Your personal Tumblr journey starts here
Ya de regreso!! Después de representar junto a otras pintoras y pintores a México en la exhibición Tláloc 2018 en el #museodelaacuarela del estado de México ha regresado a su hogar. "Inception" Disponible el original (56 x 36 cm) y giclée (serie cerrada de 25 reproducciones de 45 x 30 cm c/u) . Ambos con certificado de autenticidad. . . . . . . . #acuarelacontemporanea #contemporarywatercolor #watercolorpainting #insight #reflections #framed #exposed #watercolor #mexicanart #mexicanartist #contemporaryartist #newnarratives #cristal #spaces #handsandfeet #artcurator #isaaccm (en Distrito Federal, Mexico) https://www.instagram.com/p/Bs6nYjpgfTn/?utm_source=ig_tumblr_share&igshid=mzavwxhawnlr
The year is 1965, and thanks to telecommunication engineers at our Jet Propulsions Laboratory, the first color version of one of our first Martian images had been created. Brought to life by hand coloring numbered strips, this image is a true blast to the past.
Fast forward to the 21st century and our Mars InSight mission now enables us to gawk at the Martian horizon as if we were there. InSight captured this panorama of its landing site on Dec. 9, 2018, the 14th Martian day, or sol, of its mission. The 290-degree perspective surveys the rim of the degraded crater InSight landed in and was made up of 30 photos stitched together.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
It’s been one year since Jim Bridenstine was sworn in as our 13th administrator, starting the job on April 23, 2018. Since then, he has led the agency towards taking our nation farther than ever before — from assigning the first astronauts to fly on commercial vehicles to the International Space Station, to witnessing New Horizon’s arrival at the farthest object ever explored, to working to meet the challenge of landing humans on the lunar surface by 2024.
Here is a look at what happened in the last year under the Administrator’s leadership:
Administrator Bridenstine introduced to the world on Aug. 3, 2018 the first U.S. astronauts who will fly on American-made, commercial spacecraft to and from the International Space Station — an endeavor that will return astronaut launches to U.S. soil for the first time since the space shuttle’s retirement in 2011.
“Today, our country’s dreams of greater achievements in space are within our grasp,” said Administrator Bridenstine. “This accomplished group of American astronauts, flying on new spacecraft developed by our commercial partners Boeing and SpaceX, will launch a new era of human spaceflight.”
Administrator Bridenstine announced new Moon partnerships with American companies — an important step to achieving long-term scientific study and human exploration of the Moon and Mars. Nine U.S. companies were named as eligible to bid on NASA delivery services to the Moon through Commercial Lunar Payload Services (CLPS) contracts on Nov. 29, 2018.
On Nov. 26, 2018, the InSight lander successfully touched down on Mars after an almost seven-month, 300-million-mile (485-million-kilometer) journey from Earth. Administrator Bridenstine celebrated with the members of Mars Cube One and Mars InSight team members after the Mars lander successfully landed and began its mission to study the “inner space” of Mars: its crust, mantle and core.
"Today, we successfully landed on Mars for the eighth time in human history,” said NASA Administrator Jim Bridenstine. “InSight will study the interior of Mars, and will teach us valuable science as we prepare to send astronauts to the Moon and later to Mars…The best of NASA is yet to come, and it is coming soon.”
The spacecraft OSIRIS-REx traveled 1.4 million miles (2.2 million kilometers) to arrive at the asteroid Bennu on Dec. 3. The first asteroid sample mission is helping scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth. OSIRIS-Rex has already revealed water locked inside the clays that make up the asteroid.
And on the early hours of New Year’s Day, 2019, our New Horizons spacecraft flew past Ultima Thule in Kuiper belt, a region of primordial objects that hold keys to understanding the origins of the solar system.
“In addition to being the first to explore Pluto, today New Horizons flew by the most distant object ever visited by a spacecraft and became the first to directly explore an object that holds remnants from the birth of our solar system,” said Administrator Bridenstine. “This is what leadership in space is all about.”
Demonstration Mission-1 (Demo-1) was an uncrewed flight test designed to demonstrate a new commercial capability developed under NASA’s Commercial Crew Program. The mission began March 2, when the Crew Dragon launched from NASA’s Kennedy Space Center in Florida and docked to the International Space Station for five days.
“Today’s successful re-entry and recovery of the Crew Dragon capsule after its first mission to the International Space Station marked another important milestone in the future of human spaceflight,” said Administrator Bridenstine. “I want to once again congratulate the NASA and SpaceX teams on an incredible week. Our Commercial Crew Program is one step closer to launching American astronauts on American rockets from American soil.”
Administrator Bridenstine has accomplished a lot since he swore in one year ago — but the best is yet to come. On March 26, Vice President Mike Pence tasked our agency with returning American astronauts to the Moon by 2024 at the fifth meeting of the National Space Council.
“It is the right time for this challenge, and I assured the Vice President that we, the people of NASA, are up to the challenge,” said Administrator Bridenstine. “There’s a lot of excitement about our plans and also a lot of hard work and challenges ahead, but I know the NASA workforce and our partners are up to it.”
Learn more about what’s still to come this year at NASA:
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Opportunity rover is facing one of the greatest challenges of its 14 ½ year mission on the surface of Mars--a massive dust storm that has turned day to night. Opportunity is currently hunkered down on Mars near the center of a storm bigger than North America and Russia combined. The dust-induced darkness means the solar-powered rover can’t recharge its batteries.
This isn’t the first time Opportunity has had to wait out a massive storm. In 2007, a monthlong series of severe storms filled the Martian skies with dust. Power levels reached critical lows, but engineers nursed the rover back to health when sunlight returned.
Martian breezes proved a saving grace for the solar-powered Mars rovers in the past, sweeping away accumulated dust and enabling rovers to recharge and get back to science. This is Opportunity in 2014. The image on the left is from January 2014. The image on the right in March 2014.
Back in 1971, scientists were eager for their first orbital views of Mars. But when Mariner 9 arrived in orbit, the Red Planet was engulfed by a global dust storm that hid most of the surface for a month. When the dust settled, geologists got detailed views of the Martian surface, including the first glimpses of ancient riverbeds carved into the dry and dusty landscape.
As bad as the massive storm sounds, Mars isn’t capable of generating the strong winds that stranded actor Matt Damon’s character on the Red Planet in the movie The Martian. Mars’ atmosphere is too thin and winds are more breezy than brutal. The chore of cleaning dusty solar panels to maintain power levels, however, could be a very real job for future human explorers.
Scientists know to expect big dust storms on Mars, but the rapid development of the current one is surprising. Decades of Mars observations show a pattern of regional dust storms arising in northern spring and summer. In most Martian years, nearly twice as long as Earth years, the storms dissipate. But we’ve seen global dust storms in 1971, 1977, 1982, 1994, 2001 and 2007. The current storm season could last into 2019.
Dust is hard on machines, but can be a boon to science. A study of the 2007 storm published earlier this year suggests such storms play a role in the ongoing process of gas escaping from the top of Mars' atmosphere. That process long ago transformed wetter, warmer ancient Mars into today's arid, frozen planet. Three of our orbiters, the Curiosity rover and international partners are already in position to study the 2018 storm.
Mission controllers for Mars InSight lander--due to land on Mars in November--will be closely monitoring the storm in case the spacecraft’s landing parameters need to be adjusted for safety.
Once on the Red Planet, InSight will use sophisticated geophysical instruments to delve deep beneath the surface of Mars, detecting the fingerprints of the processes of terrestrial planet formation, as well as measuring the planet's "vital signs": Its "pulse" (seismology), "temperature" (heat flow probe), and "reflexes" (precision tracking).
One saving grace of dust storms is that they can actually limit the extreme temperature swings experienced on the Martian surface. The same swirling dust that blocks out sunlight also absorbs heat, raising the ambient temperature surrounding Opportunity.
Track the storm and check the weather on Mars anytime.
A dust storm in the Sahara can change the skies in Miami and temperatures in the North Atlantic. Earth scientists keep close watch on our home planet’s dust storms, which can darken skies and alter Earth’s climate patterns.
Read the full web version of this article HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
You won't want to miss red Mars in the southern morning skies this month.
InSight, our first mission to explore Mars' deep interior, launches on May 5th with a launch window that begins at 4:05 a.m. PDT and lasts for two hours.
Some lucky viewers in central and southern California and even parts of the Mexican Pacific coast will get a chance to see the spacecraft launch with their unaided eyes AND its destination, Mars, at the same time.
Mars shines a little brighter than last month, as it approaches opposition on July 27th. That's when Mars and the Sun will be on opposite sides of the Earth. This will be Mars' closest approach to Earth since 2003!
Compare the planet's increases in brightness with your own eyes between now and July 27th.
The Eta Aquarid meteor shower will be washed out by the Moon this month, but if you are awake for the InSight launch anyway, have a look. This shower is better viewed from the southern hemisphere, but medium rates of 10 to 30 meteors per hour MAY be seen before dawn.
Of course, you could travel to the South Pacific to see the shower at its best!
There's no sharp peak to this shower--just several nights with good rates, centered on May 6th.
Jupiter reaches opposition on May 9th, heralding the best Jupiter-observing season, especially for mid-evening viewing. That's because the king of the planets rises at sunset and sets at dawn.
Wait a few hours after sunset, when Jupiter is higher in the sky, for the best views. If you viewed Jupiter last month, expect the view to be even better this month!
Watch the full What’s Up for May Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
May the fifth be with you because history is about to be made: As early as May 5, 2018, we’re set to launch Mars InSight, the very first mission to study the deep interior of Mars. We’ve been roaming the surface of Mars for a while now, but when InSight lands on Nov. 26, 2018, we’re going in for a deeper look. Below, 10 things to know as we head to the heart of Mars.
Coverage of prelaunch and launch activities begins Thursday, May 3, on NASA Television and our homepage.
"Insight" is to see the inner nature of something, and the InSight lander—a.k.a. Interior Exploration using Seismic Investigations, Geodesy and Heat Transport—will do just that. InSight will take the "vital signs" of Mars: its pulse (seismology), temperature (heat flow) and reflexes (radio science). It will be the first thorough check-up since the planet formed 4.5 billion years ago.
You read that right: earthquakes, except on Mars. Scientists have seen a lot of evidence suggesting Mars has quakes, and InSight will try to detect marsquakes for the first time. By studying how seismic waves pass through the different layers of the planet (the crust, mantle and core), scientists can deduce the depths of these layers and what they're made of. In this way, seismology is like taking an X-ray of the interior of Mars.
Want to know more? Check out this one-minute video.
InSight is a Mars mission, but it’s also so much more than that. By studying the deep interior of Mars, we hope to learn how other rocky planets form. Earth and Mars were molded from the same primordial stuff more than 4.5 billion years ago, but then became quite different. Why didn’t they share the same fate? When it comes to rocky planets, we’ve only studied one in great detail: Earth. By comparing Earth's interior to that of Mars, InSight's team hopes to better understand our solar system. What they learn might even aid the search for Earth-like planets outside our solar system, narrowing down which ones might be able to support life.
InSight looks a bit like an oversized crane game: When it lands on Mars this November, its robotic arm will be used to grasp and move objects on another planet for the first time. And like any crane game, practice makes it easier to capture the prize.
Want to see what a Mars robot test lab is like? Take a 360 tour.
InSight will be traveling with a number of instruments, from cameras and antennas to the heat flow probe. Get up close and personal with each one in our instrument profiles.
InSight has three major parts that make up the spacecraft: Cruise Stage; Entry, Descent, and Landing System; and the Lander. Find out what each one does here.
Mars has weak sunlight because of its long distance from the Sun and a dusty, thin atmosphere. So InSight’s fan-like solar panels were specially designed to power InSight in this environment for at least one Martian year, or two Earth years.
Our scientists have found evidence that Mars’ crust is not as dense as previously thought, a clue that could help researchers better understand the Red Planet’s interior structure and evolution. “The crust is the end-result of everything that happened during a planet’s history, so a lower density could have important implications about Mars’ formation and evolution,” said Sander Goossens of our Goddard Space Flight Center in Greenbelt, Maryland.
InSight won’t be flying solo—it will have two microchips on board inscribed with more than 2.4 million names submitted by the public. "It's a fun way for the public to feel personally invested in the mission," said Bruce Banerdt of our Jet Propulsion Laboratory, the mission's principal investigator. "We're happy to have them along for the ride."
The rocket that will loft InSight beyond Earth will also launch a separate NASA technology experiment: two mini-spacecraft called Mars Cube One, or MarCO. These suitcase-sized CubeSats will fly on their own path to Mars behindInSight. Their goal is to test new miniaturized deep space communication equipment and, if the MarCOs make it to Mars, may relay back InSight data as it enters the Martian atmosphere and lands. This will be a first test of miniaturized CubeSat technology at another planet, which researchers hope can offer new capabilities to future missions.
Check out the full version of ‘Solar System: 10 Thing to Know This Week’ HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The Mars InSight lander is scheduled to launch in May 2018 to search for the answers to those questions.
InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) will conduct the first thorough “check-up” of Mars in more than 4.5 billion years, measuring its “pulse”, or seismic activity; its temperature; and its “reflexes” (the way the planet wobbles when it is pulled by the Sun and its moons).
By using sophisticated instruments – tools that can measure the vital signs of a planet – InSight will delve deep beneath the surface of Mars, detecting the clues left by the earliest stages of planetary formation.
Previous Mars missions have explored the surface history of the Red Planet. Mars has been less geologically active than Earth, so it retains a more complete record of its history in its core, mantle and crust. InSight will study the sizes, densities and overall structure of the Red Planet’s core, mantle and crust.
The lander will also measure the rate at which heat escapes from the planet’s interior, and provide glimpses into the evolutionary processes of all the rocky planets in our solar system, including Earth, and even those circling other stars!
You can send your name to Mars onboard the InSight lander! The deadline to get your Martian boarding pass is Nov. 1. To submit your name, visit: mars.nasa.gov/syn/insight
Learn more about Mars InSight HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
1. We will add to our existing robotic fleet at the Red Planet with the InSight Mars lander set to study the planet's interior.
This terrestrial planet explorer will address one of the most fundamental issues of planetary and solar system science - understanding the processes that shaped the rocky planets of the inner solar system (including Earth) more than four billion years ago.
2. The Mars 2020 rover will look for signs of past microbial life, gather samples for potential future return to Earth.
The Mars 2020 mission takes the next step by not only seeking signs of habitable conditions on the Red Planet in the ancient past, but also searching for signs of past microbial life itself. The Mars 2020 rover introduces a drill that can collect core samples of the most promising rocks and soils and set them aside in a "cache" on the surface of Mars.
3. The James Webb Space Telescope will be the premier observatory of the next decade, studying the history of our Universe in infrared.
Webb will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own solar system.
4. The Parker Solar Probe will "touch the Sun," traveling closer to the surface than any spacecraft before.
This spacecraft, about the size of a small car, will travel directly into the sun's atmosphere about 4 million miles from our star's surface. Parker Solar Probe and its four suites of instruments – studying magnetic and electric fields, energetic particles, and the solar wind – will be protected from the Sun’s enormous heat by a 4.5-inch-thick carbon-composite heat shield.
5. Our OSIRIS-REx spacecraft arrives at the near-Earth asteroid Bennu in August 2018, and will return a sample for study in 2023.
This mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth.
6. Launching in 2018, the Transiting Exoplanet Survey Satellite (TESS) will search for planets around 200,000 bright, nearby stars.
The Transiting Exoplanet Survey Satellite (TESS) is the next step in the search for planets outside of our solar system (exoplanets), including those that could support life. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits.
7. A mission to Jupiter's ocean-bearing moon Europa is being planned for launch in the 2020s.
The mission will place a spacecraft in orbit around Jupiter in order to perform a detailed investigation of Europa -- a world that shows strong evidence for an ocean of liquid water beneath its icy crust and which could host conditions favorable for life.
8. We will launch our first integrated test flight of the Space Launch System rocket and Orion spacecraft, known as Exploration Mission-1.
The Space Launch System rocket will launch with Orion atop it. During Exploration Mission-1, Orion will venture thousands of miles beyond the moon during an approximately three week mission.
9. We are looking at what a flexible deep space gateway near the Moon could be.
We’ve issued a draft announcement seeking U.S. industry-led studies for an advanced solar electric propulsion (SEP) vehicle capability. The studies will help define required capabilities and reduce risk for the 50 kilowatt-class SEP needed for the agency’s near-term exploration goals.
10. Want to know more? Read the full story.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Our InSight mission will place a fixed science outpost on Mars to study its deep interior. Findings and research from this project will address one of the most fundamental questions we have about planetary and solar system science – How in the world did these rocky planets form?
By investigating the interior structure and processes of Mars, the InSight mission will gain a better understanding of the evolutionary formation of planets, including Earth.
InSight will record Mars’ vital signs to learn more about the planet, including:
Seismic Activity:
A seismometer will be used to record the seismic activity on Mars. This will give us information on the crust, mantel and core; and the relationship between them.
Temperature:
A heat flow probe will be used to take Mars’ temperature and determine the change over the course of a full Martian year.
Reflexes:
By looking at how the rotation of Mars wobbles, we will better understand what the core size may be and its composition.
Launch for the InSight mission is scheduled for March 2016, and even though you can’t physically travel with the lander, you can send your name to the Red Planet onboard. Make sure to submit your name before Sept. 8!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com