What Are Perseid Meteors, And Why Should You Be Excited For Them This Year? Let Us Tell You!

What Are Perseid Meteors, And Why Should You Be Excited For Them This Year? Let Us Tell You!

What are Perseid Meteors, and why should you be excited for them this year? Let us tell you!

The Perseid meteor shower is caused by debris from Comet Swift-Tuttle as it swings through the inner solar system and ejects a trail of dust and gravel along its orbit. When the Earth passes through the debris, specs of comet-stuff hit the atmosphere at 140,000 mph and disintegrate in flashes of light. Meteors from this comet are called Perseids because they seem to fly out of the constellation Perseus.

image

Last year, this meteor shower peaked during a bright “supermoon”, so visibility was reduced. Luckily, forecasters say the show could be especially awesome this year because the Moon is nearly new when the shower peaks on Aug. 12-13.

The best place to view the event is away from city lights around midnight. Under a clear, dark sky forecasters predict meteor rates as high as 100 per hour on peak night. So, get outside, look up and enjoy the show!

If your area has poor visibility on the peak night, we’ve got you covered! We’ll be hosting a live broadcast about the meteor shower from 10 p.m. EDT Wednesday, Aug. 12, to 2 a.m. Thursday, Aug. 13. In addition to footage from our live skycam, the program will highlight the science behind the Perseids, as well as our research related to meteors and comets. Tune in on NASA TV or our UStream Channel.

More Posts from Nasa and Others

8 years ago
Peering Deep Into The Core Of The Crab Nebula, This Close-up Image Reveals The Beating Heart Of One Of

Peering deep into the core of the Crab Nebula, this close-up image reveals the beating heart of one of the most historic and intensively studied remnants of a supernova, an exploding star. The inner region sends out clock-like pulses of radiation and tsunamis of charged particles embedded in magnetic fields.

The neutron star at the very center of the Crab Nebula has about the same mass as the sun but compressed into an incredibly dense sphere that is only a few miles across. Spinning 30 times a second, the neutron star shoots out detectable beams of energy that make it look like it's pulsating.

The Hubble Space Telescope snapshot is centered on the region around the neutron star (the rightmost of the two bright stars near the center of this image) and the expanding, tattered, filamentary debris surrounding it. Hubble's sharp view captures the intricate details of glowing gas, shown in red, that forms a swirling medley of cavities and filaments. Inside this shell is a ghostly blue glow that is radiation given off by electrons spiraling at nearly the speed of light in the powerful magnetic field around the crushed stellar core.

Read more about this image HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Infrared is Beautiful

Why was James Webb Space Telescope designed to observe infrared light? How can its images hope to compare to those taken by the (primarily) visible-light Hubble Space Telescope? The short answer is that Webb will absolutely capture beautiful images of the universe, even if it won’t see exactly what Hubble sees. (Spoiler: It will see a lot of things even better.)

image

The James Webb Space Telescope, or Webb, is our upcoming infrared space observatory, which will launch in 2019. It will spy the first luminous objects that formed in the universe and shed light on how galaxies evolve, how stars and planetary systems are born, and how life could form on other planets.

What is infrared light? 

This may surprise you, but your remote control uses light waves just beyond the visible spectrum of light—infrared light waves—to change channels on your TV.

Infrared light shows us how hot things are. It can also show us how cold things are. But it all has to do with heat. Since the primary source of infrared radiation is heat or thermal radiation, any object that has a temperature radiates in the infrared. Even objects that we think of as being very cold, such as an ice cube, emit infrared.

There are legitimate scientific reasons for Webb to be an infrared telescope. There are things we want to know more about, and we need an infrared telescope to learn about them. Things like: stars and planets being born inside clouds of dust and gas; the very first stars and galaxies, which are so far away the light they emit has been stretched into the infrared; and the chemical fingerprints of elements and molecules in the atmospheres of exoplanets, some of which are only seen in the infrared.

In a star-forming region of space called the 'Pillars of Creation,' this is what we see with visible light:

image

And this is what we see with infrared light:

image

Infrared light can pierce through obscuring dust and gas and unveil a more unfamiliar view.

Webb will see some visible light: red and orange. But the truth is that even though Webb sees mostly infrared light, it will still take beautiful images. The beauty and quality of an astronomical image depends on two things: the sharpness of the image and the number of pixels in the camera. On both of these counts, Webb is very similar to, and in many ways better than, Hubble. Webb will take much sharper images than Hubble at infrared wavelengths, and Hubble has comparable resolution at the visible wavelengths that Webb can see.

image

Webb’s infrared data can be translated by computer into something our eyes can appreciate – in fact, this is what we do with Hubble data. The gorgeous images we see from Hubble don’t pop out of the telescope looking fully formed. To maximize the resolution of the images, Hubble takes multiple exposures through different color filters on its cameras.

The separate exposures, which look black and white, are assembled into a true color picture via image processing. Full color is important to image analysis of celestial objects. It can be used to highlight the glow of various elements in a nebula, or different stellar populations in a galaxy. It can also highlight interesting features of the object that might be overlooked in a black and white exposure, and so the images not only look beautiful but also contain a lot of useful scientific information about the structure, temperatures, and chemical makeup of a celestial object.

This image shows the sequences in the production of a Hubble image of nebula Messier 17:

image

Here’s another compelling argument for having telescopes that view the universe outside the spectrum of visible light – not everything in the universe emits visible light. There are many phenomena which can only be seen at certain wavelengths of light, for example, in the X-ray part of the spectrum, or in the ultraviolet. When we combine images taken at different wavelengths of light, we can get a better understanding of an object, because each wavelength can show us a different feature or facet of it. 

Just like infrared data can be made into something meaningful to human eyes, so can each of the other wavelengths of light, even X-rays and gamma-rays.

Below is an image of the M82 galaxy created using X-ray data from the Chandra X-ray Observatory, infrared data from the Spitzer Space Telescope, and visible light data from Hubble. Also note how aesthetically pleasing the image is despite it not being just optical light:

image

Though Hubble sees primarily visible light, it can see some infrared. And despite not being optimized for it, and being much less powerful than Webb, it still produced this stunning image of the Horsehead Nebula.

image

It’s a big universe out there – more than our eyes can see. But with all the telescopes now at our disposal (as well as the new ones that will be coming online in the future), we are slowly building a more accurate picture. And it’s definitely a beautiful one. Just take a look...

…At this Spitzer infrared image of a shock wave in dust around the star Zeta Ophiuchi.

image

…this Spitzer image of the Helix Nebula, created using infrared data from the telescope and ultraviolet data from the Galaxy Evolution Explorer.

image

…this image of the “wing” of the Small Magellanic Cloud, created with infrared data from Spitzer and X-ray data from Chandra.

image

...the below image of the Milky Way’s galactic center, taken with our flying SOFIA telescope. It flies at more than 40,000 feet, putting it above 99% of the  water vapor in Earth's atmosphere-- critical for observing infrared because water vapor blocks infrared light from reaching the ground. This infrared view reveals the ring of gas and dust around a supermassive black hole that can't be seen with visible light. 

image

…and this Hubble image of the Mystic Mountains in the Carina Nebula.

image

Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.

Image Credits Eagle Nebula: NASA, ESA/Hubble and the Hubble Heritage Team Hubble Image Processing - Messier 17: NASA/STScI Galaxy M82 Composite Image: NASA, CXC, JHU, D.Strickland, JPL-Caltech, C. Engelbracht (University of Arizona), ESA, and The Hubble Heritage Team (STScI/AURA) Horsehead Nebula: NASA, ESA, and The Hubble Heritage Team (STScI/AURA) Zeta Ophiuchi: NASA/JPL-Caltech Helix Nebula: NASA/JPL-Caltech Wing of the Small Magellanic Cloud X-ray: NASA/CXC/Univ.Potsdam/L.Oskinova et al; Optical: NASA/STScI; Infrared: NASA/JPL-Caltech Milky Way Circumnuclear Ring: NASA/DLR/USRA/DSI/FORCAST Team/ Lau et al. 2013 Mystic Mountains in the Carina Nebula: NASA/ESA/M. Livio & Hubble 20th Anniversary Team (STScI)

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
1 year ago

do you have a favourite planet etc?


Tags
4 years ago

Get to Know the 5 College Teams Sending Their Experiments to Space!

Did you know that YOU (yes you!), can send science experiments to the International Space Station? 

To celebrate 20 years of continuous human presence on the International Space Station, NASA STEM on Station is sending five student experiments to the space station through Student Payload Opportunity with Citizen Science (SPOCS). Selected teams will also engage K-12 students as a part of their experiment through citizen-science.

Get to know the 5 college teams sending their experiments to space!

Arkansas State University 

Team: A-State Science Support System

Get To Know The 5 College Teams Sending Their Experiments To Space!

Experiment Title: Microgravity Environment Impact on Plastic Biodegradation by Galleria mellonella

Experiment Description: Discover the ability of wax worms to degrade plastics in space.

Why did you propose this experiment?

Our team’s passion for sustainability developed into novel ideas for space travel through biodegradation of plastics. 

How will the experiment benefit humankind or future space exploration?

If our experiment is successful, it will “launch” us closer to understanding how to reduce humankind’s plastic footprint on Earth and allow us to safely push farther into unknown planetary habitats.

How have you worked together as a team during the pandemic?

Unknown to each other before the project, our interdisciplinary team formed through virtual communication.

What science fiction character best represents your team and why?

The sandworms of Dune represent our team perfectly considering their importance in space travel, the natural ecological service they provide, and their sheer awesomeness

Columbia University

Team: Columbia Space Initiative

Get To Know The 5 College Teams Sending Their Experiments To Space!

Experiment Title: Characterizing Antibiotic Resistance in Microgravity Environments (CARMEn)

Experiment Description: Discover the impact of mutations on bacteria in microgravity when grown into a biofilm with fungus.

Why did you propose this experiment?

As a highly interdisciplinary team united by our love of outer space, SPOCS was the perfect opportunity to fuse biology, engineering, and education into a meaningful team project.

How will the experiment benefit humankind or future space exploration?

Studying how different microorganisms interact with each other to develop bacterial resistance in space will help improve antibiotic treatments for future Artemis astronauts.

How have you worked together as a team during the pandemic?

Most of our team actually hasn’t ever met in person—we’ve been videoconferencing weekly since May!

What science fiction character best represents your team and why?

Our team is definitely Buzz Lightyear from Toy Story, because we strive to reach infinity (or at least the International Space Station) and beyond!

Stanford University

Team: Stanford Student Space Initiative

Get To Know The 5 College Teams Sending Their Experiments To Space!

Experiment Title: Biopolymer Research for In-Situ Capabilities (BRIC)

Experiment Description: Determine how microgravity impacts the solidification of biobricks.

Why did you propose this experiment?

We have an ongoing project to design and build a machine that turns lunar or Martian soil into bricks, and we want to learn how reduced gravity will impact the process.

How will the experiment benefit humankind or future space exploration?

We are studying an environmentally-friendly concrete alternative that can be used to make structures on Earth and other planets out of on-site, readily available resources.

How have you worked together as a team during the pandemic?

We transitioned our weekly meetings to an online format so that we could continue at our planned pace while maintaining our community.

What science fiction character best represents your team and why?

Like our beloved childhood friend WALL-E, we craftily make inhospitable environments suitable for life with local resources.

University of Idaho

Team: Vandal Voyagers I

Get To Know The 5 College Teams Sending Their Experiments To Space!

Experiment Title: Bacteria Resistant Polymers in Microgravity

Experiment Description: Determine how microgravity impacts the efficacy of bacteria resistant polymers.

Why did you propose this experiment?

The recent emphasis on surface sterility got us thinking about ways to reduce the risk of disease transmission by surfaces on the International Space Station.

How will the experiment benefit humankind or future space exploration?

If successful, the application of proposed polymers can benefit humankind by reducing transmission through high contact surfaces on and off Earth such as hand rails and door handles.

How have you worked together as a team during the pandemic?

We are allowed to work collaboratively in person given we follow the current university COVID guidelines.

What science fiction character best represents your team and why?

Mark Watney from The Martian because he is willing to troubleshoot and problem solve on his own while collaborating with NASA from afar.

University of New Hampshire at Manchester

Team: Team Cooke

Get To Know The 5 College Teams Sending Their Experiments To Space!

Experiment Title: Novel Methods of Antibiotic Discovery in Space (NoMADS)

Experiment Description: Determine how microgravity impacts the amount of bacterium isolates that produce antibiotic metabolites.

Why did you propose this experiment?

To contribute to the limited body of knowledge regarding bacterial resistance and mutations in off-Earth conditions.

How will the experiment benefit humankind or future space exploration?

Understanding how bacteria in the human microbiome and on spacecraft surfaces change can ensure the safe and accurate treatment of bacterial infections in astronauts.

How have you worked together as a team during the pandemic?

Our team continued to evolve our communication methods throughout the pandemic, utilizing frequent remote video conferencing, telecommunications, email, and in-person conferences.

What science fiction character best represents your team and why?

Professor Xavier, the founder of the X-Men, because he also works with mutants and feels that while they are often misunderstood, under the right circumstances they can greatly benefit the world.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago
Thanks For All Of The Great Questions!  Follow Me At @Astro_Jeanette On Twitter and @Jeanette.Epps

Thanks for all of the great questions!  Follow me at @Astro_Jeanette on Twitter and @Jeanette.Epps on Instagram, and follow the International Space Station on Twitter, Facebook, and Instagram as I prepare for my mission next year. 


Tags
7 years ago

Innovation at 100

Air travel, spaceflight, robotic solar-system missions: science fiction to those alive at the turn of the 20th century became science fact to those living in the 21st. 

Innovation At 100

America’s aerospace future has been literally made at our Langley Research Center by the best and brightest the country can offer. Here are some of the many highlights from a century of ingenuity and invention.

Making the Modern Airplane

In times of peace and war, Langley helped to create a better airplane, including unique wing shapes, sturdier structures, the first engine cowlings, and drag cleanup that enabled the Allies to win World War II.

image

In 1938 Langley mounted the navy's Brewster XF2A-1 Buffalo in the Full-Scale Tunnel for drag reduction studies.

Wind Goes to Work

Langley broke new ground in aeronautical research with a suite of first-of-their-kind wind tunnels that led to numerous advances in commercial, military and vertical flight, such as helicopters and other rotorcraft. 

image

Airflow turning vanes in Langley’s 16-Foot Transonic Tunnel.

Aeronautics Breakthroughs

Aviation Hall of Famer Richard Whitcomb’s area rule made practical jet flight a reality and, thanks to his development of winglets and the supercritical wing, enabled jets to save fuel and fly more efficiently.

image

Richard Whitcomb examines a model aircraft incorporating his area rule.

Making Space

Langley researchers laid the foundation for the U.S. manned space program, played a critical role in the Mercury, Gemini and Apollo programs, and developed the lunar-orbit rendezvous concept that made the Moon landing possible.

image

Neil Armstrong trained for the historic Apollo 11 mission at the Lunar Landing Research Facility,

Safer Air Above and Below

Langley research into robust aircraft design and construction, runway safety grooving, wind shear, airspace management and lightning protection has aimed to minimize, even eliminate air-travel mishaps

image

NASA’s Boeing 737 as it approached a thunderstorm during microburst wind shear research in Colorado in 1992.

Tracking Earth from Aloft

Development by Langley of a variety of satellite-borne instrumentation has enabled real-time monitoring of planet-wide atmospheric chemistry, air quality, upper-atmosphere ozone concentrations, the effects of clouds and air-suspended particles on climate, and other conditions affecting Earth’s biosphere.

image

Crucial Shuttle Contributions

Among a number of vital contributions to the creation of the U.S. fleet of space shuttles, Langley developed preliminary shuttle designs and conducted 60,000 hours of wind tunnel tests to analyze aerodynamic forces affecting shuttle launch, flight and landing.

image

Space Shuttle model in the Langley wind tunnel.

Decidedly Digital

Helping aeronautics transition from analog to digital, Langley has worked on aircraft controls, glass cockpits, computer-aided synthetic vision and a variety of safety-enhancing onboard sensors to better monitor conditions while airborne and on the ground.

image

Aerospace research engineer Kyle Ellis uses computer-aided synthetic vision technology in a flight deck simulator.

Fast, Faster, Fastest

Langley continues to study ways to make higher-speed air travel a reality, from about twice the speed of sound – supersonic – to multiple times: hypersonic.

image

Langley continues to study ways to make higher-speed air travel a reality, from about twice the speed of sound – supersonic – to multiple times: hypersonic.

Safer Space Sojourns

Protecting astronauts from harm is the aim of Langley’s work on the Orion Launch Abort System, while its work on materials and structures for lightweight and affordable space transportation and habitation will keep future space travelers safe.

image

Unmasking the Red Planet

Beginning with its leadership role in Project Viking, Langley has helped to unmask Martian mysteries with a to-date involvement in seven Mars missions, with participation in more likely to come.

image

First image of Mars taken by Viking 1 Lander.

Touchdown Without Terror

Langley’s continued work on advanced entry, descent and landing systems aims to make touchdowns on future planetary missions routinely safe and secure.

image

Artist concept of NASA's Hypersonic Inflatable Aerodynamic Decelerator - an entry, descent and landing technology.

Going Green

Helping to create environmentally benign aeronautical technologies has been a focus of Langley research, including concepts to reduce drag, weight, fuel consumption, emissions, and lessen noise.

image

Intrepid Inventors

With a history developing next-generation composite structures and components, Langley innovators continue to garner awards for a variety of aerospace inventions with a wide array of terrestrial applications.

image

Boron Nitride Nanotubes: High performance, multi-use nanotube material.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

What range/area will Perseverance be able to cover on the Martian surface? I'm assuming it's greater than the other rovers but by how much?


Tags
5 years ago
And That Is A Wrap!

And that is a wrap!

Get sucked into the black hole excitement? Find out more about these unique objects and the missions we have to study them, here. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

10 Space & Football Facts You Probably Didn’t Know

There are more connections between space and football than you may have originally thought. Here are a few examples of how...

1. The International Space Station and a football field are basically the same size

image

Yes, that’s right! The International Space Station measures 357 feet end-to-end. That’s almost equivalent to the length of a football field including the end zones (360 feet).

2. It would take over 4,000 footballs to fill the Orion spacecraft

image

Our Orion spacecraft is being designed to carry astronauts to deep space destinations, like Mars! It will launch atop the most powerful rocket ever built, the Space Launch System rocket. If you were to fill the Orion spacecraft with footballs instead of crew members, you would fit a total of 4,625!

3. Our new Space Launch System rocket is taller than a football field is long

image

We’re building the most powerful rocket ever, the Space Launch System. At its full height it will stand 384 feet – 24 feet taller than a football field is long.

4. The crew living on space station will see the day begin and end…twice…during the Super Bowl

image

An average NFL game lasts more than three hours. Traveling at 17,500 mph, the crew on the space station will see two sunrises and two sunsets in that time…they see 16 sunrises and sunsets each day!

5. Playing football on Mars would be…lighter

image

On Mars, a football would weigh less than half a pound, while a 200-pund football player would weigh just about 75 pounds.

6. It would take over 3,000 hours for a football to reach the Moon

image

Talk about going long…if you threw a football to the Moon at 60 mph, the average speed of an NFL pass, it would take 3,982 hours, or 166 days, to get there. The quickest trip to the Moon was the New Horizons probe, which zipped pass the Moon in just 8 hours 35 minutes on its way to Pluto 

7. The longest field goal kick in history would’ve been WAY easier to make on Mars

image

The longest field goal kick in NFL history is 64 yards. On Mars, at 1/3 the gravity of Earth, that same field goal, ignoring air resistance, could have been made from almost two football fields away (192 yards).

8. A quarterback would be able to throw even further on Mars

image

Aerodynamic drag doesn’t happen on Mars. With a very thin atmosphere and low gravity to drag the ball down, a quarterback could throw the football three times as far as he could on Earth. A receiver would have to be much further down the field to catch the throw 

9. Football players and astronauts both need to exercise every day

image

Football players must be quick and powerful, honing the physical skills necessary for their unique positions. In space, maintaining physical fitness is a top priority, since astronauts will lose bone and muscle mass if they do not keep up their strength and conditioning.

10. Clear team communication is important on the football field AND in space

image

During football games, calling plays and relaying information from coaches on the sidelines or in the booth to players on the field is essential. Coaches communicate directly with quarterbacks and a defensive player between plays via radio frequencies. They must have a secure and reliable system that keeps their competitors from listening in and also keeps loud fan excitement from drowning out what can be heard. Likewise, reliable communication with astronauts in space and robotic spacecraft exploring far into the solar system is key to our mission success.

A radio and satellite communications network allows space station crew members to talk to the ground-based team at control centers, and for those centers to send commands to the orbital complex.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Scott Kelly Was the First To…

image

Astronaut Scott Kelly returned home from his year in space mission on March 1. Spending that much time in space allowed him to rack up some pretty cool milestones. Here are some of his awesome “firsts”:

Firsts on Social Media

image

While in space, Scott Kelly had the opportunity to host the first NASA TweetChat from space.

image

The first ever Tumblr AnswerTime from space was hosted by Scott Kelly during his One Year Mission.

image

Scott Kelly hosted the first NASA Reddit AMA from space.

image

Before leaving for his year in space, President Obama asked him to Instagram his time on orbit…a Presidential request to Instagram is a first!

Firsts for Scott

image

During his year in space, Scott conducted his first spacewalk. He hadn’t spacewalked on any of his previous missions, but did so three times during the One Year Mission.

Firsts for an American Astronaut

image

Most notably, Scott Kelly is the first U.S. astronaut to spend a year in space. His time on orbit also allowed us to conduct the first ever Twins Study on the space station. While Scott was in space, his twin brother Mark Kelly was on Earth. Since their genetic makeup is as close to identical as we can get, this allows a unique research perspective. We can now compare all of the results from Scott in space to his brother Mark on Earth.

image

During his year in space, Scott had the opportunity to be one of the first astronauts to harvest and eat lettuce grown in the space station’s VEGGIE facility. 

image

Space flowers! Scott was also one of the firsts to help grow and harvest zinnia flowers in the VEGGIE facility. Growing flowering plants in space will help scientists learn more about growing crops for deep-space missions and our journey to Mars.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • sweetbutterbliss
    sweetbutterbliss liked this · 3 years ago
  • star-light-on-a-shoe-string-blog
    star-light-on-a-shoe-string-blog liked this · 7 years ago
  • myheartwokemecryinglastnight
    myheartwokemecryinglastnight liked this · 8 years ago
  • shelbytimesadness
    shelbytimesadness reblogged this · 8 years ago
  • shuflypie
    shuflypie reblogged this · 8 years ago
  • drrrling
    drrrling liked this · 8 years ago
  • definitely-not-a-werewolf
    definitely-not-a-werewolf reblogged this · 8 years ago
  • themiseight
    themiseight liked this · 8 years ago
  • serafinasalomea
    serafinasalomea reblogged this · 8 years ago
  • triangle-worshiper-blog
    triangle-worshiper-blog reblogged this · 8 years ago
  • triangle-worshiper-blog
    triangle-worshiper-blog liked this · 8 years ago
  • annartgraphie
    annartgraphie liked this · 8 years ago
  • easterneuropeanprincess
    easterneuropeanprincess reblogged this · 8 years ago
  • keepitaurea
    keepitaurea liked this · 8 years ago
  • loqmedalagana
    loqmedalagana liked this · 8 years ago
  • smg1ne
    smg1ne liked this · 8 years ago
  • kali-ka
    kali-ka liked this · 9 years ago
  • carmillasworld
    carmillasworld liked this · 9 years ago
  • cheezewizardsstuff
    cheezewizardsstuff liked this · 9 years ago
  • tinkerbell922
    tinkerbell922 liked this · 9 years ago
  • numberoneave-blog
    numberoneave-blog liked this · 9 years ago
  • falkenschwinge
    falkenschwinge liked this · 9 years ago
  • gallifreanpotterhead
    gallifreanpotterhead liked this · 9 years ago
  • space-hoe
    space-hoe reblogged this · 9 years ago
  • jazracanah
    jazracanah liked this · 9 years ago
  • seebbs730
    seebbs730 liked this · 9 years ago
  • brittanyalexiswilliamsx
    brittanyalexiswilliamsx liked this · 9 years ago
  • first-class-cutie
    first-class-cutie liked this · 9 years ago
  • zay-savage-flex-blog
    zay-savage-flex-blog liked this · 9 years ago
  • auxrane
    auxrane liked this · 9 years ago
  • methyou-ten
    methyou-ten liked this · 9 years ago
  • andreluizlinosilva-blog
    andreluizlinosilva-blog liked this · 9 years ago
  • hystericheavy
    hystericheavy liked this · 9 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags