InSight Mission To Mars

InSight Mission to Mars

image

Our InSight mission will place a fixed science outpost on Mars to study its deep interior. Findings and research from this project will address one of the most fundamental questions we have about planetary and solar system science – How in the world did these rocky planets form?

By investigating the interior structure and processes of Mars, the InSight mission will gain a better understanding of the evolutionary formation of planets, including Earth.

InSight will record Mars’ vital signs to learn more about the planet, including:

image

Seismic Activity:

A seismometer will be used to record the seismic activity on Mars. This will give us information on the crust, mantel and core; and the relationship between them.

image

Temperature:

A heat flow probe will be used to take Mars’ temperature and determine the change over the course of a full Martian year.

image

Reflexes:

By looking at how the rotation of Mars wobbles, we will better understand what the core size may be and its composition.

image

Launch for the InSight mission is scheduled for March 2016, and even though you can’t physically travel with the lander, you can send your name to the Red Planet onboard. Make sure to submit your name before Sept. 8!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

5 years ago

Small Businesses with Big Plans for the Moon and Mars

Today is Small Business Saturday, which the U.S. Small Business Administration (SBA) recognizes as a day to celebrate and support small businesses and all they do for their communities.

image

Source: Techshot

We are proud to partner with small businesses across the country through NASA’s Small Business Innovative Research (SBIR) and Small Business Technology Transfer (STTR) programs, which have funded the research, development and demonstration of innovative space technologies since 1982. This year, we’ve awarded 571 SBIR/STTR contracts totaling nearly $180 million to companies who will support our future exploration:

Techshot, Inc. was selected to bioprint micro-organs in a zero-gravity environment for research and testing of organs-on-chip devices, which simulate the physiological functions of body organs at a miniature scale for health research without the need for expensive tests or live subjects.

CertainTech, Inc., with the George Washington University, will demonstrate an improved water recovery system for restoring nontoxic water from wastewater using nanotechnology.

Electrochem, Inc. was contracted to create a compact and lightweight regenerative fuel cell system that can store energy from an electrolyzer during the lunar day to be used for operations during the lunar night.

image

Source: Electrochem

Small businesses are also developing technologies for the Artemis missions to the Moon and for human and robotic exploration of Mars. As we prepare to land the first woman and next man on the Moon by 2024, these are just a few of the small businesses working with us to make it happen.

Commercial Lunar Payload Delivery Services

Masten Space Systems, Astrobotic and Tyvak Nano-Satellite Systems are three NASA SBIR/STTR alumni now eligible to bid on NASA delivery services to the lunar surface through Commercial Lunar Payload Services (CLPS) contracts. Other small businesses selected as CLPS providers include Ceres Robotics, Deep Space Systems, Intuitive Machines, Moon Express, and Orbit Beyond. Under the Artemis program, these companies could land robotic missions on the Moon to perform science experiments, test technologies and demonstrate capabilities to help the human exploration that will follow. The first delivery could be as early as July 2021.

image

A Pathfinder CubeSat

One cornerstone of our return to the Moon is a small spaceship called Gateway that will orbit our nearest neighbor to provide more access to the lunar surface. SBIR/STTR alum Advanced Space Systems will develop a CubeSat that will test out the lunar orbit planned for Gateway, demonstrating how to enter into and operate in the unique orbit. The Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE) could launch as early as December 2020.

image

Tipping Point for Moon to Mars

We selected 14 companies as part of our Tipping Point solicitation, which fosters the development of critical, industry-led space capabilities for our future missions. These small businesses all proposed unique technologies that could benefit the Artemis program.

Many of these small businesses are also NASA SBIR/STTR alumni whose Tipping Point awards are related to their SBIR or STTR awards. For example, Infinity Fuel Cell and Hydrogen, Inc. (Infinity Fuel) will develop a power and energy product that could be used for lunar rovers, surface equipment, and habitats. This technology stems from a new type of fuel cell that Infinity Fuel developed with the help of NASA SBIR/STTR awards.

CU Aerospace and Astrobotic are also small businesses whose Tipping Point award can be traced back to technology developed through the NASA SBIR/STTR program. CU Aerospace will build a CubeSat with two different propulsion systems, which will offer high performance at a low cost, and Astrobotic will develop small rover “scouts” that can host payloads and interface with landers on the lunar surface.

image

Small Businesses, Big Impact

This is just a handful of the small businesses supporting our journey back to the Moon and on to Mars, and just a taste of how they impact the economy and American innovation. We are grateful for the contributions that small businesses make—though they be but “small,” they are fierce.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
5 years ago

When Dwarfs Meet Giants, and Other True Cosmic Fairy Tales

It’s easy to get lost in fantasy worlds through science-fiction movies and novels, but did you know that some of your favorite fairy tale characters actually exist in cosmic form? From dwarfs and giants to shape-shifters and buried treasure, the universe is home to a multitude of mystical objects.

White Dwarf Stars

image

You’ve probably heard of dwarfs like Happy and Sneezy (or Gimli and Thorin), but it’s unlikely you’re familiar with the space-dwelling dwarfs with names like Sirius B and ASASSN-16oh. White dwarf stars like these are typically about the size of Earth, which is pretty small as far as stars go. They represent one of three final stages of stellar evolution, along with neutron stars and black holes. Each star’s mass determines which one it will ultimately become. Stars much more massive than the Sun typically become neutron stars or black holes, and lower-mass stars end up as white dwarfs.

image

Our Sun will eventually become a white dwarf after it exhausts its fuel, but don’t worry — we’ve got several billion years to go! Before it is reduced to a white dwarf it will actually expand into a red giant, swelling out to encompass Earth’s orbit. But we don’t have to wait billions of years to see stellar giants … some already peek out at us from the cosmic deep.

Giants and Supergiants

image

The red giant star Aldebaran, located about 65 light-years away, is about 5,000 times bigger than Earth. Our Cassini spacecraft imaged Aldebaran through Saturn’s rings in 2006, but you can see it for yourself during northern winter. Just look for the brightest star in the constellation Taurus.

image

Fairy tale giants may be taller than trees, but these supergiant stars can be over 100,000 times “taller” than our entire planet! Supergiant stars are likely becoming more rare as time goes on. While scientists believe they used to be more common, our whole galaxy now contains just a small smattering of supergiants.

image

These massive stars grace the galaxy for a relatively small amount of time. They burn through their fuel extremely quickly — in just a few million years, as opposed to hundreds of billions of years for the smallest stars! Supergiants often end their lives in dramatic explosions called supernovae.

image

Betelgeuse — the bright, reddish star marking the shoulder of Orion — is nearing the end of its life and has expanded to become a red supergiant star. It is destined to explode as a supernova, which might happen tonight … or within the next few hundred thousand years.

Ghostly Solar Neutrinos

image

Even an average star like our Sun has some seemingly magical qualities. Each second, it sends billions of phantom-like neutrino particles out into space. They travel almost as fast as light and don’t usually interact with normal matter. Billions of them are zipping harmlessly straight through your body while you read this. Even at night they go through the entire Earth before reaching you!

image

But that’s not all … these ghostly particles are shape-shifters, too! Neutrinos can change characteristics over time, morphing between different versions of themselves. Spooky!

Buried Treasure in the Heart of the Galaxy

image

Extensive clouds of dust enshroud the heart of our Milky Way galaxy, hiding it from our view — at least when it comes to visible light. The dust isn’t as big a problem for infrared light, however, which has allowed us to get a glimpse of our galaxy’s chaotic core thanks to our Hubble and Spitzer space telescopes.

image

Future missions may peer into the galactic core in search of buried treasure — thousands of planets orbiting distant stars!

Want to learn about more cosmic objects? Find them here!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
3 years ago

Watch the Perseids Meteor Shower With Us!

Watch The Perseids Meteor Shower With Us!

Credit: NASA/Bill Ingalls

The Perseids meteor shower is here! It's one of the biggest of the year, and will peak early in the morning on Thursday, August 12, 2021 and Friday, August 13, 2021. To spot them, find a dark area away from bright lights (yes, that includes your phone), and let your eyes acclimate to the night sky. But don't worry – if you can't get away from lights, join us on Facebook, Twitter, and YouTube for a meteor shower livestream hosted by our Marshall Space Flight Center's Meteoroid Environment Office. Get all the details on our Watch the Skies blog.

Make sure to follow us on Tumblr for your regular dose of space.


Tags
8 years ago

How Will We Safely Send the First Humans to the Red Planet?

We’ve been exploring the Red Planet for over 50 years -- Mariner 4 launched on this day (Nov. 28) in 1964 and took the first photos of Mars from space the following summer.

image

We first explored the surface 40 years ago (Viking, 1976) and have had a continuous scientific presence on Mars for nearly 20 years, starting with the landing of the Pathfinder lander and Sojourner rover on July 4, 1997.

We currently have three orbiters – MAVEN, MRO and Mars Odyssey – and two rovers – Curiosity and Opportunity – actively exploring Mars.

These robotic explorers have already taught us a lot about the Red Planet, and future missions will teach us even more about how humans can live and work on the surface.

image

After sending humans on space exploration missions for the last 50 years, we have gained the experience and knowledge to send the first people to Mars. We are working across all areas to prepare for that historic day and want to share our progress with you. 

Building the ride to Mars: NASA’s Space Launch System.

Our ride to Mars, the Space Launch System, is being built right now to meet the challenges of exploring deep space. When it comes to our journey to Mars and beyond, there are no small steps. Our video series by the same name breaks down those steps to show how SLS will send missions to the Red Planet.

image

Living on the Space Station will help humans live safely on Mars.

New crew members of Expedition 50 will soon conduct more than 250 experiments on the International Space Station. More than 2,000 experiments have already been done! 

Experiments in fields such as biology, Earth science, physical sciences and human research are helping us unlock the knowledge needed to enable humans to live in space for long durations. If you missed the recent launch, check out NASA TV for a replay.

image

Testing Orion helps crew live and work in space and get home safely.

Scheduled to launch atop the Space Launch System rocket for the first time in 2018, an uncrewed Orion will travel farther into space than any spacecraft built for humans has ever gone before. When Orion returns to Earth, splashing down into the Pacific Ocean, it will take a landing and recovery group to safely return the capsule and crew back to land. A variety of testing on the ground, including to structures and parachutes, is helping make sure Orion can safely carry crew to new destinations in the solar system.

image

In late October, this recovery group, including NASA’s Ground Systems Development and Operations Program, the U.S. Navy, U.S. Air Force and contractor employees, completed its fifth successful practice run to recover Orion aboard the USS San Diego. 

image

We're using high resolution imagery from the Mars Reconnaissance Orbiter to learn more about potential landing sites for a human mission.

Who knows what surprises the Red Planet holds?

Our Curiosity Rover has discovered all kinds of interesting Mars features including meteorites. How do you learn more about a meteorite? Zap it with lasers, of course.

image

This golf-ball-sized, iron-nickel meteorite was recently found on Mars where ancient lakebed environments once existed. Named “Egg Rock” for the area in which it was found, it is the first meteorite to be examined using a laser-firing spectrometer.

By studying the conditions on Mars with vehicles like Curiosity, scientists are able to help prepare future astronauts to live on Mars.

How do you prepare the tallest rocket ever built for its first launch?

Another important component in successfully launching the Space Launch System rocket and Orion spacecraft on a Journey to Mars is the infrastructure work being done by our Ground Systems Development and Operations Program at Kennedy Space Center.

image

While efforts at our Vehicle Assembly Building continue, we hope you’ll be making your plans to join us at the launch pad for the first flight of SLS with Orion in 2018!

Preparing for a human journey to Mars

The next Mars rover will launch in 2020, and will investigate a region of Mars where the ancient environment may have been favorable for microbial life, probing the Martian rocks for evidence of past life. 

image

It will collect samples and cache them on the surface for potential return to Earth by a future mission. Mars 2020 will also conduct the first investigation into the usability and availability of Martian resources, including oxygen, in preparation for human missions.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Celestial Geometry: Equinoxes and Eclipses

March 20 marks the spring equinox. It’s the first day of astronomical spring in the Northern Hemisphere, and one of two days a year when day and night are just about equal lengths across the globe.

image

Because Earth is tilted on its axis, there are only two days a year when the sun shines down exactly over the equator, and the day/night line – called the terminator – runs straight from north to south.

In the Northern Hemisphere, the March equinox marks the beginning of spring – meaning that our half of Earth is slowly tilting towards the sun, giving us longer days and more sunlight, and moving us out of winter and into spring and summer.

image

An equinox is the product of celestial geometry, and there’s another big celestial event coming up later this year: a total solar eclipse.

image

A solar eclipse happens when the moon blocks our view of the sun. This can only happen at a new moon, the period about once each month when the moon’s orbit positions it between the sun and Earth — but solar eclipses don’t happen every month.  

The moon’s orbit around Earth is inclined, so, from Earth's view, on most months we see the moon passing above or below the sun. A solar eclipse happens only on those new moons where the alignment of all three bodies are in a perfectly straight line.

image

On Aug. 21, 2017, a total solar eclipse will be visible in the US along a narrow, 70-mile-wide path that runs from Oregon to South Carolina. Throughout the rest of North America – and even in parts of South America, Africa, Europe and Asia – the moon will partially obscure the sun.

image

Within the path of totality, the moon will completely cover the sun’s overwhelmingly bright face, revealing the relatively faint outer atmosphere, called the corona, for seconds or minutes, depending on location.

It’s essential to observe eye safety during an eclipse. Though it’s safe to look at the eclipse ONLY during the brief seconds of totality, you must use a proper solar filter or indirect viewing method when any part of the sun’s surface is exposed – whether during the partial phases of an eclipse, or just on a regular day.

image

Learn more about the August eclipse at eclipse2017.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Innovation at 100

Air travel, spaceflight, robotic solar-system missions: science fiction to those alive at the turn of the 20th century became science fact to those living in the 21st. 

Innovation At 100

America’s aerospace future has been literally made at our Langley Research Center by the best and brightest the country can offer. Here are some of the many highlights from a century of ingenuity and invention.

Making the Modern Airplane

In times of peace and war, Langley helped to create a better airplane, including unique wing shapes, sturdier structures, the first engine cowlings, and drag cleanup that enabled the Allies to win World War II.

image

In 1938 Langley mounted the navy's Brewster XF2A-1 Buffalo in the Full-Scale Tunnel for drag reduction studies.

Wind Goes to Work

Langley broke new ground in aeronautical research with a suite of first-of-their-kind wind tunnels that led to numerous advances in commercial, military and vertical flight, such as helicopters and other rotorcraft. 

image

Airflow turning vanes in Langley’s 16-Foot Transonic Tunnel.

Aeronautics Breakthroughs

Aviation Hall of Famer Richard Whitcomb’s area rule made practical jet flight a reality and, thanks to his development of winglets and the supercritical wing, enabled jets to save fuel and fly more efficiently.

image

Richard Whitcomb examines a model aircraft incorporating his area rule.

Making Space

Langley researchers laid the foundation for the U.S. manned space program, played a critical role in the Mercury, Gemini and Apollo programs, and developed the lunar-orbit rendezvous concept that made the Moon landing possible.

image

Neil Armstrong trained for the historic Apollo 11 mission at the Lunar Landing Research Facility,

Safer Air Above and Below

Langley research into robust aircraft design and construction, runway safety grooving, wind shear, airspace management and lightning protection has aimed to minimize, even eliminate air-travel mishaps

image

NASA’s Boeing 737 as it approached a thunderstorm during microburst wind shear research in Colorado in 1992.

Tracking Earth from Aloft

Development by Langley of a variety of satellite-borne instrumentation has enabled real-time monitoring of planet-wide atmospheric chemistry, air quality, upper-atmosphere ozone concentrations, the effects of clouds and air-suspended particles on climate, and other conditions affecting Earth’s biosphere.

image

Crucial Shuttle Contributions

Among a number of vital contributions to the creation of the U.S. fleet of space shuttles, Langley developed preliminary shuttle designs and conducted 60,000 hours of wind tunnel tests to analyze aerodynamic forces affecting shuttle launch, flight and landing.

image

Space Shuttle model in the Langley wind tunnel.

Decidedly Digital

Helping aeronautics transition from analog to digital, Langley has worked on aircraft controls, glass cockpits, computer-aided synthetic vision and a variety of safety-enhancing onboard sensors to better monitor conditions while airborne and on the ground.

image

Aerospace research engineer Kyle Ellis uses computer-aided synthetic vision technology in a flight deck simulator.

Fast, Faster, Fastest

Langley continues to study ways to make higher-speed air travel a reality, from about twice the speed of sound – supersonic – to multiple times: hypersonic.

image

Langley continues to study ways to make higher-speed air travel a reality, from about twice the speed of sound – supersonic – to multiple times: hypersonic.

Safer Space Sojourns

Protecting astronauts from harm is the aim of Langley’s work on the Orion Launch Abort System, while its work on materials and structures for lightweight and affordable space transportation and habitation will keep future space travelers safe.

image

Unmasking the Red Planet

Beginning with its leadership role in Project Viking, Langley has helped to unmask Martian mysteries with a to-date involvement in seven Mars missions, with participation in more likely to come.

image

First image of Mars taken by Viking 1 Lander.

Touchdown Without Terror

Langley’s continued work on advanced entry, descent and landing systems aims to make touchdowns on future planetary missions routinely safe and secure.

image

Artist concept of NASA's Hypersonic Inflatable Aerodynamic Decelerator - an entry, descent and landing technology.

Going Green

Helping to create environmentally benign aeronautical technologies has been a focus of Langley research, including concepts to reduce drag, weight, fuel consumption, emissions, and lessen noise.

image

Intrepid Inventors

With a history developing next-generation composite structures and components, Langley innovators continue to garner awards for a variety of aerospace inventions with a wide array of terrestrial applications.

image

Boron Nitride Nanotubes: High performance, multi-use nanotube material.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
1 year ago
NASA astronaut Jack Hathaway, a white man, poses for a portrait at NASA’s Johnson Space Center in Houston, Texas. Credit: NASA/Josh Valcarcel

Jack Hathaway

Jack Hathaway, a distinguished naval aviator, was born and raised in South Windsor, Connecticut. An Eagle Scout, Hathaway volunteers as an assistant scoutmaster for the Boy Scouts. https://go.nasa.gov/4bU8QbI

Make sure to follow us on Tumblr for your regular dose of space!


Tags
9 years ago

Seeing El Niño…From Space

First, What is El Niño?

This irregularly occurring weather phenomenon is created through an abnormality in wind and ocean circulation. When it originates in the equatorial Pacific Ocean. El Niño has wide-reaching effects. In a global context, it affects rainfall, ocean productivity, atmospheric gases and winds across continents. At a local level, it influences water supplies, fishing industries and food sources.

What About This Year’s El Niño

This winter, weather patterns may be fairly different than what is typical — all because of unusually warm ocean water in the east equatorial Pacific, aka El Niño. California is expected to get more rain while Australia is expected to get less. Since this El Niño began last summer, the Pacific Ocean has already experienced an increase in tropical storms and a decrease in phytoplankton.

How Do We See El Niño?

Here are some of El Niño’s key impacts and how we study them from space:

Rainfall: 

image

El Niño often spurs a change in rainfall patterns that can lead to major flooding, landslides and droughts across the globe.

How We Study It: Our Global Precipitation Measurement mission (GPM), tracks precipitation worldwide and creates global precipitation maps updated every half-hour using data from a host of satellites. Scientists can then use the data to study changes in rain and snow patterns. This gives us a better understanding of Earth’s climate and weather systems.

Hurricanes:

image

El Niño also influences the formation of tropical storms. El Niño events are associated with fewer hurricanes in the Atlantic, but more hurricanes and typhoons in the Pacific.

How We Study It: We have a suite of instruments in space that can study various aspects of storms, such as rainfall activity, cloud heights, surface wind speed and ocean heat.

Ocean Ecology:

image

While El Niño affects land, it also impacts the marine food web, which can be seen in the color of the ocean. The hue of the water is influenced by the presence of tiny plants, sediments and colored dissolved organic material. During El Niño conditions, upwelling is suppressed and the deep, nutrient-rich waters aren’t able to reach the surface, causing less phytoplankton productivity. With less food, the fish population declines, severely affecting fishing industries.

How We Study It: Our satellites measure the color of the ocean to derive surface chlorophyll, a pigment in phytoplankton, and observe lower total chlorophyll amounts during El Niño events in the equatorial Pacific Ocean.

Ozone:

image

El Niño also influences ozone — a compound that plays an important role in the Earth system and human health. When El Niño occurs, there is a substantial change in the major east-west tropical circulation, causing a significant redistribution of atmospheric gases like ozone.

How We Study It: Our Aura satellite is used to measure ozone concentrations in the upper layer of the atmosphere. With more than a decade of Aura data, researchers are able to separate the response of ozone concentrations to an El Niño from its response to change sin human activity, such as manmade fires.

Fires:

image

El Niño conditions shift patters of rainfall and fire across the tropics. During El Niño years, the number and intensity of fires increases, especially under drought conditions in regions accustomed to wet weather. These fires not only damage lands, but also emit greenhouse gases that trap heat in the atmosphere and contribute to global warming.

How We Study It: Our MODIS instruments on Aqua and Terra satellites provide a global picture of fire activity. MODIS was specifically designed to observe fires, allowing scientists to discern flaming from smoldering burns.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Be Glad You Don’t Have to Dust in Space!

Throw open the windows and break out the feather duster, because spring is here and it’s time to do a little cleaning! Fortunately, no one has to tidy up the dust in space — because there’s a lot of it — around 100 tons rain down on Earth alone every day! And there’s even more swirling around the solar system, our Milky Way galaxy, other galaxies and the spaces in between. 

image

By studying the contents of the dust in your house — which can include skin cells, pet fur, furniture fibers, pollen, concrete particles and more — scientists learn a lot about your environment. In the same way, scientists can learn a lot by looking at space dust. Also called cosmic dust, a fleck of space dust is usually smaller than a grain of sand and is made of rock, ice, minerals or organic compounds. Scientists can study cosmic dust to learn about how it formed and how the universe recycles material.

image

“We are made of star-stuff,” Carl Sagan famously said. And it’s true! When a star dies, it sheds clouds of gas in strong stellar winds or in an explosion called a supernova. As the gas cools, minerals condense. Recent observations by our SOFIA mission suggest that in the wake of a supernova shockwave, dust may form more rapidly than scientists previously thought. These clouds of gas and dust created by the deaths of stars can sprawl across light-years and form new stars — like the Horsehead Nebula pictured above. Disks of dust and gas form around new stars and produce planets, moons, asteroids and comets. Here on Earth, some of that space dust eventually became included in living organisms — like us! Billions of years from now, our Sun will die too. The gas and dust it sheds will be recycled into new stars and planets and so on and so forth, in perpetuity!

image

Astronomers originally thought dust was a nuisance that got in the way of seeing the objects it surrounded. Dust scatters and absorbs light from stars and emits heat as infrared light. Once we started using infrared telescopes, we began to understand just how important dust is in the universe and how beautiful it can be. The picture of the Andromeda galaxy above was taken in the infrared by our Spitzer Space Telescope and reveals detailed spirals of dust that we can’t see in an optical image.

image

We also see plenty of dust right here in our solar system. Saturn’s rings are made of mostly ice particles and some dust, but scientists think that dust from meteorites may be darkening the rings over time. Jupiter also has faint dusty rings, although they’re hard to see — Voyager 1 only discovered them when it saw them backlit by the Sun. Astronomers think the rings formed when meteorite impacts on Jupiter’s moons released dust into orbit. The Juno spacecraft took the above picture in 2016 from inside the rings, looking out at the bright star Betelgeuse.

image

Copyright Josh Calcino, used with permission

And some space dust you can see from right here on Earth! In spring or autumn, right before sunrise or after sunset, you may be able to catch a glimpse of a hazy cone of light above the horizon created when the Sun’s rays are scattered by dust in the inner solar system. You can see an example in the image above, extending from above the tree on the horizon toward a spectacular view of the Milky Way. This phenomenon is called zodiacal light — and the dust that’s reflecting the sunlight probably comes from icy comets. Those comets were created by the same dusty disk that that formed our planets and eventually you and the dust under your couch!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Hello, Scott? It’s President Obama.

This afternoon, President Obama spoke by phone with astronaut Scott Kelly to welcome him back to Earth from his record-breaking yearlong mission on the International Space Station. 

image

President Obama, above, is seen talking on the phone with Scott Kelly in the Oval Office on March 2, 2016. (Official White House Photo by Pete Souza)

The President thanked Kelly for his service, for sharing his journey with people across the globe through social media, for his participation in important research about what it will take for us to make long journeys in space, and for inspiring a new generation of young people to pursue studies and careers in science, technology, engineering, and mathematics. 

Hello, Scott? It’s President Obama.

The President also noted that Kelly’s year in space would provide critical data to researchers trying to understand how to keep astronauts healthy during long space voyages and fulfill the President’s vision of putting American astronauts on Mars in the 2030s. 

Thanks to Kelly’s work, in addition to that of everyone at NASA and in the U.S. space industry, the President believes the United States will be successful in that journey to Mars and will continue to lead and inspire the world in space exploration.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • sweetbutterbliss
    sweetbutterbliss liked this · 1 year ago
  • markklitzke
    markklitzke liked this · 6 years ago
  • thekid-1921
    thekid-1921 liked this · 7 years ago
  • sasusprite
    sasusprite reblogged this · 8 years ago
  • kokonel-blog
    kokonel-blog liked this · 9 years ago
  • pompymimusi-blog
    pompymimusi-blog reblogged this · 9 years ago
  • pompymimusi-blog
    pompymimusi-blog liked this · 9 years ago
  • squidderp
    squidderp liked this · 9 years ago
  • astrix9470
    astrix9470 liked this · 9 years ago
  • astrovni-blog
    astrovni-blog reblogged this · 9 years ago
  • femceldoomer
    femceldoomer liked this · 9 years ago
  • axelsboredom
    axelsboredom liked this · 9 years ago
  • tofindloveinpoison
    tofindloveinpoison liked this · 9 years ago
  • tofindloveinpoison
    tofindloveinpoison reblogged this · 9 years ago
  • eidesis
    eidesis liked this · 9 years ago
  • ageof-insanity
    ageof-insanity liked this · 9 years ago
  • snowheartwolf
    snowheartwolf liked this · 9 years ago
  • afanc
    afanc liked this · 9 years ago
  • lettersfromtheattic
    lettersfromtheattic reblogged this · 9 years ago
  • dude-vader
    dude-vader liked this · 9 years ago
  • strkid
    strkid reblogged this · 9 years ago
  • strkid
    strkid liked this · 9 years ago
  • spinachbeetle
    spinachbeetle liked this · 9 years ago
  • archive-of-youth
    archive-of-youth liked this · 9 years ago
  • samstein1012
    samstein1012 reblogged this · 9 years ago
  • mrbigbrows
    mrbigbrows liked this · 9 years ago
  • awesome-osc-sol-alm-posts-blog
    awesome-osc-sol-alm-posts-blog liked this · 9 years ago
  • paranormal2things
    paranormal2things liked this · 9 years ago
  • bfmama
    bfmama liked this · 9 years ago
  • reiervansanford
    reiervansanford liked this · 9 years ago
  • silasplaskett
    silasplaskett liked this · 9 years ago
  • dorkysupernova
    dorkysupernova liked this · 9 years ago
  • noflamingmarshmallowsasaweapon
    noflamingmarshmallowsasaweapon reblogged this · 9 years ago
  • ktravi
    ktravi liked this · 9 years ago
  • busters-lounge
    busters-lounge reblogged this · 9 years ago
  • dragonatthedinnertable
    dragonatthedinnertable reblogged this · 9 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags