Your personal Tumblr journey starts here
Our solar system is littered with asteroids and comets, and sometimes they get a little close to Earth. But no need to worry! This happens all the time. When an asteroid or comet could come close to our planet, it’s known as a near-Earth object – aka NEO.
But how close is “close”?
A near-Earth object is defined as an object that could pass by our Earth within 30 million miles. We begin to keep close watch on objects that could pass within 5 million miles of our planet.
To put that into perspective, our Moon is only 238,900 miles away.
However unlikely an impact is, we want to know about all near-Earth objects. Our Planetary Defense Coordination Office maintains watch for asteroids and comets coming close to Earth. Along with our partners, we discover, catalog and characterize these bodies.
But what if one of these objects posed a threat?
We want to be prepared. That is why we are working on several deflection techniques and technologies to help protect our planet.
So next time that you hear of an asteroid passing “close” to Earth, know that it’s just one of many that we are tracking.
Here are 10 more things you should know about Planetary Defense.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
On October 20th, our OSIRIS-REx mission will make its first attempt to collect and retrieve a sample of asteroid Bennu, a near-Earth asteroid. On sample collection day, Bennu will be over 200 million miles away from Earth.
Asteroids are the building blocks of our solar system. A sample of this ancient material can tell us about the history of our planet and the origins of life. Science results published from the mission on October 8th confirm that Bennu contains carbon in a form often found in biology or in compounds associated with biology.
To collect a sample, OSIRIS-REx will attempt a method NASA has never used before – called Touch-And-Go (TAG). First, the spacecraft extends its robotic sampling arm, the Touch-And-Go Sample Acquisition Mechanism (TAGSAM) – from its folded storage position. The spacecraft’s two solar panels then move into a “Y-wing” configuration over the spacecraft’s body, which positions them safely up and away from the asteroid’s surface during touch down. This configuration also places the spacecraft’s center of gravity directly over the TAGSAM collector head, which is the only part of the spacecraft that will contact Bennu’s surface.
Finding a safe sample collection site on Bennu’s rocky landscape was a challenge. During the sampling event, the spacecraft, which is the size of a large van, will attempt to touch down in an area that is only the size of a few parking spaces, and just a few steps away from enormous boulders.
The spacecraft will only make contact with Bennu for a matter of seconds - just long enough to blow nitrogen gas onto the surface to roil up dust and small pebbles, which will then be captured for a return to Earth.
We need to conduct a few tests before we can confirm we collected a large enough sample (about 2 oz). First, OSIRIS-REx will take images of the collector head to see if it contains rocks and dust. Second, the spacecraft will spin with the TAGSAM extended to determine the mass of collected material. If these measures show a successful collection, we will stow the sample for return to Earth. If sufficient sample has not been collected, the spacecraft has onboard nitrogen charges for two more attempts. The next TAG attempt would be made no earlier than January 2021.
Despite the many challenges, the OSIRIS-REx team is ready. They’ve practiced and prepared for this moment.
Join in with #ToBennuAndBack and tune in on October 20th.
Learn more about the OSIRIS-REx countdown to TAG HERE.
Learn more about the OSIRIS-REx mission HERE, or follow the mission on Facebook, Twitter and Instagram.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
It’s been one year since Jim Bridenstine was sworn in as our 13th administrator, starting the job on April 23, 2018. Since then, he has led the agency towards taking our nation farther than ever before — from assigning the first astronauts to fly on commercial vehicles to the International Space Station, to witnessing New Horizon’s arrival at the farthest object ever explored, to working to meet the challenge of landing humans on the lunar surface by 2024.
Here is a look at what happened in the last year under the Administrator’s leadership:
Administrator Bridenstine introduced to the world on Aug. 3, 2018 the first U.S. astronauts who will fly on American-made, commercial spacecraft to and from the International Space Station — an endeavor that will return astronaut launches to U.S. soil for the first time since the space shuttle’s retirement in 2011.
“Today, our country’s dreams of greater achievements in space are within our grasp,” said Administrator Bridenstine. “This accomplished group of American astronauts, flying on new spacecraft developed by our commercial partners Boeing and SpaceX, will launch a new era of human spaceflight.”
Administrator Bridenstine announced new Moon partnerships with American companies — an important step to achieving long-term scientific study and human exploration of the Moon and Mars. Nine U.S. companies were named as eligible to bid on NASA delivery services to the Moon through Commercial Lunar Payload Services (CLPS) contracts on Nov. 29, 2018.
On Nov. 26, 2018, the InSight lander successfully touched down on Mars after an almost seven-month, 300-million-mile (485-million-kilometer) journey from Earth. Administrator Bridenstine celebrated with the members of Mars Cube One and Mars InSight team members after the Mars lander successfully landed and began its mission to study the “inner space” of Mars: its crust, mantle and core.
"Today, we successfully landed on Mars for the eighth time in human history,” said NASA Administrator Jim Bridenstine. “InSight will study the interior of Mars, and will teach us valuable science as we prepare to send astronauts to the Moon and later to Mars…The best of NASA is yet to come, and it is coming soon.”
The spacecraft OSIRIS-REx traveled 1.4 million miles (2.2 million kilometers) to arrive at the asteroid Bennu on Dec. 3. The first asteroid sample mission is helping scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth. OSIRIS-Rex has already revealed water locked inside the clays that make up the asteroid.
And on the early hours of New Year’s Day, 2019, our New Horizons spacecraft flew past Ultima Thule in Kuiper belt, a region of primordial objects that hold keys to understanding the origins of the solar system.
“In addition to being the first to explore Pluto, today New Horizons flew by the most distant object ever visited by a spacecraft and became the first to directly explore an object that holds remnants from the birth of our solar system,” said Administrator Bridenstine. “This is what leadership in space is all about.”
Demonstration Mission-1 (Demo-1) was an uncrewed flight test designed to demonstrate a new commercial capability developed under NASA’s Commercial Crew Program. The mission began March 2, when the Crew Dragon launched from NASA’s Kennedy Space Center in Florida and docked to the International Space Station for five days.
“Today’s successful re-entry and recovery of the Crew Dragon capsule after its first mission to the International Space Station marked another important milestone in the future of human spaceflight,” said Administrator Bridenstine. “I want to once again congratulate the NASA and SpaceX teams on an incredible week. Our Commercial Crew Program is one step closer to launching American astronauts on American rockets from American soil.”
Administrator Bridenstine has accomplished a lot since he swore in one year ago — but the best is yet to come. On March 26, Vice President Mike Pence tasked our agency with returning American astronauts to the Moon by 2024 at the fifth meeting of the National Space Council.
“It is the right time for this challenge, and I assured the Vice President that we, the people of NASA, are up to the challenge,” said Administrator Bridenstine. “There’s a lot of excitement about our plans and also a lot of hard work and challenges ahead, but I know the NASA workforce and our partners are up to it.”
Learn more about what’s still to come this year at NASA:
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This week, we’re at one of the biggest science conferences in the country, where our scientists are presenting new results from our missions and projects. It’s called the American Geophysical Union’s Fall Meeting.
Here are a few of the things we shared this week...
A few months into its seven-year mission, Parker Solar Probe has already flown far closer to the Sun than any spacecraft has ever gone. The data from this visit to the Sun has just started to come back to Earth, and scientists are hard at work on their analysis.
Parker Solar Probe sent us this new view of the Sun’s outer atmosphere, the corona. The image was taken by the mission’s WISPR instrument on Nov. 8, 2018, and shows a coronal streamer seen over the east limb of the Sun. Coronal streamers are structures of solar material within the Sun's atmosphere, the corona, that usually overlie regions of increased solar activity. The fine structure of the streamer is very clear, with at least two rays visible. Parker Solar Probe was about 16.9 million miles from the Sun's surface when this image was taken. The bright object near the center of the image is Mercury, and the dark spots are a result of background correction.
Using a satellite view of human lights, our scientists watched the lights go out in Puerto Rico after Hurricane Maria. They could see the slow return of electricity to the island, and track how rural and mountainous regions took longer to regain power.
In the spring, a team of scientists flew a plane over Puerto Rico’s forests, using a laser instrument to measure how trees were damaged and how the overall structure of the forests had changed.
Our scientists who study Antarctica saw some surprising changes to East Antarctica. Until now, most of the continent’s melting has been on the peninsula and West Antarctica, but our scientists have seen glaciers in East Antarctica lose lots of ice in the last few years.
Our ICESat-2 team showed some of their brand new data. From the changing height of Antarctic ice to lagoons off the coast of Mexico, the little satellite has spent its first few months measuring our planet in 3D. The laser pulses even see individual ocean waves, in this graph.
Scientists are using our satellite data to track Adélie penguin populations, by using an unusual proxy -- pictures of their poop! Penguins are too small to be seen by satellites, but they can see large amounts of their poop (which is pink!) and use that as a proxy for penguin populations.
Our OSIRIS-REx mission recently arrived at its destination, asteroid Bennu. On approach, data from the spacecraft’s spectrometers revealed chemical signatures of water trapped in clay minerals. While Bennu itself is too small to have ever hosted liquid water, the finding indicates that liquid water was present at some time on Bennu’s parent body, a much larger asteroid.
We also released a new, detailed shape model of Bennu, which is very similar to our ground-based observations of Bennu’s shape. This is a boon to ground-based radar astronomy since this is our first validation of the accuracy of the method for an asteroid! One change from the original shape model is the size of the large boulder near Bennu’s south pole, nicknamed “Benben.” The boulder is much bigger than we thought and overall, the quantity of boulders on the surface is higher than expected. Now the team will make further observations at closer ranges to more accurately assess where a sample can be taken on Bennu to later be returned to Earth.
The Juno mission celebrated it’s 16th science pass of #Jupiter, marking the halfway point in data collection of the prime mission. Over the second half of the prime mission — science flybys 17 through 32 — the spacecraft will split the difference, flying exactly halfway between each previous orbit. This will provide coverage of the planet every 11.25 degrees of longitude, providing a more detailed picture of what makes the whole of Jupiter tick.
The Mars 2020 team had a workshop to discuss the newly announced landing site for our next rover on the Red Planet. The landing site...Jezero Crater! The goal of Mars 2020 is to learn whether life ever existed on Mars. It's too cold and dry for life to exist on the Martian surface today. But after Jezero Crater formed billions of years ago, water filled it to form a deep lake about the same size as Lake Tahoe. Eventually, as Mars' climate changed, Lake Jezero dried up. And surface water disappeared from the planet.
Humanity now has two interstellar ambassadors. On Nov. 5, 2018, our Voyager 2 spacecraft left the heliosphere — the bubble of the Sun’s magnetic influence formed by the solar wind. It’s only the second-ever human-made object to enter interstellar space, following its twin, Voyager 1, that left the heliosphere in 2012.
Scientists are especially excited to keep receiving data from Voyager 2, because — unlike Voyager 1 — its plasma science instrument is still working. That means we’ll learn brand-new information about what fills the space between the stars.
Learn more about NASA Science at science.nasa.gov.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
In 2013, researchers published a shape model of asteroid Bennu based on years of observations from Puerto Rico’s Arecibo Observatory. Their model depicted a rough diamond shape. Five years later, the OSIRIS-REx spacecraft has reached the asteroid, and data obtained from spacecraft’s cameras corroborate those ground-based telescopic observations of Bennu.
The original model closely predicted the asteroid’s actual shape, with Bennu’s diameter, rotation rate, inclination and overall shape presented almost exactly as projected! This video shows the new shape model created using data from OSIRIS-REx’s approach to the asteroid.
One outlier from the predicted shape model is the size of the large boulder near Bennu’s south pole. The ground-based shape model calculated it to be at least 33 feet (10 meters) in height. Preliminary calculations show that the boulder is closer to 164 feet (50 meters) in height, with a width of approximately 180 feet (55 meters).
Also during the approach phase, OSIRIS-REx revealed water locked inside the clays that make up Bennu. The presence of hydrated minerals across the asteroid confirms that Bennu, a remnant from early in the formation of the solar system, is an excellent specimen for the OSIRIS-REx mission to study. Get all the details about this discovery HERE.
Learn more about OSIRIS-REx’s journey at nasa.gov/osirisrex.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
As OSIRIS-REx closes in on its target destination—asteroid Bennu—anticipation is building for the first-ever, close-up glimpse of this small world. It took thousands of people to come this far. Get to know a few members of the team:
1. Carl Hergenrother, Astronomy Working Group Lead & Strategic and Tactical Scientist
Job Location: University of Arizona, Tucson Expertise: Asteroids & Comets Time on mission: Since before there was a mission Age: 45 Hometown: Oakland, New Jersey
“When you’re observing Bennu with a telescope, you see it as a dot. … So when it actually becomes its own little world, it’s really exciting—and almost a little sad. Up until that point, it can be anything. And now, there it is and that’s it.”
2. Heather Roper, Graphic Designer
Job Location: University of Arizona, Tucson Job Title: Graphic Designer Expertise: Visual Communications Time on mission: 5 years Age: 25 Hometown: Tucson, Arizona
“I really like the challenge of visually depicting the science of the mission and getting to show people things that we can’t see.”
3. Jason Dworkin, Project Scientist
Job Location: NASA’s Goddard Space Flight Center, Greenbelt, Maryland Expertise: Origin-of-life Chemistry Time on mission: Since before there was a mission Age: 49 Hometown: Houston, Texas
"In 10th grade, I had to do a science fair project for biology class. … I wanted to expand on chemistry experiments from old journal papers; but that could have been dangerous. I got in touch with … a pioneering scientist in origin-of-life research and asked for advice. He was worried that I would accidentally injure myself, so he invited me into his lab . . . that helped set my career.”
4. Sara Balram Knutson, Science Operations Lead Engineer
Job Location: University of Arizona, Tucson Expertise: Aerospace Engineering Time on mission: 6 years Age: 31 Hometown: Vacaville, California
“My dad was in the Air Force, so I grew up being a bit of an airplane nerd. When I was in high school, I really liked math, science, and anything having to do with flight. I looked for a field where I could combine all those interests and I found aerospace engineering.”
5. Nancy Neal Jones, Public Affairs Lead
Job Location: NASA’s Goddard Space Flight Center, Greenbelt, Maryland Expertise: Science Communications Time on mission: 7 years Age: 51 Hometown: New York, New York
“We’re going to a pristine asteroid to take a sample to bring to Earth. This means that my children and grandchildren, if they decide to go into the sciences, may have an opportunity analyze the Bennu samples.”
6. Javier Cerna, Communications System Engineer
Job Location: Lockheed Martin Corporation, Littleton, Colorado Expertise: Electrical Engineering Time on mission: Since before there was a mission Age: 37 Hometown: Born in Mexico City, and raised in Los Angeles, and Las Cruces, New Mexico
“One thing we do is evaluate how strong the signal from the spacecraft is—kind of like checking the strength of the WiFi connection. Basically, we’re ensuring that the link from the spacecraft to the ground, and vice versa, stays strong.”
7. Jamie Moore, Contamination Control Engineer
Job Location: Lockheed Martin Corporation, Littleton, Colorado Expertise: Chemistry Time on mission: 5 years Age: 32 Hometown: Apple Valley, Minnesota & Orlando, Florida
“I was there for just about every deployment of the sampling hardware to make sure it was kept clean and to evaluate the tools engineers were using. I even went to Florida with the spacecraft to make sure it stayed clean until launch.”
8. Mike Moreau, Flight Dynamics System Manager
Job Location: NASA’s Goddard Space Flight Center, Greenbelt, Maryland; Littleton, Colorado Expertise: Mechanical and aerospace engineering Time on mission: 5 years Age: 47 Hometown: Swanton, Vermont
“I grew up on a dairy farm in Vermont, which is a world away from working for NASA. But I can trace a lot of my success as an engineer and a leader back to things that I learned on my dad’s farm.”
9. Johnna L. McDaniel, Contamination Control Specialist
Job Location: NASA’s Kennedy Space Center, Florida Expertise: Anti-Contamination Cleaning Time on Mission: 4 months Age: 53 Hometown: Cocoa, Florida
“The clothing requirements depend on the payload. With OSIRIS-Rex, we could not wear any items made with nylon. This was because they have amino acid-based polymers in them and would have contaminated the spacecraft. I even had a special bucket for mopping.”
10. Annie Hasten, Senior Financial Analyst
Job Location: Lockheed Martin Corporation, Steamboat Springs, Colorado Expertise: Business Time on Mission: 1.5 years Age: 30 Hometown: Littleton, Colorado
“I think it’s a pleasure to work with people who are so intensely passionate about their jobs. These engineers are doing their dream jobs, so you feed off of that positive energy.”
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
After traveling for two years and billions of kilometers from Earth, the OSIRIS-REx probe is only a few months away from its destination: the intriguing asteroid Bennu. When it arrives in December, OSIRIS-REx will embark on a nearly two-year investigation of this clump of rock, mapping its terrain and finding a safe and fruitful site from which to collect a sample.
The spacecraft will briefly touch Bennu’s surface around July 2020 to collect at least 60 grams (equal to about 30 sugar packets) of dirt and rocks. It might collect as much as 2,000 grams, which would be the largest sample by far gathered from a space object since the Apollo Moon landings. The spacecraft will then pack the sample into a capsule and travel back to Earth, dropping the capsule into Utah's west desert in 2023, where scientists will be waiting to collect it.
This years-long quest for knowledge thrusts Bennu into the center of one of the most ambitious space missions ever attempted. But the humble rock is but one of about 780,000 known asteroids in our solar system. So why did scientists pick Bennu for this momentous investigation? Here are 10 reasons:
Unlike most other asteroids that circle the Sun in the asteroid belt between Mars and Jupiter, Bennu’s orbit is close in proximity to Earth's, even crossing it. The asteroid makes its closest approach to Earth every 6 years. It also circles the Sun nearly in the same plane as Earth, which made it somewhat easier to achieve the high-energy task of launching the spacecraft out of Earth's plane and into Bennu's. Still, the launch required considerable power, so OSIRIS-REx used Earth’s gravity to boost itself into Bennu’s orbital plane when it passed our planet in September 2017.
Asteroids spin on their axes just like Earth does. Small ones, with diameters of 200 meters or less, often spin very fast, up to a few revolutions per minute. This rapid spinning makes it difficult for a spacecraft to match an asteroid's velocity in order to touch down and collect samples. Even worse, the quick spinning has flung loose rocks and soil, material known as "regolith" — the stuff OSIRIS-REx is looking to collect — off the surfaces of small asteroids. Bennu’s size, in contrast, makes it approachable and rich in regolith. It has a diameter of 492 meters, which is a bit larger than the height of the Empire State Building in New York City, and rotating once every 4.3 hours.
Bennu is a leftover fragment from the tumultuous formation of the solar system. Some of the mineral fragments inside Bennu could be older than the solar system. These microscopic grains of dust could be the same ones that spewed from dying stars and eventually coalesced to make the Sun and its planets nearly 4.6 billion years ago. But pieces of asteroids, called meteorites, have been falling to Earth's surface since the planet formed. So why don't scientists just study those old space rocks? Because astronomers can't tell (with very few exceptions) what kind of objects these meteorites came from, which is important context. Furthermore, these stones, that survive the violent, fiery decent to our planet's surface, get contaminated when they land in the dirt, sand, or snow. Some even get hammered by the elements, like rain and snow, for hundreds or thousands of years. Such events change the chemistry of meteorites, obscuring their ancient records.
Bennu, on the other hand, is a time capsule from the early solar system, having been preserved in the vacuum of space. Although scientists think it broke off a larger asteroid in the asteroid belt in a catastrophic collision between about 1 and 2 billion years ago, and hurtled through space until it got locked into an orbit near Earth's, they don’t expect that these events significantly altered it.
Analyzing a sample from Bennu will help planetary scientists better understand the role asteroids may have played in delivering life-forming compounds to Earth. We know from having studied Bennu through Earth- and space-based telescopes that it is a carbonaceous, or carbon-rich, asteroid. Carbon is the hinge upon which organic molecules hang. Bennu is likely rich in organic molecules, which are made of chains of carbon bonded with atoms of oxygen, hydrogen, and other elements in a chemical recipe that makes all known living things. Besides carbon, Bennu also might have another component important to life: water, which is trapped in the minerals that make up the asteroid.
Besides teaching us about our cosmic past, exploring Bennu close-up will help humans plan for the future. Asteroids are rich in natural resources, such as iron and aluminum, and precious metals, such as platinum. For this reason, some companies, and even countries, are building technologies that will one day allow us to extract those materials. More importantly, asteroids like Bennu are key to future, deep-space travel. If humans can learn how to extract the abundant hydrogen and oxygen from the water locked up in an asteroid’s minerals, they could make rocket fuel. Thus, asteroids could one day serve as fuel stations for robotic or human missions to Mars and beyond. Learning how to maneuver around an object like Bennu, and about its chemical and physical properties, will help future prospectors.
Astronomers have studied Bennu from Earth since it was discovered in 1999. As a result, they think they know a lot about the asteroid's physical and chemical properties. Their knowledge is based not only on looking at the asteroid, but also studying meteorites found on Earth, and filling in gaps in observable knowledge with predictions derived from theoretical models. Thanks to the detailed information that will be gleaned from OSIRIS-REx, scientists now will be able to check whether their predictions about Bennu are correct. This work will help verify or refine telescopic observations and models that attempt to reveal the nature of other asteroids in our solar system.
Astronomers have calculated that Bennu’s orbit has drifted about 280 meters (0.18 miles) per year toward the Sun since it was discovered. This could be because of a phenomenon called the Yarkovsky effect, a process whereby sunlight warms one side of a small, dark asteroid and then radiates as heat off the asteroid as it rotates. The heat energy thrusts an asteroid either away from the Sun, if it has a prograde spin like Earth, which means it spins in the same direction as its orbit, or toward the Sun in the case of Bennu, which spins in the opposite direction of its orbit. OSIRIS-REx will measure the Yarkovsky effect from close-up to help scientists predict the movement of Bennu and other asteroids. Already, measurements of how this force impacted Bennu over time have revealed that it likely pushed it to our corner of the solar system from the asteroid belt.
One reason scientists are eager to predict the directions asteroids are drifting is to know when they're coming too-close-for-comfort to Earth. By taking the Yarkovsky effect into account, they’ve estimated that Bennu could pass closer to Earth than the Moon is in 2135, and possibly even closer between 2175 and 2195. Although Bennu is unlikely to hit Earth at that time, our descendants can use the data from OSIRIS-REx to determine how best to deflect any threatening asteroids that are found, perhaps even by using the Yarkovsky effect to their advantage.
Samples of Bennu will return to Earth on September 24, 2023. OSIRIS-REx scientists will study a quarter of the regolith. The rest will be made available to scientists around the globe, and also saved for those not yet born, using techniques not yet invented, to answer questions not yet asked.
Read the web version of this week’s “Solar System: 10 Things to Know” article HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
1. We will add to our existing robotic fleet at the Red Planet with the InSight Mars lander set to study the planet's interior.
This terrestrial planet explorer will address one of the most fundamental issues of planetary and solar system science - understanding the processes that shaped the rocky planets of the inner solar system (including Earth) more than four billion years ago.
2. The Mars 2020 rover will look for signs of past microbial life, gather samples for potential future return to Earth.
The Mars 2020 mission takes the next step by not only seeking signs of habitable conditions on the Red Planet in the ancient past, but also searching for signs of past microbial life itself. The Mars 2020 rover introduces a drill that can collect core samples of the most promising rocks and soils and set them aside in a "cache" on the surface of Mars.
3. The James Webb Space Telescope will be the premier observatory of the next decade, studying the history of our Universe in infrared.
Webb will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own solar system.
4. The Parker Solar Probe will "touch the Sun," traveling closer to the surface than any spacecraft before.
This spacecraft, about the size of a small car, will travel directly into the sun's atmosphere about 4 million miles from our star's surface. Parker Solar Probe and its four suites of instruments – studying magnetic and electric fields, energetic particles, and the solar wind – will be protected from the Sun’s enormous heat by a 4.5-inch-thick carbon-composite heat shield.
5. Our OSIRIS-REx spacecraft arrives at the near-Earth asteroid Bennu in August 2018, and will return a sample for study in 2023.
This mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth.
6. Launching in 2018, the Transiting Exoplanet Survey Satellite (TESS) will search for planets around 200,000 bright, nearby stars.
The Transiting Exoplanet Survey Satellite (TESS) is the next step in the search for planets outside of our solar system (exoplanets), including those that could support life. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits.
7. A mission to Jupiter's ocean-bearing moon Europa is being planned for launch in the 2020s.
The mission will place a spacecraft in orbit around Jupiter in order to perform a detailed investigation of Europa -- a world that shows strong evidence for an ocean of liquid water beneath its icy crust and which could host conditions favorable for life.
8. We will launch our first integrated test flight of the Space Launch System rocket and Orion spacecraft, known as Exploration Mission-1.
The Space Launch System rocket will launch with Orion atop it. During Exploration Mission-1, Orion will venture thousands of miles beyond the moon during an approximately three week mission.
9. We are looking at what a flexible deep space gateway near the Moon could be.
We’ve issued a draft announcement seeking U.S. industry-led studies for an advanced solar electric propulsion (SEP) vehicle capability. The studies will help define required capabilities and reduce risk for the 50 kilowatt-class SEP needed for the agency’s near-term exploration goals.
10. Want to know more? Read the full story.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Over the course of several days, observatories and amateur astronomers will be able to spot the spacecraft. Below, 10 things to know about this incredible mission that will bring us the largest sample returned from space since the Apollo era.
OSIRIS-REx seeks answers to the questions that are central to the human experience: Where did we come from? What is our destiny? Asteroids, the leftover debris from the solar system formation process, can help us answer these questions and teach us about the history of the Sun and planets.
Yup. OSIRIS-REx stands for the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer spacecraft. The gist: It will rendezvous with, study, and return a sample of the asteroid Bennu to Earth.
While all the acronyms for each instrument may be alphabet soup, each has a job/role to perform in order to complete the mission. Explore what each one will do in this interactive webpage.
Scientists chose Bennu as the mission target because of its composition, size, and proximity to Earth. Bennu is a rare B-type asteroid (primitive and carbon-rich), which is expected to have organic compounds and water-bearing minerals like clays.
Bennu had a tough life in a rough neighborhood: the early solar system. It's an asteroid the size of a small mountain born from the rubble of a violent collision, hurled through space for millions of years and dismembered by the gravity of planets—but that's exactly what makes it a fascinating destination.
In 2018, OSIRIS-REx will approach Bennu and begin an intricate dance with the asteroid, mapping and studying Bennu in preparation for sample collection. In July 2020, the spacecraft will perform a daring maneuver in which its 11-foot arm will reach out for a five-second "high-five" to stir up surface material, collecting at least 2 ounces (60 grams) of small rocks and dust into a sample return capsule.
OSIRIS-REx launched on September 8, 2016 from Cape Canaveral, Florida on an Atlas V rocket. In March 2021, the window for departure from the asteroid will open and OSIRIS-REx will begin its return journey to Earth, arriving two-and-a-half years later in September 2023.
The sample will head to Earth inside of a return capsule with a heat shield and parachutes that will separate from the spacecraft once it enters the Earth's atmosphere. The capsule containing the sample will be collected at the Utah Test and Training Range. Once it arrives, it will be transported to NASA's Johnson Space Center in Houston for examination. For two years after the sample return (from late 2023-2025) the science team will catalog the sample and conduct the analysis needed to meet the mission science goals. NASA will preserve at least 75% of the sample at NASA's Johnson Space Flight Center in Houston for further research by scientists worldwide, including future generations of scientists.
Analyzing the sample will help scientists understand the early solar system, as well as the hazards and resources of near-Earth space. Asteroids are remnants of the building blocks that formed the planets and enabled life. Those like Bennu contain natural resources such as water, organics and metals. Future space exploration and economic development may rely on asteroids for these materials.
Journey with OSIRIS-REx as it launches, cruises, and arrives to Bennu in this interactive timeline.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Today, June 30 is International Asteroid Day. Here are some things to know about our fascinating space rubble.
Asteroids—named by British astronomer William Herschel from the Greek expression meaning "star-like"—are rocky, airless worlds that are too small to be called planets. But what they might lack in size they certainly make up for in number: An estimated 1.1 to 1.9 million asteroids larger than 1 kilometer are in the Main Belt between the orbits of Mars and Jupiter. And there are millions more that are smaller in size. Asteroids range in size from Vesta—the largest at about 329 miles (529 kilometers) wide—to bodies that are just a few feet across.
Asteroids are generally categorized into three types: carbon-rich, silicate, or metallic, or some combination of the three. Why the different types? It all comes down to how far from the sun they formed. Some experienced high temperatures and partly melted, with iron sinking to the center and volcanic lava forced to the surface. The asteroid Vesta is one example we know of today.
If all of the asteroids were combined into a ball, they would still be much smaller than the Earth's moon.
In 1801, Giuseppe Piazzi discovered the first and then-largest asteroid, Ceres, orbiting between Mars and Jupiter. Ceres is so large that it encompasses about one-fourth of the estimated total mass of all the asteroids in the asteroid belt. In 2006, its classification changed from asteroid to as a dwarf planet.
NASA's Psyche mission will launch in 2022 to explore an all-metal asteroid—what could be the core of an early planet—for the very first time. And in October 2021, the Lucy mission will be the first to visit Jupiter's swarms of Trojan asteroids.
The term 'near' in near-Earth asteroid is actually a misnomer; most of these bodies do not come close to Earth at all. By definition, a near-Earth asteroid is an asteroid that comes within 28 million miles (44 million km) of Earth's orbit. As of June 19, 2017, there are 16,209 known near-Earth asteroids, with 1,803 classified as potentially hazardous asteroids (those that could someday pose a threat to Earth).
About once a year, a car-sized asteroid hits Earth's atmosphere, creates an impressive fireball, and burns up before reaching the surface.
Ground-based observatories and facilities such as Pan-STARRS, the Catalina Sky Survey, and ATLAS are constantly on the hunt to detect near-Earth asteroids. NASA also has a small infrared observatory in orbit about the Earth: NEOWISE. In addition to detecting asteroids and comets, NEOWISE also characterizes these small bodies.
Roughly one-sixth of the asteroid population have a small companion moon (some even have two moons). The first discovery of an asteroid-moon system was of asteroid Ida and its moon Dactyl in 1993.
Several NASA space missions have flown to and observed asteroids. The NEAR Shoemaker mission landed on asteroid Eros in 2001 and NASA's Dawn mission was the first mission to orbit an asteroid in 2011. In 2005, the Japanese spacecraft Hayabusa landed on asteroid Itokawa. Currently, NASA's OSIRIS-REx is en route to a near-Earth asteroid called Bennu; it will bring a small sample back to Earth for study.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
On Dec. 24, 1963, the Jet Propulsion Laboratory's Deep Space Information Facility was renamed the Deep Space Network. And, it’s been humanity's ear to the skies ever since.
+ History of the Deep Space Network
The best time to view the Ursids, radiating from Ursa Minor, or the little Dipper, will be from midnight on December 21 until about 1a.m. on December 22, before the moon rises.
Our Cassini spacecraft has completed several orbits that take it just outside Saturn’s famous rings. The first ring-grazing orbit began on November 30. The spacecraft will repeat this feat 20 times, with only about a week between each ring-plane crossing.
+ Learn more
Next year North America will see one of the most rare and spectacular of all sky events. Learn how to prepare.
+ 2017 Solar Eclipse Toolkit
Our first mission to return an asteroid sample to Earth will be multitasking during its two-year outbound cruise to the asteroid Bennu. On February 9-20, OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) will activate its onboard camera suite and begin its search for elusive “Trojan,” asteroids, constant companions to planets in our solar system as they orbit the sun, remaining near a stable point 60 degrees in front of or behind the planet. Because they constantly lead or follow in the same orbit, they will never collide with their companion planet.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our OSIRIS-REx spacecraft will travel to a near-Earth asteroid, called Bennu, where it will collect a sample to bring back to Earth for study.
But why was Bennu chosen as the target destination asteroid for OSIRIS-REx? The science team took into account three criteria: accessibility, size and composition.
Accessibility: We need an asteroid that we can easily travel to, retrieve a sample from and return to Earth, all within a few years time. The closest asteroids are called near-Earth objects and they travel within 1.3 Astronomical Units (AU) of the sun. For those of you who don’t think in astronomical units…one Astronomical Unit is approximately equal to the distance between the sun and the Earth: ~93 million miles.
For a mission like OSIRIS-REx, the most accessible asteroids are somewhere between 0.08 – 1.6 AU. But we also needed to make sure that those asteroids have a similar orbit to Earth. Bennu fit this criteria! Check!
Size: We need an asteroid the right size to perform two critical portions of the mission: operations close to the asteroid and the actual sample collection from the surface of the asteroid. Bennu is roughly spherical and has a rotation period of 4.3 hours, which is in our size criteria. Check!
Composition: Asteroids are categorized by their spectral properties. In the visible and infrared light minerals have unique signatures or colors, much like fingerprints. Scientists use these fingerprints to identify molecules, like organics. For primitive, carbon-rich asteroids like Bennu, materials are preserved from over 4.5 billion years ago! We’re talking about the start of the formation of our solar system here! These primitive materials could contain organic molecules that may be the precursors to life here on Earth, or elsewhere in our solar system.
Thanks to telescopic observations in the visible and the infrared, as well as in radar, Bennu is currently the best understood asteroid not yet visited by a spacecraft.
All of these things make Bennu a fascinating and accessible asteroid for the OSIRIS-REx mission.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This week, we’re setting out on an ambitious quest: our first mission to retrieve a sample from an asteroid and return it to the Earth.
1. Take It from the Beginning
Some asteroids are time capsules from the very beginnings of our solar system. Some meteorites that fall to Earth originate from asteroids. Laboratory tests of materials found in meteorites date to before the sun started shining. OSIRIS-REx's destination, the near-Earth asteroid Bennu, intrigues scientists in part because it is thought to be composed of the primitive building blocks of the solar system.
Meet asteroid Bennu
Take a tour of asteroids in our solar system.
2. Creating the Right Ship for the Journey
At the heart of the OSIRIS-REx mission is the robotic spacecraft that will fly to Bennu, acting as the surrogate eyes and hands of researchers on Earth. With its solar panels deployed, the craft is about 20 feet (6 meters) long and 10 feet (3 meters) high. Packed into that space are the sample retrieval system, the capsule for returning the sample to the ground on Earth, plus all the hardware for navigation and communicating with home.
Explore the instruments and how they work
3. School of Hard Rocks
If you're a teacher or a student, the OSIRIS-REx mission and exploring asteroids make for some engaging lesson material. Here are some of the things you can try.
Find dozens of lesson plans
4. Standing (or Flying) on the Shoulders of Giants
OSIRIS-REx is not the first time we have explored an asteroid. Several robotic spacecraft led the way, such as the NEAR Shoemaker probe that orbited, and even landed on, the asteroid Eros.
Meet the asteroid pioneers and see what they discovered
5. The Probability of Successfully Navigating an Asteroid Field is...Pretty High
How much of what we see in movies about asteroids is fact, and how much is fiction? This video lays out the basics. (Spoiler alert: even though there are millions of them, the average distance between asteroids in the main belt is something like 1.8 million miles, or about three million kilometers.)
+ Watch + See more videos that explain asteroids and the mission
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
There are interesting asteroid characters in our solar system, including an asteroid that has its own moon and even one that is shaped like a dog bone! Our OSIRIS-REx mission launches at 7:05 p.m. EDT today and will travel to asteroid Bennu.
Scientists chose Bennu as the target of the OSIRIS-REx mission because of its composition, size and proximity to Earth. Bennu is a rare B-type asteroid (primitive and carbon-rich), which is expected to have organic compounds and water-bearing minerals like clays.
Our OSIRIS-REx mission will travel to Bennu and bring a small sample back to Earth for study.
When talking about asteroids, there are some terms scientists use that might not be in your typical vocabulary…but we’ll help with that!
Orbital Eccentricity: This number describes the shape of an asteroid’s orbit by how elliptical it is. For asteroids in orbit around the sun, eccentricity is a number between 0 and 1, with 0 being a perfectly circular orbit and 0.99 being a highly elliptical orbit.
Inclination: The angle, in degrees, of how tilted an asteroid’s orbit is compared to another plane of reference, usually the plane of the Earth’s orbit around the sun.
Orbital Period: The number of days it takes for an asteroid to revolve once around the sun. For example, the Earth’s orbital period is 365 days.
Perihelion Distance: The distance between an asteroid and the sun when the asteroid is closest to the sun.
Aphelion Distance: The distance between the asteroid and the sun when the asteroid is farthest away from the sun.
Astronomical unit: A distance unit commonly used to describe orbits of objects around the sun. The distance from the Earth to the sun is one astronomical unit, or 1 AU, equivalent to about 93 million miles or 150 million kilometers.
Diameter: A measure of the size of an asteroid. It is the length of a line from a point on the surface, through the center of the asteroid, extending out to the opposite surface. Irregularly shaped asteroids may have different diameters depending on which direction they are measured.
Rotation Period: The time it takes for an asteroid to complete one revolution around its axis of rotation. For example, the rotation period of the Earth is approximately 24 hours, or 1 day.
Spectral Type: The classification of an asteroid, based on a measurement of the light reflected by the asteroid.
Watch live launch coverage of OSIRIS-REx to asteroid Bennu starting at 5:30 p.m, on NASA TV: http://www.nasa.gov/nasatv
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our OSIRIS-REx spacecraft launches tomorrow, and will travel to a near-Earth asteroid, called Bennu. While there, it will collect a sample to bring back to Earth for study. But how exactly do we plan to get this spacecraft there and bring the sample back?
After launch, OSIRIS-REx will orbit the sun for a year, then use Earth’s gravitational field to assist it on its way to Bennu. In August 2018, the spacecraft’s approach to Bennu will begin.
The spacecraft will begin a detailed survey of Bennu two months after slowing to encounter the asteroid. The process will last over a year, and will include mapping of potential sample sites. After the selection of the final site, the spacecraft will briefly touch the surface of Bennu to retrieve a sample.
To collect a sample, the sampling arm will make contact with the surface of Bennu for about five seconds, during which it will release a burst of nitrogen gas. The procedure will cause rocks and surface material to be stirred up and captured in the sampler head. The spacecraft has enough nitrogen to allow three sampling attempts, to collect between 60 and 2000 grams (2-70 ounces).
In March 2021, the window for departure from the asteroid will open, and OSIRIS-REx will begin its return journey to Earth, arriving two and a half years later in September 2023.
The sample return capsule will separate from the spacecraft and enter the Earth’s atmosphere. The capsule containing the sample will be collected at the Utah Test and Training Range.
For two years after the sample return, the science team will catalog the sample and conduct analysis. We will also preserve at least 75% of the sample for further research by scientists worldwide, including future generations of scientists.
The OSIRIS-REx spacecraft is outfitted with some amazing instruments that will help complete the mission. Here’s a quick rundown:
The OCAMS Instrument Suite
PolyCam (center), MapCam (left) and SamCam (right) make up the camera suite on the spacecraft. These instruments are responsible for most of the visible light images that will be taken by the spacecraft.
OSIRIS-REx Laser Altimeter (OLA)
This instrument will provide a 3-D map of asteroid Bennu’s shape, which will allow scientists to understand the context of the asteroid’s geography and the sample location.
OSIRIS-REx Thermal Emission Spectrometer (OTES)
The OTES instrument will conduct surveys to map mineral and chemical abundances and will take the asteroid Bennu’s temperature.
OSIRIS-REx Visible and Infrared Spectrometer (OVIRS)
This instrument will measure visible and near infrared light from the asteroid. These observations could be used to identify water and organic materials.
Regolith X-Ray Imaging Spectrometer (REXIS)
REXIS can image X-ray emission from Bennu in order to provide an elemental abundance map of the asteroid’s surface.
Touch-and-Go Sample Arm Mechanism (TAGSAM)
This part of the spacecraft will be responsible for collecting a sample from Bennu’s surface.
OSIRIS-REx Talk Wednesday, Sept. 7 at noon EDT Join us for a discussion with representatives from the mission’s science and engineering teams. This talk will include an overview of the spacecraft and the science behind the mission. Social media followers can ask questions during this event by using #askNASA. Watch HERE.
Uncovering the Secrets of Asteroids Wednesday, Sept. 7 at 1 p.m. EDT During this panel, our scientists will discuss asteroids, how they relate to the origins of our solar system and the search for life beyond Earth. Social media followers can ask questions during this event by using #askNASA. Watch HERE.
Thursday, Sept. 8 starting at 5:30 p.m. EDT Watch the liftoff of the United Launch Alliance’s (ULA) Atlas V rocket from Kennedy Space Center in Florida at 7:05 p.m.
Full coverage is available online starting at 4:30 p.m. Watch HERE
We will also stream the liftoff on Facebook Live starting at 6:50 p.m. EDT. Watch HERE
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our solar system is huge, let us break it down for you. Here are a few things you should know this week:
1. Closeup of a King
For the first time since it entered orbit around Jupiter in July, our Juno spacecraft has flown close to the king of planets—this time with its eyes wide open. During the long, initial orbit, Juno mission managers spent time checking out the spacecraft "from stem to stern," but the science instruments were turned off as a precaution. During this latest pass, Juno's camera and other instruments were collecting data the whole time. Initial reports show that all went well, and the team has released a new close-up view that Juno captured of Jupiter's north polar region. We can expect to see more close-up pictures of Jupiter and other data this week.
+Check in with Juno
2. Getting Ready to Rocket
Our OSIRIS-REx mission leaves Earth next week, the first leg of a journey that will take it out to an asteroid called Bennu. The mission will map the asteroid, study its properties in detail, then collect a physical sample to send back home to Earth. The ambitious endeavor is slated to start off on Sept. 8.
+See what it takes to prep for a deep space launch
3. New Moon Rising
The Lunar Reconnaissance Orbiter (LRO) has already mapped the entire surface of Earth's moon in brilliant detail, but the mission isn't over yet. Lunar explorers still have questions, and LRO is poised to help answer them.
+See what’s next for the mission
4. A Mock-Eclipse Now
We don't have to wait until next year to see the moon cross in front of the sun. From its vantage point in deep space, our Solar Dynamics Observatory (SDO) sometimes sees just that. Such an event is expected on Sept. 1.
+See the latest sun pictures from SDO
5. Jupiter’s Cousins
Our galaxy is home to a bewildering variety of Jupiter-like worlds: hot ones, cold ones, giant versions of our own giant, pint-sized pretenders only half as big around. Astronomers say that in our galaxy alone, a billion or more such Jupiter-like worlds could be orbiting stars other than our sun. And we can use them to gain a better understanding of our solar system and our galactic environment, including the prospects for finding life.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our solar system is huge, let us break it down for you. Here are a few things to know this week:
1. The View from the Far Shore
The rugged shores of Pluto’s highlands come into sharp view in a newly released image from our New Horizons spacecraft. This latest view zooms in on the southeastern portion of Pluto’s great ice plains, where they border dark highlands formerly named Krun Macula.
2. Dawn’s Latest Light
Our Dawn mission has now completed more than 1,000 orbital revolutions since entering into Ceres’ gravitational grip in March 2015. The probe is healthy and performing its ambitious assignments impeccably. See what it has revealed lately HERE.
3. Counting Down
Our OSIRIS-REx mission to the asteroid Bennu is now entering the final preparations for its planned launch in September. In a new interview, the mission’s principal investigator reports on the final pre-flight tests happening at our Kennedy Space Center in Florida.
4. Deep Dive
Three successful engine maneuvers to bring the lowest part of the spacecraft’s orbit down to just 74 miles (119 km) above the surface of Mars, the MAVEN mission’s fifth deep dip campaign has begun. MAVEN is studying the planet’s atmosphere up close.
5. Storm Season
Meanwhile, other robotic Mars orbiters have revealed that a pattern of three large regional dust storms occurs with similar timing most Martian years. The seasonal pattern was detected from dust storms’ effects on atmospheric temperatures, which spacecraft have been monitoring since 1997.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com