodies in the swarms (so-called C-, P- and D-types). The dark-red P- and D-type Trojans resemble those found in the Kuiper Belt of icy bodies that extends beyond the orbit of Neptune. The C-types are found mostly in the outer parts of the Main Belt of asteroids, between the orbits of Mars and Jupiter. All of the Trojans are thought to be abundant in dark carbon compounds. Below an insulating blanket of dust, they are probably rich in water and other volatile substances.

7. Pretzel, Anyone?

image

This diagram illustrates Lucy's orbital path. The spacecraft's path (green) is shown in a slowly turning frame of reference that makes Jupiter appear stationary, giving the trajectory its pretzel-like shape.

8. Moving Targets

image

This time-lapsed animation shows the movements of the inner planets (Mercury, brown; Venus, white; Earth, blue; Mars, red), Jupiter (orange), and the two Trojan swarms (green) during the course of the Lucy mission.

9. Long To-Do List

Lucy and its impressive suite of remote-sensing instruments will study the geology, surface composition, and physical properties of the Trojans at close range. The payload includes three imaging and mapping instruments, including a color imaging and infrared mapping spectrometer and a thermal infrared spectrometer. Lucy also will perform radio science investigations using its telecommunications system to determine the masses and densities of the Trojan targets.

10. Dream Team

Several institutions will come together to successfully pull off this mission. The Southwest Research Institute in Boulder, Colorado, is the principal investigator institution. Our Goddard Space Flight Center will provide overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space Systems in Denver will build the spacecraft. Instruments will be provided by Goddard, the Johns Hopkins Applied Physics Laboratory and Arizona State University. Discovery missions are overseen by the Planetary Missions Program Office at our Marshall Space Flight Center in Huntsville, Alabama, for our Planetary Science Division.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • watch
    watch reblogged this · 1 year ago
  • ap93099782
    ap93099782 liked this · 4 years ago
  • ducktaleswoo-oo
    ducktaleswoo-oo liked this · 4 years ago
  • getonmybookshelf
    getonmybookshelf liked this · 4 years ago
  • maggietann
    maggietann reblogged this · 5 years ago
  • maggietann
    maggietann liked this · 5 years ago
  • ireallydontlikecheese
    ireallydontlikecheese liked this · 5 years ago
  • dragonblumae
    dragonblumae liked this · 5 years ago
  • adt-space
    adt-space reblogged this · 5 years ago
  • intj-bitch
    intj-bitch liked this · 5 years ago
  • smol-bean-dragon-hoard
    smol-bean-dragon-hoard liked this · 5 years ago
  • algo-magico-blog
    algo-magico-blog liked this · 5 years ago
  • nonbinary-spade
    nonbinary-spade liked this · 5 years ago
  • theofficialdeannawinchester
    theofficialdeannawinchester liked this · 5 years ago
  • sassyshakespeareftw
    sassyshakespeareftw liked this · 5 years ago
  • tracksuitmafia-bro
    tracksuitmafia-bro liked this · 5 years ago
  • catyuy
    catyuy reblogged this · 5 years ago
  • keira-roses-world
    keira-roses-world liked this · 5 years ago
  • generic-strawberry
    generic-strawberry liked this · 5 years ago
  • wordsmith689
    wordsmith689 liked this · 5 years ago
  • eclecticturtlelawyerhuman-blog
    eclecticturtlelawyerhuman-blog liked this · 5 years ago
  • skcirthinq
    skcirthinq liked this · 5 years ago
  • readinginzerogravity
    readinginzerogravity liked this · 5 years ago
  • immano
    immano liked this · 5 years ago
  • sadjoh
    sadjoh liked this · 5 years ago
  • blogiamgoingmad
    blogiamgoingmad liked this · 5 years ago
  • ultra-moomeow
    ultra-moomeow liked this · 5 years ago
  • rosaliachristian
    rosaliachristian liked this · 5 years ago
  • delicatemusictale
    delicatemusictale liked this · 5 years ago
  • creativefictionlover
    creativefictionlover reblogged this · 5 years ago
  • creativefictionlover
    creativefictionlover liked this · 5 years ago
  • pinkpanthress
    pinkpanthress liked this · 5 years ago
  • shycrazythoughts
    shycrazythoughts liked this · 5 years ago
  • realspaceships
    realspaceships liked this · 5 years ago
  • sourlemonclub
    sourlemonclub liked this · 5 years ago
  • franticbagel
    franticbagel liked this · 5 years ago
  • sinn1230
    sinn1230 reblogged this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags