Concerning the new telescope -out of curiosity- what is the maximum distance it can view planets, galaxies, objects, anything up to -in terms of common/metric measurement, and/or years (if applicable) etc.? -Rose
We hope you like your planetary systems extra spicy. 🔥
A new system of seven sizzling planets has been discovered using data from our retired Kepler space telescope.
Named Kepler-385, it’s part of a new catalog of planet candidates and multi-planet systems discovered using Kepler.
The discovery helps illustrate that multi-planetary systems have more circular orbits around the host star than systems with only one or two planets.
Our Kepler mission is responsible for the discovery of the most known exoplanets to date. The space telescope’s observations ended in 2018, but its data continues to paint a more detailed picture of our galaxy today.
All seven planets are between the size of Earth and Neptune.
Its star is 10% larger and 5% hotter than our Sun.
This system is one of over 700 that Kepler’s data has revealed.
The planets’ orbits have been represented in sound.
Now that you’ve heard a little about this planetary system, get acquainted with more exoplanets and why we want to explore them.
Make sure to follow us on Tumblr for your regular dose of space!
It looks like our Hubble Space Telescope captured an image of a peaceful, cosmic butterfly unfurling its celestial wings, but the truth is vastly more violent. In the Butterfly Nebula, layers of gas are being ejected from a dying star. Medium-mass stars grow unstable as they run out of fuel, which leads them to blast tons of material out into space at speeds of over a million miles per hour!
Streams of intense ultraviolet radiation cause the cast-off material to glow, but eventually the nebula will fade and leave behind only a small stellar corpse called a white dwarf. Our middle-aged Sun can expect a similar fate once it runs out of fuel in about six billion years.
Planetary nebulas like this one aren’t actually related to planets; the term was coined by astronomer William Herschel, who actually discovered the Butterfly Nebula in 1826. Through his small telescope, planetary nebulas looked like glowing, planet-like orbs. While stars that generate planetary nebulas may have once had planets orbiting them, scientists expect that the fiery death throes these stars undergo will ultimately leave any planets in their vicinity completely uninhabitable.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
If you’ve ever looked at a hurricane forecast, you’re probably familiar with “cones of uncertainty,” the funnel-shaped maps showing a hurricane’s predicted path. Thirty years ago, a hurricane forecast five days before it made landfall might have a cone of uncertainty covering most of the East Coast. The result? A great deal of uncertainty about who should evacuate, where it was safe to go, and where to station emergency responders and their equipment.
Over the years, hurricane forecasters have succeeded in shrinking the cone of uncertainty for hurricane tracks, with the help of data from satellites. Polar-orbiting satellites, which fly nearly directly above the North and South Poles, are especially important in helping cut down on forecast error.
The orbiting electronic eyeballs key to these improvements: the Joint Polar Satellite System (JPSS) fleet. A collaborative effort between NOAA and NASA, the satellites circle Earth, taking crucial measurements that inform the global, regional and specialized forecast models that have been so critical to hurricane track forecasts.
The forecast successes keep rolling in. From Hurricanes Harvey, Irma and Maria in 2017 through Hurricanes Florence and Michael in 2018, improved forecasts helped manage coastlines, which translated into countless lives and property saved. In September 2018, with the help of this data, forecasters knew a week ahead of time where and when Hurricane Florence would hit. Early warnings were precise enough that emergency planners could order evacuations in time — with minimal road clogging. The evacuations that did not have to take place, where residents remained safe from the hurricane’s fury, were equally valuable.
The satellite benefits come even after the storms make landfall. Using satellite data, scientists and forecasters monitor flooding and even power outages. Satellite imagery helped track power outages in Puerto Rico after Hurricane Maria and in the Key West area after Hurricane Irma, which gave relief workers information about where the power grid was restored – and which regions still lacked electricity.
Flood maps showed the huge extent of flooding from Hurricane Harvey and were used for weeks after the storm to monitor changes and speed up recovery decisions and the deployment of aid and relief teams.
As the 2019 Atlantic hurricane season kicks off, the JPSS satellites, NOAA-20 and Suomi-NPP, are ready to track hurricanes and tropical cyclones as they form, intensify and travel across the ocean – our eyes in the sky for severe storms.
For more about JPSS, follow @JPSSProgram on Twitter and facebook.com/JPSS.Program, or @NOAASatellites on Twitter and facebook.com/NOAASatellites.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
We’ve just added two more science missions to our lineup! The two selected missions have the potential to open new windows on one of the earliest eras in the history of our solar system – a time less than 10 millions years after the birth of our sun.
The missions, known as Lucy and Psyche, were chosen from five finalists and will proceed to mission formulation.
Lucy, a robotic spacecraft, will visit a target-rich environment of Jupiter’s mysterious Trojan asteroids. Scheduled to launch in October 2021, the spacecraft is slated to arrive at its first destination, a main asteroid belt, in 2025.
Then, from 2027 to 2033, Lucy will explore six Jupiter Trojan asteroids. These asteroids are trapped by Jupiter’s gravity in two swarms that share the planet’s orbit, one leading and one trailing Jupiter in its 12-year circuit around the sun. The Trojans are thought to be relics of a much earlier era in the history of the solar system, and may have formed far beyond Jupiter’s current orbit.
Studying these Trojan asteroids will give us valuable clues to deciphering the history of the early solar system.
The Psyche mission will explore one of the most intriguing targets in the main asteroid belt – a giant metal asteroid, known as 16 Psyche, about three times farther away from the sun than is the Earth. The asteroid measures about 130 miles in diameter and, unlike most other asteroids that are rocky or icy bodies, it is thought to be comprised of mostly metallic iron and nickel, similar to Earth’s core.
Scientists wonder whether psyche could be an exposed core of an early planet that could have been as large as Mars, but which lost its rocky outer layers due to a number of violent collisions billions of years ago.
The mission will help scientists understand how planets and other bodies separated into their layers early in their histories. The Psyche robotic mission is targeted to launch in October of 2023, arriving at the asteroid in 2030, following an Earth gravity assist spacecraft maneuver in 2024 and a Mars flyby in 2025.
Get even more information about these two new science missions HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
After years of training NASA astronaut Shane Kimbrough is launching to the International Space Station on Wednesday, so there’s not much left to say, right? Wrong! Here are five secrets about his past that the Texas native and retired Army officer hasn’t told us, until now.
1. Shane went to elementary school in Germany
But his family returned to the U.S. where he attended middle and high school.
2. Life is Smyrna, Georgia
Shane attended middle and high school in the Atlanta suburb of Smyrna with movie star Julia Roberts!
3. Shane had an accomplished military career
A retired Army colonel, Shane graduated from West Point, after which he became an Army aviator. He later became a jumpmaster and has had a long and distinguished military career.
Read his bio.
4. He loves sports. All sports!
He LOVES playing, coaching and watching sports. Watching college football is one of the things he’ll miss while he’s on the station.
5. Leading the future
His passion for teaching is one that he finds “most rewarding.”
Follow Shane on the station at @astro_kimbrough.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Juno spacecraft was carefully designed to meet the tough challenges in flying a mission to Jupiter: weak sunlight, extreme temperatures and deadly radiation. Lets take a closer look at Juno:
It Rotates!
Roughly the size of an NBA basketball court, Juno is a spinning spacecraft. Cartwheeling through space makes the spacecraft’s pointing extremely stable and easy to control. While in orbit at Jupiter, the spinning spacecraft sweeps the fields of view of its instruments through space once for each rotation. At three rotations per minute, the instruments’ fields of view sweep across Jupiter about 400 times in the two hours it takes to fly from pole to pole.
It Uses the Power of the Sun
Jupiter’s orbit is five times farther from the sun than Earth’s, so the giant planet receives 25 times less sunlight than Earth. Juno will be the first solar-powered spacecraft we've designed to operate at such a great distance from the sun. Because of this, the surface area of the solar panels required to generate adequate power is quite large.
Three solar panels extend outward from Juno’s hexagonal body, giving the overall spacecraft a span of about 66 feet. Juno benefits from advances in solar cell design with modern cells that are 50% more efficient and radiation tolerant than silicon cells available for space missions 20 years ago. Luckily, the mission’s power needs are modest, with science instruments requiring full power for only about six out of each 11-day orbit.
It Has a Protective Radiation Vault
Juno will avoid Jupiter’s highest radiation regions by approaching over the north, dropping to an altitude below the planet’s radiation belts, and then exiting over the south. To protect sensitive spacecraft electronics, Juno will carry the first radiation shielded electronics vault, a critical feature for enabling sustained exploration in such a heavy radiation environment.
Gravity Science and Magnetometers – Will study Jupiter’s deep structure by mapping the planet’s gravity field and magnetic field.
Microwave Radiometer – Will probe Jupiter’s deep atmosphere and measure how much water (and hence oxygen) is there.
JEDI, JADE and Waves – These instruments will work to sample electric fields, plasma waves and particles around Jupiter to determine how the magnetic field is connected to the atmosphere, and especially the auroras (northern and southern lights).
JADE and JEDI
Waves
UVS and JIRAM – Using ultraviolet and infrared cameras, these instruments will take images of the atmosphere and auroras, including chemical fingerprints of the gases present.
UVS
JIRAM
JunoCam – Take spectacular close-up, color images.
Follow our Juno mission on the web, Facebook, Twitter, YouTube and Tumblr.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
XO Travel Bureau: https://exoplanets.nasa.gov/galleries/exoplanet-travel-bureau/ Mars Valentine’s: http://mars.nasa.gov/free-holiday-ecard/love-valentine/ Space Place Valentine’s: http://spaceplace.nasa.gov/valentines/en/ OSIRIS-REx Valentine’s: http://www.asteroidmission.org/galleries/#collectables
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
About 15 years ago, our Hubble Space Telescope captured this ultra-deep field image of space, revealing thousands of galaxies tucked away in a seemingly empty spot in the sky.
Now, imagine this view of the cosmos – and all the mysteries in it – at a scale 300 times larger than Hubble's.
Our upcoming Nancy Grace Roman Telescope could capture just that.
Roman recently released this gorgeous simulated image that gives us a preview of what the telescope could see. Each tiny speck represents a galaxy filled with billions of stars. And it’s more than just a pretty picture – scientists could learn a lot from an observation like this!
Since Roman can see much more of the sky at a time, it could create an ultra-deep field image that’s far larger than Hubble’s. So instead of revealing thousands of galaxies, Roman would see millions!
Roman’s ability to look far out into space with such an expansive view would help us better understand what the universe was like when it was young. For example, scientists could study a lot of cosmic transitions, like how galaxies switch from star-making factories to a quieter stage when star formation is complete and how the universe went from being mainly opaque to the brilliant starscape we see today.
And these are just a few of the mysteries Roman could help us solve!
Set to launch in the mid-2020s, our Nancy Grace Roman Space Telescope, is designed to unravel the secrets of dark energy and dark matter, search for and image exoplanets, and explore many topics in infrared astrophysics. You can learn about some of the other science Roman will do here.
Make sure to follow us on Tumblr for your regular dose of space!
Each month, the International Space Station focuses on an area of research. In September, the research focus was biology, encompassing cells, plants, animals, genetics, biochemistry, human physiology and more.
Benefits from this research are vast and include: combating diseases, reducing our environmental footprint, feeding the world’s population and developing cleaner energy.
Here’s a recap of some topics we studied this month:
Cells
Scientists studied T-cells in orbit to better understand how human immune systems change as they age. For an immune cell, the microgravity environment mimics the aging process. Because spaceflight-induced and aging-related immune suppression share key characteristics, researchers expect the results from this study will be relevant for the general population.
NASA to Napa
We raised a glass to the space station to toast how the study of plants in space led to air purification technology that keeps the air clean in wine cellars and is also used in homes and medical facilities to help prevent mold.
One-Year Mission
This month also marked the halfway point of the One-Year Mission. NASA Astronaut Scott Kelly and Roscosmos Cosmonaut Mikhail Kornienko reached the midpoint on Sept. 15. This mission will result in valuable data about human health and the effects of microgravity on the body.
Microbes
Since microbes can threaten crew health and jeopardize equipment, scientists study them on astronauts’ skin and aboard the space station. Samples like saliva, blood, perspiration and swaps of equipment are collected to determine how microgravity, environment, diet and stress affect the microorganisms.
Model Organisms
Model organisms have characteristics that allow them to easily be maintained, reproduced and studied in a laboratory. Scientists investigate roundworms, medaka fish and rodents on the station because of this reason. They can also provide insight into the basic cellular and molecular mechanisms of the human body.
For more information about research on the International Space Station, go HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Hi there! Does the study of Earth Science teach us much about the science of other planets? Can much be assumed to be similar, or is the geology/biology incomparable? Thank you!
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts