Swift: Our Sleuth For The Universe’s Gamma-ray Bursts

Swift: Our Sleuth for the Universe’s Gamma-ray Bursts

The universe is full of mysteries, and we continue to search for answers. How can we study matter and energy that we can’t see directly? What’s it like inside the crushed core of a massive dead star? And how do some of the most powerful explosions in the universe evolve and interact with their surrounding environment? 

Luckily for us, NASA’s Neil Gehrels Swift Observatory is watching the skies and helping astronomers answer that last question and more! As we celebrate its 15-year anniversary, let’s get you up to speed about Swift.

image

What are gamma-ray bursts and why are they interesting?

Gamma-ray bursts are the most powerful explosions in the universe. When they occur, they are about a million trillion times as bright as the Sun. But these bursts don’t last long — from a few milliseconds (we call those short duration bursts) to a few minutes (long duration). In the 1960s, spacecraft were watching for gamma rays from Earth — a sign of nuclear testing. What scientists discovered, however, were bursts of gamma rays coming from space!

Gamma-ray bursts eventually became one of the biggest mysteries in science. Scientists wanted to know: What events sparked these fleeting but powerful occurrences?

So how do gamma-ray bursts and Swift connect?

When it roared into space on a rocket, Swift’s main goals included understanding the origin of gamma-ray bursts, discovering if there were additional classes of bursts (besides the short and long ones), and figuring out what these events could tell us about the early universe.

image

With Swift as our eyes on the sky, we now know that gamma-ray bursts can be some of the farthest objects we’ve ever detected and lie in faraway galaxies. In fact, the closest known gamma-ray burst occurred more than 100 million light-years from us. We also know that these explosions are associated with some of the most dramatic events in our universe, like the collapse of a massive star or the merger of two neutron stars — the dense cores of collapsed stars.

image

Swift is still a powerful multiwavelength observatory and continues to help us solve mysteries about the universe. In 2018 it located a burst of light that was at least 10 times brighter than a typical supernova. Last year Swift, along with NASA’s Fermi Gamma-ray Space Telescope, announced the discovery of a pair of distant explosions which produced the highest-energy light yet seen from gamma-ray bursts.

Swift can even study much, much closer objects like comets and asteroids!

image

Why is Swift unique?

How do we study events that happen so fast? Swift is first on the scene because of its ability to automatically and quickly turn to investigate sudden and fascinating events in the cosmos. These qualities are particularly helpful in pinpointing and studying short-lived events.

image

The Burst Alert Telescope, which is one of Swift’s three instruments, leads the hunt for these explosions. It can see one-sixth of the entire sky at one time. Within 20 to 75 seconds of detecting a gamma-ray burst, Swift automatically rotates so that its X-ray and ultraviolet telescopes can view the burst.

image

Because of the “swiftness” of the satellite, it can look at a lot in 24 hours — between 50 and 100 targets each day! Swift has new “targets-of-opportunity” to look at every day and can also look at objects for follow up observations. By doing so, it can see how events in our cosmos change over time.

How did Swift get its name?

You may have noticed that lots of spacecraft have long names that we shorten to acronyms. However, this isn’t the case for Swift. It’s named after the bird of the same name, and because of the satellite’s ability to move quickly and re-point its science instruments.

When it launched, Swift was called NASA’s Swift Observatory. But in January 2018, Swift was renamed the Neil Gehrels Swift Observatory in memory of the mission’s original principal investigator, Neil Gehrels.

image

Follow along with Swift to see a typical day in the life of the satellite:

More Posts from Nasa and Others

5 years ago

What popular film is the closest to reality for you?


Tags
6 years ago

How Do You Like Your Turkey? Home-Cooked or Rocket-Launched?

image

It’s Thanksgiving, which means that you’re probably thinking about food right now. And here at NASA, we have to think about food very seriously when we explore space!

Astronauts Need to Eat, Too!

Like for you on Earth, nutrition plays a key role in maintaining the health and optimal performance of the astronauts. The Space Food Systems team is required to meet the nutritional needs of each crew member while adhering to the requirements of limited storage space, limited preparation options, and the difficulties of eating without gravity. 

Good food is necessary being comfortable on a mission a long way from home — especially for crewmembers who are on board for many months at a time. It’s important that the astronauts like the food they’re eating everyday, even given the preparation constraints!

Astronaut Food Has Not Always Been Appetizing

image

The early space programs were groundbreaking in a lot of ways — but not when it came to food. Like today, crumbs had to be prevented from scattering in microgravity and interfering with the instruments. Mercury astronauts had to endure bite-sized cubes, freeze-dried powders, and semi-liquids stuffed into aluminum tubes. The freeze-dried food were hard to rehydrate, squeezing the tubes was understandable unappetizing, and the food was generally considered to be, like spaceflight, a test of endurance.

However, over the years, packaging improved, which in turn enhanced food quality and choices. The Apollo astronauts were the first to have hot water, which made rehydrating foods easier and improved the food’s taste. And even the Space Shuttle astronauts had opportunities to design their own menus and choose foods commercially available on grocery store shelves. 

 The Wonders of Modern Space Food

image

Nowadays, astronauts on the International Space Station have the opportunity to sample a variety of foods and beverages prepared by the Space Food Systems team and decide which ones they prefer. They can add water to rehydratable products or eat products that are ready to eat off the shelf.

All the cooking and preparation has been done for them ahead of time because 1) they don’t have room for a kitchen to cook on the space station 2) they don’t have time to cook! The crewmembers are extremely occupied with station maintenance as well as scientific research on board, so meal times have to be streamlined as much as possible. 

Instead of going grocery shopping, bulk overwrap bags (BOBs!) are packed into cargo transfer bags for delivery to the space station. Meal based packaging allows the astronauts to have entrees, side dishes, snacks, and desserts to choose from. 

Taste in Space

image

The perception of taste changes in space. In microgravity, astronauts experience a fluid shift in their bodies, so the sensation is similar to eating with a headcold. The taste is muted so crewmembers prefer spicy foods or food with condiments to enhance the flavor. 

We Can’t Buy Groceries, But We Can Grow Food!

Growing plants aboard the space station provides a unique opportunity to study how plants adapt to microgravity. Plants may serve as a food source for long term missions, so it’s critical to understand how spaceflight affects plant growth. Plus, having fresh food available in space can have a positive impact on astronauts’ moods!

Since 2002, the Lada greenhouse has been used to perform almost continuous plant growth experiments on the station. We have grown a vast variety of plants, including thale cress, swiss chard, cabbage, lettuce, and mizuna. 

image

And in 2015, Expedition 44 members became the first American astronauts to eat plants grown in space when they munched on their harvest of Red Romaine. 

Earthlings Can Eat Space Food, Too

To give you a clear idea of how diverse the selection is for astronauts on board the space station, two earthlings gave the astronaut menu a try for a full week. Besides mentioning once that hot sauce was needed, they fared pretty well! (The shrimp cocktail was a favorite.)

Space Technology for Food on Earth

Not only has our space food improved, but so has our ability measure food production on Earth. Weather that is too dry, too wet, too hot, or too cool can strongly affect a farmer’s ability to grow crops. We collaborated with the United States Agency for International Development to create a system for crop yield prediction based on satellite data: the GEOGLAM Crop Monitor for Early Warning.

image

This map measures the health, or “greenness” of vegetation based on how much red or near-infrared light the leaves reflect. Healthy vegetation reflects more infrared light and less visible light than stressed vegetation. As you can see from the map, a severe drought spread across southern Mexico to Panama in June to August of this year. 

The Crop Monitor compiles different types of crop condition indicators — such as temperature, precipitation, and soil moisture — and shares them with 14 national and international partners to inform relief efforts.

Thanksgiving in Space 

Space food has certainly come a long way from semi-liquids squeezed into aluminum tubes! This year, Expedition 57 crewmembers Commander Alexander Gerst and Flight Engineer Serena M. Auñón-Chancellor are looking forward to enjoying a Thanksgiving meal that probably sounds pretty familiar to you: turkey, stuffing, candied yams, and even spicy pound cakes!

Hungry for More?

If you can’t get enough of space food, tune into this episode of “Houston, We Have a Podcast” and explore the delicious science of astronaut mealtime with Takiyah Sirmons. 

And whether you’re eating like a king or an astronaut, we wish everybody a happy and safe Thanksgiving!


Tags
7 years ago

What’s Up - February 2018

What’s Up For February?

image

This month, in honor of Valentine's Day, we'll focus on celestial star pairs and constellation couples.

image

Let's look at some celestial pairs!

image

The constellations Perseus and Andromeda are easy to see high overhead this month.

image

According to lore, the warrior Perseus spotted a beautiful woman--Andromeda--chained to a seaside rock. After battling a sea serpent, he rescued her. 

image

As a reward, her parents Cepheus and Cassiopeia allowed Perseus to marry Andromeda.

image

The great hunter Orion fell in love with seven sisters, the Pleiades, and pursued them for a long time. Eventually Zeus turned both Orion and the Pleiades into stars.

image

Orion is easy to find. Draw an imaginary line through his belt stars to the Pleiades, and watch him chase them across the sky forever.

image

A pair of star clusters is visible on February nights. The Perseus Double Cluster is high in the sky near Andromeda's parents Cepheus and Cassiopeia.

image

Through binoculars you can see dozens of stars in each cluster. Actually, there are more than 300 blue-white supergiant stars in each of the clusters.

What’s Up - February 2018

There are some colorful star pairs, some visible just by looking up and some requiring a telescope. Gemini's twins, the brothers Pollux and Castor, are easy to see without aid.

What’s Up - February 2018

Orion's westernmost, or right, knee, Rigel, has a faint companion. The companion, Rigel B, is 500 times fainter than the super-giant Rigel and is visible only with a telescope. 

What’s Up - February 2018

Orion's westernmost belt star, Mintaka, has a pretty companion. You'll need a telescope.

What’s Up - February 2018

Finally, the moon pairs up with the Pleiades on the 22nd and with Pollux and Castor on the 26th.

Watch the full What’s Up for February Video: 

There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
8 years ago

Gelatin in space!  Looks a bit like a tadpole when it is floating around, but I promise it was a tasty treat for us on the Space Station.  The food lab prepared drink bags with gelatin mix inside, and I made gelatin for the crew. It is very tempting to play with your food when it floats.

7 years ago

Finalists for a Future Mission to Explore the Solar System

We’ve selected two finalists for a robotic mission that is planned to launch in the mid-2020s! Following a competitive peer review process, these two concepts were chosen from 12 proposals that were submitted in April under a New Frontiers program announcement opportunity.

What are they?

In no particular order…

CAESAR

image

CAESAR, or the Comet Astrobiology Exploration Sample Return mission seeks to return a sample from 67P/Churyumov-Gerasimenko – the comet that was successfully explored by the European Space Agency’s Rosetta spacecraft – to determine its origin and history.

image

This mission would acquire a sample from the nucleus of comet Churyumov-Gerasimenko and return it safely to Earth. 

image

Comets are made up of materials from ancient stars, interstellar clouds and the birth of our solar system, so the CAESAR sample could reveal how these materials contributed to the early Earth, including the origins of the Earth's oceans, and of life.

Dragonfly

A drone-like rotorcraft would be sent to explore the prebiotic chemistry and habitability of dozens of sites on Saturn’s moon Titan – one of the so-called ocean worlds in our solar system.

image

Unique among these Ocean Worlds, Titan has a surface rich in organic compounds and diverse environments, including those where carbon and nitrogen have interacted with water and energy.

image

Dragonfly would be a dual-quadcopter lander that would take advantage of the environment on Titan to fly to multiple locations, some hundreds of miles apart, to sample materials and determine surface composition to investigate Titan's organic chemistry and habitability, monitor atmospheric and surface conditions, image landforms to investigate geological processes, and perform seismic studies.

What’s Next?

The CAESAR and Dragonfly missions will receive funding through the end of 2018 to further develop and mature the concepts. It is planned that from these, one investigation will be chosen in the spring of 2019 to continue into subsequent mission phases.

image

That mission would be the fourth mission in the New Frontiers portfolio, which conducts principal investigator (PI)-led planetary science missions under a development cost cap of approximately $850 million. Its predecessors are the New Horizons mission to Pluto and a Kuiper Belt object, the Juno mission to Jupiter and OSIRIS-REx, which will rendezvous with and return a sample of the asteroid Bennu. 

Key Technologies

We also announced that two mission concepts were chosen to receive technology development funds to prepare them for future mission opportunities.

image

The Enceladus Life Signatures and Habitability (ELSAH) mission concept will receive funds to enable life detection measurements by developing cost-effective techniques to limit spacecraft contamination on cost-capped missions.

image

The Venus In situ Composition Investigations (VICI) mission concept will further develop the VEMCam instrument to operate under harsh conditions on Venus. The instrument uses lasers on a lander to measure the mineralogy and elemental composition of rocks on the surface of Venus.

The call for these mission concepts occurred in April and was limited to six mission themes: comet surface sample return, lunar south pole-Aitken Basin sample return, ocean worlds, Saturn probe, Trojan asteroid tour and rendezvous and Venus insitu explorer.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
4 years ago

As an engineering undergrad how can I contribute to the space exploration program?


Tags
8 years ago

What’s On Board the Next SpaceX Cargo Launch?

Cargo and supplies are scheduled to launch to the International Space Station on Monday, July 18 at 12:45 a.m. EDT. The SpaceX Dragon cargo spacecraft will liftoff from our Kennedy Space Center in Florida.

image

Among the arriving cargo is the first of two international docking adapters, which will allow commercial spacecraft to dock to the station when transporting astronauts in the near future as part of our Commercial Crew Program.

image

This metallic ring, big enough for astronauts and cargo to fit through represents the first on-orbit element built to the docking measurements that are standardized for all the spacecraft builders across the world.

image

Its first users are expected to be the Boeing Starliner and SpaceX Crew Dragon spacecraft, which are both now in development.

What About the Science?!

Experiments launching to the station range from research into the effects of microgravity on the human body, to regulating temperature on spacecraft. Take a look at a few:

A Space-based DNA Sequencer

image

DNA testing aboard the space station typically requires collecting samples and sending them back to Earth to be analyzed. Our Biomolecule Sequencer Investigation will test a new device that will allow DNA sequencing in space for the first time! The samples in this first test will be DNA from a virus, a bacteria and a mouse.

How big is it? Picture your smartphone…then cut it in half. This miniature device has the potential to identify microbes, diagnose diseases and evaluate crew member health, and even help detect DNA-based life elsewhere in the solar system.

OsteoOmics

What’s On Board The Next SpaceX Cargo Launch?

OsteoOmics is an experiment that will investigate the molecular mechanisms that dictate bone loss in microgravity. It does this by examining osteoblasts, which form bone; and osteoclasts, which dissolves bone. New ground-based studies are using magnetic levitation equipment to simulate gravity-related changes. This experiment hopes to validate whether this method accurately simulates the free-fall conditions of microgravity.

Results from this study could lead to better preventative care or therapeutic treatments for people suffering bone loss, both on Earth and in space!

Heart Cells Experiment

image

The goals of the Effects of Microgravity on Stem Cell-Derived Heart Cells (Heart Cells) investigation include increasing the understanding of the effects of microgravity on heart function, the improvement of heart disease modeling capabilities and the development of appropriate methods for cell therapy for people with heart disease on Earth.

Phase Change Material Heat Exchanger (PCM HX)

image

The goal of the Phase Change Material Heat Exchanger (PCM HX) project is to regulate internal spacecraft temperatures. Inside this device, we're testing the freezing and thawing of material in an attempt to regulate temperature on a spacecraft. This phase-changing material (PCM) can be melted and solidified at certain high heat temperatures to store and release large amounts of energy.

Watch Launch!

Live coverage of the SpaceX launch will be available starting at 11:30 p.m. EDT on Sunday, July 17 via NASA Television. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Juno: Join the Mission!

Our Juno spacecraft may be millions of miles from Earth, but that doesn’t mean you can’t get involved with the mission and its science. Here are a few ways that you can join in on the fun:

Juno Orbit Insertion

image

This July 4, our solar-powered Juno spacecraft arrives at Jupiter after an almost five-year journey. In the evening of July 4, the spacecraft will perform a suspenseful orbit insertion maneuver, a 35-minute burn of its main engine, to slow the spacecraft by about 1,212 miles per hour so it can be captured into the gas giant’s orbit. Watch live coverage of these events on NASA Television:

Pre-Orbit Insertion Briefing Monday, July 4 at 12 p.m. EDT

Orbit Insertion Coverage Monday, July 4 at 10:30 p.m. EDT

Join Us On Social Media

image

Orbit Insertion Coverage Facebook Live Monday, July 4 at 10:30 p.m. EDT

Be sure to also check out and follow Juno coverage on the NASA Snapchat account!

JunoCam

image

The Juno spacecraft will give us new views of Jupiter’s swirling clouds, courtesy of its color camera called JunoCam. But unlike previous space missions, professional scientists will not be the ones producing the processed views, or even choosing which images to capture. Instead, the public will act as a virtual imaging team, participating in key steps of the process, from identifying features of interest to sharing the finished images online.

image

After JunoCam data arrives on Earth, members of the public will process the images to create color pictures. Juno scientists will ensure JunoCam returns a few great shots of Jupiter’s polar regions, but the overwhelming majority of the camera’s image targets will be chosen by the public, with the data being processed by them as well. Learn more about JunoCam HERE.

Follow our Juno mission on the web, Facebook, Twitter, YouTube and Tumblr.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Earth Expeditions Preview

A Closer Look at Our Home Planet

image

Our view from space shows our planet is changing, but to really understand the details of these changes and what they mean for our future, scientists need a closer look. Over the next six months, we’re taking you on a world tour as we kick off major new field research campaigns to study regions of critical change from land, sea and air.

You can follow the Earth Expeditions on Facebook, Twitter and their Blog.

Take a look at the eight campaigns we will explore:

CORAL (Coral Reef Airborne Laboratory)

image

This three-year CORAL mission will use advanced airborne instruments and in-water measurements to survey a portion of the world’s coral reefs. The mission will assess the conditions of these threatened ecosystems to better understand their relation to the environment, including physical, chemical and human factors. With a new understanding of reef condition, the future of this global ecosystem can be predicted.

OMG (Oceans Melting Greenland)

image

Oceans Melting Greenland (OMG) mission will pave the way for improved estimates of sea level rise by addressing the question: To what extent are the oceans melting Greenland’s ice from below? This mission will observe changing water temperatures and glaciers that reach the ocean around all of Greenland from 2015 to 2020. This year, the OMG mission will fly over the periphery of Greenland to take measurements of the heights and extents of Greenland’s coastal glaciers that reach the ocean and release expendable sensors to measure the temperature and salinity of coastal waters. The OMG field campaign will gather data that will help scientists both understand how the oceans are joining with the atmosphere in melting the vast ice sheet and to predict the extent and timing of the resulting sea level rise.

NAAMES (North Atlantic Aerosols and Marine Ecosystems Study)

image

About half the carbon dioxide emitted into Earth’s atmosphere each year ends up in the ocean, and plankton absorb a lot of it. The NAAMES mission studies the world’s largest plankton bloom and how it gives rise to small organic particles that leave the ocean and end up in the atmosphere, ultimately influencing clouds and climate. This mission will be taking measurements from both ship and aircraft in the North Atlantic. 

KORUS-AQ (Korea U.S.-Air Quality)

image

Air quality is a significant environmental concern around the world. Scientists are developing new ways to untangle the different factors that contribute to poor air quality. KORUS-AQ is a joint field study between NASA and the Republic of Korea to advance the ability to monitor air pollution from space. The campaign will assess air quality across urban, rural and coastal South Korea using observations from aircraft, ground sites, ships and satellites to test air quality models and remote sensing methods. Findings from this study will help develop observing systems using models and data to improve air quality assessments for decision makers.

ABoVE (Arctic Boreal Vulnerability Experiment)

image

The ABoVE mission covers 2.5 million square miles of tundra, forests, permafrost and lakes in Alaska and Northwestern Canada. Scientists from the mission are using satellites and aircraft to study this formidable terrain as it changes in a warming climate. Teams of researchers will also go out into the field to gather additional data. The mission will investigate questions about the role of climate in wildfires, thawing permafrost, wildlife migration habits, insect outbreaks and more.

ATom (Atmospheric Tomography)

image

The ATom mission takes flight through Earth’s atmosphere to understand how short-lived greenhouse gases like ozone and methane contribute to climate change. In late July through August 2016, a suite of instruments aboard our DC-8 flying laboratory will be hopping down the Pacific Ocean from Alaska to the southern tip of South America. It will then travel north up the Atlantic to Greenland to measure more than 200 gases and particles in the air and their interactions all around the world.

ORACLES (Observations of Clouds above Aerosols and their Interactions)

image

Southern Africa produces almost a third of the world’s vegetative burning, which sends smoke particles up into the atmosphere, where they eventually mix with stratocumulus clouds over the southeastern Atlantic Ocean. Little is known about how these particles impact the clouds, which play a key role in both regional and global surface temperatures and precipitation. The ORACLES mission is a five-year ground and air campaign aimed at better understanding their interactions and improve on current climate models.

ACT-America (Atmospheric Carbon and Transport – America)

image

The ACT-America mission will conduct five airborne campaigns across three regions in the eastern United States to study the transport of atmospheric carbon. This region serves as an ideal study area for its productive biosphere, agricultural activity, gas and oil extraction and consumption, dynamic seasonally varying weather patterns and the most extensive carbon cycle and meteorological observing networks on Earth. Using space borne, airborne and ground-based measurements, this mission will enable more accurate and precise estimates for climate management and prediction by studying sources and sinks of greenhouse gases, which act as a thermal blanket for Earth.

Remember to follow the Earth Expeditions on Facebook, Twitter and their Blog.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

in a male dominated profession, what were some obstacles you faced as the first Hispanic female flight director and how did you overcome them? what would be your advice to young women interested in the space program?


Tags
Loading...
End of content
No more pages to load
  • orange-dusts
    orange-dusts liked this · 2 months ago
  • taylorswift-iraqifan
    taylorswift-iraqifan liked this · 2 months ago
  • raistlinsama
    raistlinsama liked this · 10 months ago
  • xxswiftgehrelsxx
    xxswiftgehrelsxx reblogged this · 3 years ago
  • starstruckcomicsanimeoperator
    starstruckcomicsanimeoperator liked this · 4 years ago
  • steve51world
    steve51world liked this · 4 years ago
  • usafphantom2
    usafphantom2 reblogged this · 4 years ago
  • usafphantom2
    usafphantom2 liked this · 4 years ago
  • idunnowhat
    idunnowhat liked this · 4 years ago
  • ap93099782
    ap93099782 liked this · 4 years ago
  • kimbermcleod
    kimbermcleod reblogged this · 4 years ago
  • kimbermcleod
    kimbermcleod liked this · 4 years ago
  • getonmybookshelf
    getonmybookshelf liked this · 4 years ago
  • 6-19-2020pt2
    6-19-2020pt2 reblogged this · 4 years ago
  • mariannellaa
    mariannellaa reblogged this · 4 years ago
  • mariannellaa
    mariannellaa liked this · 4 years ago
  • space-up-my-sleeve
    space-up-my-sleeve reblogged this · 4 years ago
  • leafblogger
    leafblogger liked this · 4 years ago
  • canistoptalkingaboutfeelingsnow
    canistoptalkingaboutfeelingsnow reblogged this · 4 years ago
  • kiutkittykat
    kiutkittykat liked this · 4 years ago
  • jakeforever
    jakeforever liked this · 4 years ago
  • maggietann
    maggietann reblogged this · 5 years ago
  • maggietann
    maggietann liked this · 5 years ago
  • hrtensia
    hrtensia liked this · 5 years ago
  • ireallydontlikecheese
    ireallydontlikecheese liked this · 5 years ago
  • pinkiepieaddict
    pinkiepieaddict reblogged this · 5 years ago
  • beautifulangelpirate
    beautifulangelpirate liked this · 5 years ago
  • imbogwitch
    imbogwitch liked this · 5 years ago
  • mutato-nomine-music
    mutato-nomine-music liked this · 5 years ago
  • etceterodactyl
    etceterodactyl reblogged this · 5 years ago
  • andromeda1023
    andromeda1023 reblogged this · 5 years ago
  • andromeda1023
    andromeda1023 liked this · 5 years ago
  • shooting-starlight
    shooting-starlight liked this · 5 years ago
  • https-lostcause
    https-lostcause liked this · 5 years ago
  • den1990
    den1990 reblogged this · 5 years ago
  • maliqueen27-blog
    maliqueen27-blog liked this · 5 years ago
  • wolfjackle
    wolfjackle reblogged this · 5 years ago
  • wolfjackle
    wolfjackle liked this · 5 years ago
  • halfwayskybound
    halfwayskybound liked this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags