What Do You Hope To Find On The Mars? / What Would Be The Best Possible Outcome?

What do you hope to find on the mars? / What would be the best possible outcome?

More Posts from Science-child and Others

4 years ago

A small question:

Would anybody want me to do lessons? Like if you send in an ask like 'Hey, what do you know abt *science topic*?' I could do some research and make it a post with links and videos? (Like my Gravitational Waves in the Space-Time Continuum post [link below, and pinned to my acct])

Einstein's Theories of Relativity
Space Boii
Gravitational Waves in the Space-Time Continuum Einstein has two theories of relativity. The first is The Theory of Special Relativity (1905

Would anybody send in asks???


Tags
5 years ago

“Nature uses as little as possible of anything.”

— Johannes Kepler


Tags
3 years ago
Our Universe Is FULL Of Strange And Surprising Things.

Our universe is FULL of strange and surprising things.

And luckily, our Hubble Space Telescope is there to be our window to the unimaginable! Hubble recently ran into an issue with its payload computer which controls and coordinates science instruments onboard the spacecraft. On July 16, teams successfully switched to backup hardware to compensate for the problem! A day later, the telescope resumed normal science operations. To celebrate, we’re taking you back to 2016 when our dear Hubble captured perhaps one of the most intriguing objects in our Milky Way galaxy: a massive star trapped inside a bubble! The star inside this Bubble Nebula burns a million times brighter than our Sun and produces powerful gaseous outflows that howl at more than four million miles per hour. Based on the rate the star is expending energy, scientists estimate in 10 to 20 million years it will explode as a supernova. And the bubble will succumb to a common fate: It’ll pop.


Tags
4 years ago

Is there any chance that something could go wrong?


Tags
3 years ago

We Found the Perfect Spot to Land our Moon Rover

We Found The Perfect Spot To Land Our Moon Rover

After an extensive selection process, we chose the mountainous area west of Nobile Crater at the Moon’s South Pole as the landing site for our first-ever robotic Moon rover. The Volatiles Investigating Polar Exploration Rover, or VIPER, will explore the Moon’s surface and subsurface in search of water and other resources beginning in late 2023. Thanks to past missions, such as satellites orbiting the Moon or impacting its surface, we know there is ice at the Moon’s poles. But how much? And where did it come from? VIPER aims to answer these questions and more by venturing into shadowed craters and visiting other areas of scientific interest over its 100-day mission. The findings will inform future landing sites under the Artemis program and help pave the way toward establishing a long-term human presence on the Moon. Here are five things to know:

The landing site is located just outside the western rim of Nobile Crater at the Moon’s South Pole.

We Found The Perfect Spot To Land Our Moon Rover

The region has suitable lighting and terrain for our solar-powered rover to navigate.

We Found The Perfect Spot To Land Our Moon Rover

VIPER will travel up to 15 miles in search of water and other resources.

We Found The Perfect Spot To Land Our Moon Rover

Its traverse will change depending on what it finds, but it could look like this.

We Found The Perfect Spot To Land Our Moon Rover

Drivers on Earth will tell the rover where to explore during its 100-day mission.

We Found The Perfect Spot To Land Our Moon Rover

The VIPER mission is managed by our Ames Research Center in California's Silicon Valley. The approximately 1,000-pound rover will be delivered to the Moon by a commercial vendor as part of our Commercial Lunar Payload Services initiative, delivering science and technology payloads to and near the Moon.

Make sure to follow us on Tumblr for your regular dose of space.


Tags
5 years ago

Celebrating Spitzer, One of NASA’s Great Observatories

As the Spitzer Space Telescope’s 16-year mission ends, we’re celebrating the legacy of our infrared explorer. It was one of four Great Observatories – powerful telescopes also including Hubble, Chandra and Compton – designed to observe the cosmos in different parts of the electromagnetic spectrum.

Light our eyes can see

The part of the spectrum we can see is called, predictably, visible light. But that’s just a small segment of all the wavelengths of the spectrum. The Hubble Space Telescope observes primarily in the visible spectrum. Our Chandra X-ray Observatory is designed to detect (you guessed it) X-ray emissions from very hot regions of the universe, like exploded stars and matter around black holes. Our Compton Gamma Ray Observatory, retired in 2000, produced the first all-sky survey in gamma rays, the most energetic and penetrating form of light.

Celebrating Spitzer, One Of NASA’s Great Observatories

Then there’s infrared…

Infrared radiation, or infrared light, is another type of energy that we can’t see but can feel as heat. All objects in the universe emit some level of infrared radiation, whether they’re hot or cold. Spitzer used its infrared instrument to make discoveries in our solar system (including Saturn’s largest ring) all the way to the edge of the universe. From stars being born to planets beyond our solar system (like the seven Earth-size exoplanets around the star TRAPPIST-1), Spitzer’s science discoveries will continue to inspire the world for years to come.

Celebrating Spitzer, One Of NASA’s Great Observatories

Multiple wavelengths

Together, the work of the Great Observatories gave us a more complete view and understanding of our universe.

Celebrating Spitzer, One Of NASA’s Great Observatories

Hubble and Chandra will continue exploring our universe, and next year they’ll be joined by an even more powerful observatory … the James Webb Space Telescope!

Celebrating Spitzer, One Of NASA’s Great Observatories

Many of Spitzer’s breakthroughs will be studied more precisely with the Webb Space Telescope. Like Spitzer, Webb is specialized for infrared light. But with its giant gold-coated beryllium mirror and nine new technologies, Webb is about 1,000 times more powerful. The forthcoming telescope will be able to push Spitzer’s science findings to new frontiers, from identifying chemicals in exoplanet atmospheres to locating some of the first galaxies to form after the Big Bang.

We can’t wait for another explorer to join our space telescope superteam!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

Weird and Wonderful Irregular Galaxies

Spiral and elliptical galaxies seem neatly put together, but what happened to irregular galaxies? Irregular galaxies have one-of-a-kind shapes and many look like blobs! Why do they look the way they do? Astronomers think the uniqueness of these galaxies results from their interactions with other galaxies — like when they pass close to one another or even collide!

Weird And Wonderful Irregular Galaxies

Looking back at the early universe with the help of our Hubble Space Telescope’s “deep field” observations, astronomers can peek at galaxies millions and billions of light-years away. They noticed that these far-away galaxies appear unusually messy, showing more star formation and mergers than galaxies closer to the Milky Way.

Weird And Wonderful Irregular Galaxies

We also see irregular galaxies closer to home, though. Some may form when two galaxies pass close together in a near-miss. When this happens, their gravity pulls stars out of place in both galaxies, messing up the neat structure they originally had as spiral or elliptical galaxies. Think of it like this: you happen to have a pile of papers sitting at the edge of a table and when someone passes close by the papers become ruffled and may scatter everywhere! Even though the two galaxies never touched, gravity's effects leave them looking smeared or distorted.

Weird And Wonderful Irregular Galaxies

Some irregular galaxies result from the collision between two galaxies. And while some of these look like a blob of stars and dust, others form dazzling ring galaxies! Scientists think these may be a product of collisions between small and large galaxies. These collisions cause ripples that disturb both galaxies, throwing dust, gas, and stars outward. When this happens, it pushes out a ring of material, causing gas clouds to collide and spark the birth of new stars. After just a few million years, stars larger than our Sun explode as supernovae, leaving neutron stars and black holes throughout the ring!

Weird And Wonderful Irregular Galaxies

Not all galaxy collisions create irregular galaxies — our Milky Way spiral galaxy has gone through many mergers but has stayed intact! And for some interacting galaxies, being an irregular galaxy may just be a phase in their transformation. We’re observing them at a snapshot in time where things are messy, but they may eventually become neat and structured spirals and ellipticals.

Weird And Wonderful Irregular Galaxies

Irregular galaxies are similar to each other, but unique and beautiful because of their different interactions, whether they’re just passing another galaxy or taking part in a dramatic collision. Keep up with NASA Universe on Facebook and Twitter where we post regularly about galaxies.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
4 years ago
Q: Is Your Mind Organized?

Q: Is your mind organized?

A: yes and no. Quantum mechanical order, so to speak.

#laughsinquantummechanicalsuperpositionwhilecrying


Tags
4 years ago

The Search for Starless Planets

While it’s familiar to us, our solar system may actually be a bit of an oddball. Our Milky Way galaxy is home to gigantic worlds with teeny-tiny orbits and planets that circle pairs of stars. We’ve even found planets that don’t orbit stars at all! Instead, they drift through the galaxy completely alone (unless they have a moon to keep them company). These lonely island worlds are called rogue planets.

image

Where do rogue planets come from?

The planet-building process can be pretty messy. Dust and gas around a star clump together to form larger and larger objects, like using a piece of play-dough to pick up other pieces.

Sometimes collisions and close encounters can fling a planet clear out of the gravitational grip of its parent star. Rogue planets may also form out in space on their own, like the way stars grow.

image

Seeing the invisible

We’ve discovered more than 4,000 exoplanets, but only a handful are rogue planets. That’s because they’re superhard to find! Rogue planets are almost completely invisible to us because they don’t shine like stars and space is inky black. It’s like looking for a black cat in a dark room without a flashlight.

Some planet-finding methods involve watching to see how orbiting planets affect their host star, but that doesn’t work for rogue planets because they’re off by themselves. Rogue planets are usually pretty cold too, so infrared telescopes can’t use their heat vision to spot them either.

So how can we find them? Astronomers use a cool cosmic quirk to detect them by their effect on starlight. When a rogue planet lines up with a more distant star from our vantage point, the planet bends and magnifies light from the star. This phenomenon, called microlensing, looks something like this:

image

Imagine you have a trampoline, a golf ball, and an invisible bowling ball. If you put the bowling ball on the trampoline, you could see how it made a dent in the fabric even if you couldn’t see the ball directly. And if you rolled the golf ball near it, it would change the golf ball’s path.

image

A rogue planet affects space the way the bowling ball warps the trampoline. When light from a distant star passes by a rogue planet, it curves around the invisible world (like how it curves around the star in the animation above). If astronomers on Earth were watching the star, they’d notice it briefly brighten. The shape and duration of this brightness spike lets them know a planet is there, even though they can’t see it.

image

Telescopes on the ground have to look through Earth’s turbulent atmosphere to search for rogue planets. But when our Nancy Grace Roman Space Telescope launches in the mid-2020s, it will give us a much better view of distant stars and rogue planets because it will be located way above Earth’s atmosphere — even higher than the Moon!

Other space telescopes would have to be really lucky to spot these one-in-a-million microlensing signals. But Roman will watch huge patches of the sky for months to catch these fleeting events.

image

Lessons from cosmic castaways

Scientists have come up with different models to explain how different planetary systems form and change over time, but we still don’t know which ones are right. The models make different predictions about rogue planets, so studying these isolated worlds can help us figure out which models work best.

When Roman spots little microlensing starlight blips, astronomers will be able to get a pretty good idea of the mass of the object that caused the signal from how long the blip lasts. Scientists expect the mission to detect hundreds of rogue planets that are as small as rocky Mars — about half the size of Earth — up to ones as big as gas giants, like Jupiter and Saturn.

image

By design, Roman is only going to search a small slice of the Milky Way for rogue planets. Scientists have come up with clever ways to use Roman’s future data to estimate how many rogue planets there are in the whole galaxy. This information will help us better understand whether our solar system is pretty normal or a bit of an oddball compared to the rest of our galaxy.

image

Roman will have such a wide field of view that it will be like going from looking at the cosmos through a peephole to looking through a floor-to-ceiling window. The mission will help us learn about all kinds of other cool things in addition to rogue planets, like dark energy and dark matter, that will help us understand much more about our place in space.

Learn more about the Roman Space Telescope at: https://roman.gsfc.nasa.gov/

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • slowly-becoming-like-draculaura
    slowly-becoming-like-draculaura liked this · 3 years ago
  • dawgstreetbank20trillion
    dawgstreetbank20trillion liked this · 3 years ago
  • rockymountainlegend
    rockymountainlegend liked this · 3 years ago
  • rodblack2070
    rodblack2070 liked this · 3 years ago
  • jchapa13
    jchapa13 liked this · 3 years ago
  • achilles--hell
    achilles--hell liked this · 3 years ago
  • whyamievenhere-bye
    whyamievenhere-bye reblogged this · 3 years ago
  • powerfrog
    powerfrog reblogged this · 4 years ago
  • vap01
    vap01 liked this · 4 years ago
  • uwuinhell
    uwuinhell liked this · 4 years ago
  • mawusifitnesstraining
    mawusifitnesstraining liked this · 4 years ago
  • shiblisadik143
    shiblisadik143 liked this · 4 years ago
  • joycecolored
    joycecolored liked this · 4 years ago
science-child - Space Boii
Space Boii

My name is Roy and I like Space™ and History™

94 posts

Explore Tumblr Blog
Search Through Tumblr Tags