Why Bennu? 10 Reasons

Why Bennu? 10 Reasons

After traveling for two years and billions of kilometers from Earth, the OSIRIS-REx probe is only a few months away from its destination: the intriguing asteroid Bennu. When it arrives in December, OSIRIS-REx will embark on a nearly two-year investigation of this clump of rock, mapping its terrain and finding a safe and fruitful site from which to collect a sample.

The spacecraft will briefly touch Bennu’s surface around July 2020 to collect at least 60 grams (equal to about 30 sugar packets) of dirt and rocks. It might collect as much as 2,000 grams, which would be the largest sample by far gathered from a space object since the Apollo Moon landings. The spacecraft will then pack the sample into a capsule and travel back to Earth, dropping the capsule into Utah's west desert in 2023, where scientists will be waiting to collect it.

This years-long quest for knowledge thrusts Bennu into the center of one of the most ambitious space missions ever attempted. But the humble rock is but one of about 780,000 known asteroids in our solar system. So why did scientists pick Bennu for this momentous investigation? Here are 10 reasons:

1. It's close to Earth

image

Unlike most other asteroids that circle the Sun in the asteroid belt between Mars and Jupiter, Bennu’s orbit is close in proximity to Earth's, even crossing it. The asteroid makes its closest approach to Earth every 6 years. It also circles the Sun nearly in the same plane as Earth, which made it somewhat easier to achieve the high-energy task of launching the spacecraft out of Earth's plane and into Bennu's. Still, the launch required considerable power, so OSIRIS-REx used Earth’s gravity to boost itself into Bennu’s orbital plane when it passed our planet in September 2017.

2. It's the right size

image

Asteroids spin on their axes just like Earth does. Small ones, with diameters of 200 meters or less, often spin very fast, up to a few revolutions per minute. This rapid spinning makes it difficult for a spacecraft to match an asteroid's velocity in order to touch down and collect samples. Even worse, the quick spinning has flung loose rocks and soil, material known as "regolith" — the stuff OSIRIS-REx is looking to collect — off the surfaces of small asteroids. Bennu’s size, in contrast, makes it approachable and rich in regolith. It has a diameter of 492 meters, which is a bit larger than the height of the Empire State Building in New York City, and rotating once every 4.3 hours.

3. It's really old

image

Bennu is a leftover fragment from the tumultuous formation of the solar system. Some of the mineral fragments inside Bennu could be older than the solar system. These microscopic grains of dust could be the same ones that spewed from dying stars and eventually coalesced to make the Sun and its planets nearly 4.6 billion years ago. But pieces of asteroids, called meteorites, have been falling to Earth's surface since the planet formed. So why don't scientists just study those old space rocks? Because astronomers can't tell (with very few exceptions) what kind of objects these meteorites came from, which is important context. Furthermore, these stones, that survive the violent, fiery decent to our planet's surface, get contaminated when they land in the dirt, sand, or snow. Some even get hammered by the elements, like rain and snow, for hundreds or thousands of years. Such events change the chemistry of meteorites, obscuring their ancient records.

4. It's well preserved

image

Bennu, on the other hand, is a time capsule from the early solar system, having been preserved in the vacuum of space. Although scientists think it broke off a larger asteroid in the asteroid belt in a catastrophic collision between about 1 and 2 billion years ago, and hurtled through space until it got locked into an orbit near Earth's, they don’t expect that these events significantly altered it.

5. It might contain clues to the origin of life

image

Analyzing a sample from Bennu will help planetary scientists better understand the role asteroids may have played in delivering life-forming compounds to Earth. We know from having studied Bennu through Earth- and space-based telescopes that it is a carbonaceous, or carbon-rich, asteroid. Carbon is the hinge upon which organic molecules hang. Bennu is likely rich in organic molecules, which are made of chains of carbon bonded with atoms of oxygen, hydrogen, and other elements in a chemical recipe that makes all known living things. Besides carbon, Bennu also might have another component important to life: water, which is trapped in the minerals that make up the asteroid.

6. It contains valuable materials

image

Besides teaching us about our cosmic past, exploring Bennu close-up will help humans plan for the future. Asteroids are rich in natural resources, such as iron and aluminum, and precious metals, such as platinum. For this reason, some companies, and even countries, are building technologies that will one day allow us to extract those materials. More importantly, asteroids like Bennu are key to future, deep-space travel. If humans can learn how to extract the abundant hydrogen and oxygen from the water locked up in an asteroid’s minerals, they could make rocket fuel. Thus, asteroids could one day serve as fuel stations for robotic or human missions to Mars and beyond. Learning how to maneuver around an object like Bennu, and about its chemical and physical properties, will help future prospectors.

7. It will help us better understand other asteroids

image

Astronomers have studied Bennu from Earth since it was discovered in 1999. As a result, they think they know a lot about the asteroid's physical and chemical properties. Their knowledge is based not only on looking at the asteroid, but also studying meteorites found on Earth, and filling in gaps in observable knowledge with predictions derived from theoretical models. Thanks to the detailed information that will be gleaned from OSIRIS-REx, scientists now will be able to check whether their predictions about Bennu are correct. This work will help verify or refine telescopic observations and models that attempt to reveal the nature of other asteroids in our solar system.

8. It will help us better understand a quirky solar force ...

image

Astronomers have calculated that Bennu’s orbit has drifted about 280 meters (0.18 miles) per year toward the Sun since it was discovered. This could be because of a phenomenon called the Yarkovsky effect, a process whereby sunlight warms one side of a small, dark asteroid and then radiates as heat off the asteroid as it rotates. The heat energy thrusts an asteroid either away from the Sun, if it has a prograde spin like Earth, which means it spins in the same direction as its orbit, or toward the Sun in the case of Bennu, which spins in the opposite direction of its orbit. OSIRIS-REx will measure the Yarkovsky effect from close-up to help scientists predict the movement of Bennu and other asteroids. Already, measurements of how this force impacted Bennu over time have revealed that it likely pushed it to our corner of the solar system from the asteroid belt.

9. ... and to keep asteroids at bay

image

One reason scientists are eager to predict the directions asteroids are drifting is to know when they're coming too-close-for-comfort to Earth. By taking the Yarkovsky effect into account, they’ve estimated that Bennu could pass closer to Earth than the Moon is in 2135, and possibly even closer between 2175 and 2195. Although Bennu is unlikely to hit Earth at that time, our descendants can use the data from OSIRIS-REx to determine how best to deflect any threatening asteroids that are found, perhaps even by using the Yarkovsky effect to their advantage.

10. It's a gift that will keep on giving

Samples of Bennu will return to Earth on September 24, 2023. OSIRIS-REx scientists will study a quarter of the regolith. The rest will be made available to scientists around the globe, and also saved for those not yet born, using techniques not yet invented, to answer questions not yet asked.

Read the web version of this week’s “Solar System: 10 Things to Know” article HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

5 years ago
Image Credit:NASA/JPL-Caltech⁣
Image Credit:NASA/JPL-Caltech⁣

Image Credit:NASA/JPL-Caltech⁣

In this large celestial mosaic, our Spitzer Space Telescope captured a stellar family portrait! You can find infants, parents and grandparents of star-forming regions all in this generational photo.  ⁣ There’s a lot to see in this image, including multiple clusters of stars born from the same dense clumps of gas and dust – some older and more evolved than others. Dive deeper into its intricacies by visiting https://go.nasa.gov/2XpiWLf ⁣

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
2 years ago

Caution: Universe Work Ahead 🚧

We only have one universe. That’s usually plenty – it’s pretty big after all! But there are some things scientists can’t do with our real universe that they can do if they build new ones using computers.

The universes they create aren’t real, but they’re important tools to help us understand the cosmos. Two teams of scientists recently created a couple of these simulations to help us learn how our Nancy Grace Roman Space Telescope sets out to unveil the universe’s distant past and give us a glimpse of possible futures.

Caution: you are now entering a cosmic construction zone (no hard hat required)!

A black square covered in thousands of tiny red dots and thousands more slightly larger, white and yellow fuzzy blobs. Each speck is a simulated galaxy. Credit: M. Troxel and Caltech-IPAC/R. Hurt

This simulated Roman deep field image, containing hundreds of thousands of galaxies, represents just 1.3 percent of the synthetic survey, which is itself just one percent of Roman's planned survey. The full simulation is available here. The galaxies are color coded – redder ones are farther away, and whiter ones are nearer. The simulation showcases Roman’s power to conduct large, deep surveys and study the universe statistically in ways that aren’t possible with current telescopes.

One Roman simulation is helping scientists plan how to study cosmic evolution by teaming up with other telescopes, like the Vera C. Rubin Observatory. It’s based on galaxy and dark matter models combined with real data from other telescopes. It envisions a big patch of the sky Roman will survey when it launches by 2027. Scientists are exploring the simulation to make observation plans so Roman will help us learn as much as possible. It’s a sneak peek at what we could figure out about how and why our universe has changed dramatically across cosmic epochs.

This video begins by showing the most distant galaxies in the simulated deep field image in red. As it zooms out, layers of nearer (yellow and white) galaxies are added to the frame. By studying different cosmic epochs, Roman will be able to trace the universe's expansion history, study how galaxies developed over time, and much more.

As part of the real future survey, Roman will study the structure and evolution of the universe, map dark matter – an invisible substance detectable only by seeing its gravitational effects on visible matter – and discern between the leading theories that attempt to explain why the expansion of the universe is speeding up. It will do it by traveling back in time…well, sort of.

Seeing into the past

Looking way out into space is kind of like using a time machine. That’s because the light emitted by distant galaxies takes longer to reach us than light from ones that are nearby. When we look at farther galaxies, we see the universe as it was when their light was emitted. That can help us see billions of years into the past. Comparing what the universe was like at different ages will help astronomers piece together the way it has transformed over time.

The animation starts with a deep field image of the universe, showing warm toned galaxies as small specks dusted on a black backdrop. Then the center is distorted as additional layers of galaxies are added. The center appears to bulge toward the viewer, and galaxies are enlarged and smeared into arcs. Credit: Caltech-IPAC/R. Hurt

This animation shows the type of science that astronomers will be able to do with future Roman deep field observations. The gravity of intervening galaxy clusters and dark matter can lens the light from farther objects, warping their appearance as shown in the animation. By studying the distorted light, astronomers can study elusive dark matter, which can only be measured indirectly through its gravitational effects on visible matter. As a bonus, this lensing also makes it easier to see the most distant galaxies whose light they magnify.

The simulation demonstrates how Roman will see even farther back in time thanks to natural magnifying glasses in space. Huge clusters of galaxies are so massive that they warp the fabric of space-time, kind of like how a bowling ball creates a well when placed on a trampoline. When light from more distant galaxies passes close to a galaxy cluster, it follows the curved space-time and bends around the cluster. That lenses the light, producing brighter, distorted images of the farther galaxies.

Roman will be sensitive enough to use this phenomenon to see how even small masses, like clumps of dark matter, warp the appearance of distant galaxies. That will help narrow down the candidates for what dark matter could be made of.

Three small squares filled with bluish dots emerge from a black screen. The black background is then filled with bluish dots too, and then the frame zooms out to see a much larger area of the dots. Credit: NASA's Goddard Space Flight Center and A. Yung

In this simulated view of the deep cosmos, each dot represents a galaxy. The three small squares show Hubble's field of view, and each reveals a different region of the synthetic universe. Roman will be able to quickly survey an area as large as the whole zoomed-out image, which will give us a glimpse of the universe’s largest structures.

Constructing the cosmos over billions of years

A separate simulation shows what Roman might expect to see across more than 10 billion years of cosmic history. It’s based on a galaxy formation model that represents our current understanding of how the universe works. That means that Roman can put that model to the test when it delivers real observations, since astronomers can compare what they expected to see with what’s really out there.

A cone shaped assortment of blue dots is on a grid. The tip of the cone is labeled "present day," and the other end is labeled "13.4 billion years ago." Three slices from the middle are pulled out and show the universe's structure developing over time. Credit: NASA's Goddard Space Flight Center and A. Yung

In this side view of the simulated universe, each dot represents a galaxy whose size and brightness corresponds to its mass. Slices from different epochs illustrate how Roman will be able to view the universe across cosmic history. Astronomers will use such observations to piece together how cosmic evolution led to the web-like structure we see today.

This simulation also shows how Roman will help us learn how extremely large structures in the cosmos were constructed over time. For hundreds of millions of years after the universe was born, it was filled with a sea of charged particles that was almost completely uniform. Today, billions of years later, there are galaxies and galaxy clusters glowing in clumps along invisible threads of dark matter that extend hundreds of millions of light-years. Vast “cosmic voids” are found in between all the shining strands.

Astronomers have connected some of the dots between the universe’s early days and today, but it’s been difficult to see the big picture. Roman’s broad view of space will help us quickly see the universe’s web-like structure for the first time. That’s something that would take Hubble or Webb decades to do! Scientists will also use Roman to view different slices of the universe and piece together all the snapshots in time. We’re looking forward to learning how the cosmos grew and developed to its present state and finding clues about its ultimate fate.

Thousands of small, light and deep blue dots cover a black background representing galaxies in a simulated universe. A tiny white square is labeled "Hubble." A set of 18 much larger squares, oriented in three curved rows, are labeled "Roman." Credit: NASA's Goddard Space Flight Center and A. Yung

This image, containing millions of simulated galaxies strewn across space and time, shows the areas Hubble (white) and Roman (yellow) can capture in a single snapshot. It would take Hubble about 85 years to map the entire region shown in the image at the same depth, but Roman could do it in just 63 days. Roman’s larger view and fast survey speeds will unveil the evolving universe in ways that have never been possible before.

Roman will explore the cosmos as no telescope ever has before, combining a panoramic view of the universe with a vantage point in space. Each picture it sends back will let us see areas that are at least a hundred times larger than our Hubble or James Webb space telescopes can see at one time. Astronomers will study them to learn more about how galaxies were constructed, dark matter, and much more.

The simulations are much more than just pretty pictures – they’re important stepping stones that forecast what we can expect to see with Roman. We’ve never had a view like Roman’s before, so having a preview helps make sure we can make the most of this incredible mission when it launches.

Learn more about the exciting science this mission will investigate on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
7 years ago

5 Training Requirements for New Astronauts

After evaluating a record number of applications, we will introduce our newest class of astronaut candidates on June 7!

image

Upon reporting to duty at our Johnson Space Center in Houston, the new astronaut candidates will complete two years of training before they are eligible to be assigned to a mission. 

Here are the five training criteria they must check off to graduate from astronaut candidate to astronaut:

1. T-38 Jets

image

Astronauts have been training in T-38 jets for more than 35 years because the sleek, white jets require crew members to think quickly in dynamic situations and to make decisions that have real consequences. This type of mental experience is critical to preparing for the rigors of spaceflight. To check off this training criteria, astronaut candidates must be able to safely operate in the T-38 as either a pilot or back seater.

2. International Space Station Systems

image

We are currently flying astronauts to the International Space Station every few months. Astronauts aboard the space station are conducting experiments benefitting humanity on Earth and teaching us how to live longer in space. Astronaut candidates learn to operate and maintain the complex systems aboard the space station as part of their basic training.

3. Spacewalks

image

Spacewalks are the hardest thing, physically and mentally, that astronauts do. Astronaut candidates must demonstrate the skills to complete complex spacewalks in our Neutral Buoyancy Laboratory (giant pool used to simulate weightlessness).  In order to do so, they will train on the life support systems within the spacesuit, how to handle emergency situations that can arise and how to work effectively as a team to repair the many critical systems aboard the International Space Station to keep it functioning as our science laboratory in space.  

4. Robotics

image

Astronaut candidates learn the coordinate systems, terminology and how to operate the space station’s robotic arm. They train in Canada for a two week session where they develop more complex robotics skills including capturing visiting cargo vehicles with the arm. The arm, built by the Canadian Space Agency, is capable of handling large cargo and hardware, and helped build the entire space station. It has latches on either end, allowing it to be moved by both flight controllers on the ground and astronauts in space to various parts of the station.

5. Russian Language

image

The official languages of the International Space Station are English and Russian, and all crewmembers – regardless of what country they come from – are required to know both. NASA astronauts train with their Russian crew mates and launch on the Russian Soyuz vehicle, so it makes sense that they should be able to speak Russian. Astronaut candidates start learning the language at the beginning of their training. They train on this skill every week, as their schedule allows, to keep in practice.

Now, they are ready for their astronaut pin!

After completing this general training, the new astronaut candidates could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on our new Orion spacecraft and Space Launch System rocket.

image

Watch the Astronaut Announcement LIVE!

We will introduce our new astronaut candidates at 2 p.m. EDT Wednesday, June 7, from our Johnson Space Center in Houston. 

Watch live online at nasa.gov/live or on NASA’s Facebook Page. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
3 years ago

Our Parker Solar Probe Just Touched the Sun!

Our Parker Solar Probe Just Touched The Sun!

For the first time in history, a spacecraft has touched the Sun. Our Parker Solar Probe flew right through the Sun’s atmosphere, the corona. (That’s the part of the Sun that we can see during a total solar eclipse.)

Our Parker Solar Probe Just Touched The Sun!

This marks one great step for Parker Solar Probe and one giant leap for solar science! Landing on the Moon helped scientists better understand how it was formed. Now, touching the Sun will help scientists understand our star and how it influences worlds across the solar system.

Our Parker Solar Probe Just Touched The Sun!

Unlike Earth, the Sun doesn’t have a solid surface (it’s a giant ball of seething, boiling gases). But the Sun does have a superheated atmosphere. Heat and pressure push solar material away from the Sun. Eventually, some of that material escapes the pull of the Sun’s gravity and magnetism and becomes the solar wind, which gusts through the entire solar system.

But where exactly does the Sun’s atmosphere end and the solar wind begin? We’ve never known for sure. Until now!

Our Parker Solar Probe Just Touched The Sun!

In April 2021, Parker Solar Probe swooped near the Sun. It passed through a massive plume of solar material in the corona. This was like flying into the eye of a hurricane. That flow of solar stuff — usually a powerful stream of particles — hit the brakes and went into slow-motion.

For the first time, Parker Solar Probe found itself in a place where the Sun’s magnetism and gravity were strong enough to stop solar material from escaping. That told scientists Parker Solar Probe had passed the boundary: On one side, space filled with solar wind, on the other, the Sun’s atmosphere.

Our Parker Solar Probe Just Touched The Sun!

Parker Solar Probe’s proximity to the Sun has led to another big discovery: the origin of switchbacks, zig-zag-shaped magnetic kinks in the solar wind.

These bizarre shapes were first observed in the 1990s. Then, in 2019, Parker Solar Probe revealed they were much more common than scientists first realized. But they still had questions, like where the switchbacks come from and how the Sun makes them.

Our Parker Solar Probe Just Touched The Sun!

Recently, Parker Solar Probe dug up two important clues. First, switchbacks tend to have lots of helium, which scientists know comes from the solar surface. And they come in patches.

Those patches lined up just right with magnetic funnels that appear on the Sun’s surface. Matching these clues up like puzzle pieces, scientists realized switchbacks must come from near the surface of the Sun.

Figuring out where switchbacks come from and how they form will help scientists understand how the Sun produces the solar wind. And that could clue us into one of the Sun’s biggest mysteries: why the Sun’s atmosphere is much, much hotter than the surface below.

Our Parker Solar Probe Just Touched The Sun!

Parker Solar Probe will fly closer and closer to the Sun. Who knows what else we’ll discover?

Make sure to follow us on Tumblr for your regular dose of space!


Tags
6 years ago

What’s Up For September 2018?

Outstanding views Venus, Jupiter, Saturn and Mars with the naked eye!

image

You'll have to look quickly after sunset to catch Venus. And through binoculars or a telescope, you'll see Venus's phase change dramatically during September - from nearly half phase to a larger thinner crescent!

image

Jupiter, Saturn and Mars continue their brilliant appearances this month. Look southwest after sunset.

image

Use the summer constellations help you trace the Milky Way.

image

Sagittarius: where stars and some brighter clumps appear as steam from the teapot.

image

Aquila: where the Eagle's bright Star Altair, combined with Cygnus's Deneb, and Lyra's Vega mark the Summer Triangle. 

image

Cassiopeia, the familiar "w"- shaped constellation completes the constellation trail through the Summer Milky Way. Binoculars will reveal double stars, clusters and nebulae. 

image

Between September 12th and the 20th, watch the Moon pass from near Venus, above Jupiter, to the left of Saturn and finally above Mars! 

image

Both Neptune and brighter Uranus can be spotted with some help from a telescope this month.

What’s Up For September 2018?

Look at about 1:00 a.m. local time or later in the southeastern sky. You can find Mercury just above Earth's eastern horizon shortly before sunrise. Use the Moon as your guide on September 7 and 8th.

What’s Up For September 2018?

And although there are no major meteor showers in September, cometary dust appears in another late summer sight, the morning Zodiacal light. Try looking for it in the east on moonless mornings very close to sunrise. To learn more about the Zodiacal light, watch "What's Up" from March 2018.

What’s Up For September 2018?

Watch the full What’s Up for September Video: 

There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Ever get a random craving for a food when in space?


Tags
7 years ago

Measuring Cosmic Rays at the Edge of Space

image

It’s a bird!  It’s a plane!  It’s a… SuperTIGER?

No, that’s not the latest superhero spinoff movie - it’s an instrument launching soon from Antarctica! It’ll float on a giant balloon above 99.5% of the Earth’s atmosphere, measuring tiny particles called cosmic rays.

image

Right now, we have a team of several scientists and technicians from Washington University in St. Louis and NASA at McMurdo Station in Antarctica preparing for the launch of the Super Trans-Iron Galactic Element Recorder, which is called SuperTIGER for short. This is the second flight of this instrument, which last launched in Antarctica in 2012 and circled the continent for a record-breaking 55 days.  

image

SuperTIGER measures cosmic rays, which are itty-bitty pieces of atoms that are zinging through space at super-fast speeds up to nearly the speed of light. In particular, it studies galactic cosmic rays, which means they come from somewhere in our Milky Way galaxy, outside of our solar system.

image

Most cosmic rays are just an individual proton, the basic positively-charged building block of matter. But a rarer type of cosmic ray is a whole nucleus (or core) of an atom - a bundle of positively-charged protons and non-charged neutrons - that allows us to identify what element the cosmic ray is. Those rare cosmic-ray nuclei (that’s the plural of nucleus) can help us understand what happened many trillions of miles away to create this particle and send it speeding our way.

image

The cosmic rays we’re most interested in measuring with SuperTIGER are from elements heavier than iron, like copper and silver. These particles are created in some of the most dynamic and exciting events in the universe - such as exploding and colliding stars.

image

In fact, we’re especially interested in the cosmic rays created in the collision of two neutron stars, just like the event earlier this year that we saw through both light and gravitational waves. Adding the information from cosmic rays opens another window on these events, helping us understand more about how the material in the galaxy is created.

Why does SuperTIGER fly on a balloon?

image

While cosmic rays strike our planet harmlessly every day, most of them are blocked by the Earth’s atmosphere and magnetic field.  That means that scientists have to get far above Earth - on a balloon or spacecraft - to measure an accurate sample of galactic cosmic rays.  By flying on a balloon bigger than a football field, SuperTIGER can get to the edge of space to take these measurements.  

image

It’ll float for weeks at over 120,000 feet, which is nearly four times higher than you might fly in a commercial airplane. At the end of the flight, the instrument will return safely to the ice on a huge parachute. The team can recover the payload from its landing site, bring it back to the United States, repair or make changes to it, if needed, and fly it again another year!

image

There are also cosmic ray instruments on our International Space Station, such as ISS-CREAM and CALET, which each started their development on a series of balloons launched from Antarctica. The SuperTIGER team hopes to eventually take measurements from space, too.  

Why do we launch from Antarctica?

image

McMurdo Station is a hotspot for all sorts of science while it’s summer in the Southern Hemisphere (which is winter here in the United States), including scientific ballooning.  The circular wind patterns around the pole usually keep the balloon from going out over the ocean, making it easier to land and recover the instrument later. And the 24-hour daylight in the Antarctic summer keeps the balloon at a nearly constant height to get very long flights - it would go up and down if it had to experience the temperature changes of day and night. All of that sunlight shining on the instrument's array of solar cells also gives a continuous source of electricity to power everything.

image

Antarctica is an especially good place to fly a cosmic ray instrument like SuperTIGER. The Earth’s magnetic field blocks fewer cosmic rays at the poles, meaning that we can measure more particles as SuperTIGER circles around the South Pole than we would at NASA scientific ballooning sites closer to the Earth’s equator.  

image

The SuperTIGER team is hard at work preparing for launch right now - and their launch window opens soon! Follow @NASABlueshift for updates and opportunities to interact with our scientists on the ice.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

Ocean Worlds Beyond Earth

We’re incredibly lucky to live on a planet drenched in water, nestled in a perfect distance from our sun and wrapped with magnetic fields keeping our atmosphere intact against harsh radiation and space weather.

image

We know from recent research that life can persist in the cruelest of environments here on Earth, which gives us hope to finding life thriving on other worlds. While we have yet to find life outside of Earth, we are optimistic about the possibilities, especially on other ocean worlds right here in our solar system.  

So…What’s the News?!

Two of our veteran missions are providing tantalizing new details about icy, ocean-bearing moons of Jupiter and Saturn, further enhancing the scientific interest of these and other “ocean worlds” in our solar system and beyond!

Cassini scientists announce that a form of energy for life appears to exist in Saturn’s moon Enceladus, and Hubble researchers report additional evidence of plumes erupting from Jupiter’s moon Europa.

The Two Missions: Cassini and Hubble

Cassini

Our Cassini spacecraft has found that hydrothermal vents in the ocean of Saturn’s icy moon Enceladus are producing hydrogen gas, which could potentially provide a chemical energy source for life.

image

Cassini discovered that this little moon of Saturn was active in 2005. The discovery that Enceladus has jets of gas and icy particles coming out of its south polar region surprised the world. Later we determined that plumes of material are coming from a global ocean under the icy crust, through large cracks known as “tiger stripes.” 

image

We have more evidence now – this time sampled straight from the plume itself – of hydrothermal activity, and we now know the water is chemically interacting with the rock beneath the ocean and producing the kind of chemistry that could be used by microbes IF they happened to be there.

image

This is the culmination of 12 years of investigations by Cassini and a capstone finding for the mission. We now know Enceladus has nearly all the ingredients needed for life as we know it.

image

The Cassini spacecraft made its deepest dive through the plume on Oct. 28, 2015. From previous flybys, Cassini determined that nearly 98% of the gas in the plume is water and the rest is a mixture of other molecules, including carbon dioxide, methane and ammonia. 

image

Cassini’s other instruments provided evidence of hydrothermal activity in the ocean. What we really wanted to know was…Is there hydrogen being produced that microbes could use to make energy? And that’s exactly what we found!

image

To be clear…we haven’t discovered microbes at Enceladus, but vents of this type at Earth host these kinds of life. We’re cautiously excited at the prospect that there might be something like this at Enceladus too!

Hubble

The Hubble Space Telescope has also been studying another ocean world in our solar system: Europa!

image

Europa is one of the four major moons of Jupiter, about the size of our own moon but very different in appearance. It’s a cold, icy world with a relatively smooth, bright surface crisscrossed with dark cracks and patches of reddish material.

image

What makes Europa interesting is that it’s believed to have a global ocean, underneath a thick crust of ice. In fact, it’s got about twice as much ocean as planet Earth!

image

In 2014, we detected evidence of intermittent water plumes on the surface of Europa, which is interesting because they may provide us with easier access to subsurface liquid water without having to drill through miles of ice.

image

And now, in 2016, we’ve found one particular plume candidate that appears to be at the same location that it was seen in 2014. 

This is exciting because if we can establish that a particular feature does repeat, then it is much more likely to be real and we can attempt to study and understand the processes that cause it to turn on or off. 

image

This plume also happens to coincide with an area where Europa is unusually warm as compared to the surrounding terrain. The plume candidates are about 30 to 60 miles (50 to 100 kilometers) in height and are well-positioned for observation, being in a relatively equatorial and well-determined location.

What Does All This Mean and What’s Next?

Hubble and Cassini are inherently different missions, but their complementary scientific discoveries, along with the synergy between our current and planned missions, will help us in finding out whether we are alone in the universe. 

Hubble will continue to observe Europa. If you’re wondering how we might be able to get more information on the Europa plume, the upcoming Europa Clipper mission will be carrying a suite of 9 instruments to investigate whether the mysterious icy moon could harbor conditions favorable for life. Europa Clipper is slated to launch in the 2020s.

image

This future mission will be able to study the surface of Europa in great detail and assess the habitability of this moon. Whether there’s life there or not is a question for this future mission to discover!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago
Taking Advantage Of A Total Lunar Eclipse, Astronomers Using Our Hubble Space Telescope Have Detected

Taking advantage of a total lunar eclipse, astronomers using our Hubble Space Telescope have detected ozone in our atmosphere. Why's this important? 🔭 Researchers can now use this new method – and space telescopes – to continue the search for life in our universe. Find out more HERE. 

  Make sure to follow us on Tumblr for your regular dose of space: https://go.nasa.gov/3fGbZ0I


Tags
9 years ago

Solar System: Things to Know This Week

The solar system is vast, and exploring it requires not one expedition, but many. From the sun to the Earth to the depths of space beyond Pluto, an entire fleet of spacecraft is pushing back the frontiers of knowledge. Scientists and engineers around the world work together on dozens of missions, and the results of their work unfold on a daily basis. During any given week, astronauts and robotic spacecraft return thousands of pictures and other data from Earth orbit and from half a dozen other worlds.

The result? It’s nothing short of a visual and intellectual feast. For example, all of the following images were obtained over the course of one week during January this year.

The same missions that took these pictures are still at work – they may be photographing Saturn or transmitting a report from Mars as you read this.

1. The Sun

Solar System: Things To Know This Week

From its clear vantage point in Earth orbit, our Solar Dynamics Observatory (SDO) observes our nearby star almost continuously. This image shows activity on the sun’s surface on Jan. 18. You can also get similar pictures from SDO daily!

2. The Earth from Afar

Solar System: Things To Know This Week

The DSCOVR satellite orbits the Earth at a distance of nearly a million miles (1.5 million kilometers). It’s Earth Polychromatic Imaging Camera (EPIC) keeps a steady watch on the home planet. This is how the world turned on Jan. 20. Get the latest daily images from EPIC HERE.

3. Mars from Above

Solar System: Things To Know This Week

The team that manages the Mars Reconnaissance Orbiter (MRO) recently celebrated a decade of observing the Red Planet. MRO took this detailed look at dunes and rocky buttes in Danielson Crater on Jan. 24. It was 3:06 p.m., local Mars time. On the right stide of the image, dust devils have left tracks in the sand.

4. Comet 67/P

Solar System: Things To Know This Week

The European Space Agency’s Rosetta probe caught this look at the surface of Comet 67/P from a distance of just 46 miles (75 kilometers) on Jan. 23.

5. Saturn

Solar System: Things To Know This Week

On the same day (Jan. 23), our Cassini spacecraft continued its odyssey of nearly two decades in space, bringing us this look at the sixth planet. See the latest images from Cassini HERE.

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • yesghostlycollectorhideout
    yesghostlycollectorhideout liked this · 3 years ago
  • lilbichito
    lilbichito liked this · 4 years ago
  • eroskeleton
    eroskeleton liked this · 4 years ago
  • explicitmua
    explicitmua liked this · 4 years ago
  • notwiselybuttoowell
    notwiselybuttoowell liked this · 4 years ago
  • carrienyman
    carrienyman liked this · 4 years ago
  • kingeclectic
    kingeclectic liked this · 4 years ago
  • lostinmirkwood
    lostinmirkwood reblogged this · 4 years ago
  • macro-microcosm
    macro-microcosm reblogged this · 4 years ago
  • scarletgoldenthorn
    scarletgoldenthorn reblogged this · 4 years ago
  • scarletgoldenthorn
    scarletgoldenthorn liked this · 4 years ago
  • godlikeentity
    godlikeentity reblogged this · 4 years ago
  • godlikeentity
    godlikeentity liked this · 4 years ago
  • rh35211
    rh35211 reblogged this · 5 years ago
  • lighting-69
    lighting-69 liked this · 5 years ago
  • hippiebydayrickymartin
    hippiebydayrickymartin reblogged this · 5 years ago
  • ziranjie
    ziranjie reblogged this · 5 years ago
  • tngbabe
    tngbabe liked this · 5 years ago
  • lore-palostillo98
    lore-palostillo98 liked this · 5 years ago
  • docfl8396-blog
    docfl8396-blog liked this · 5 years ago
  • evolved-concepts
    evolved-concepts liked this · 6 years ago
  • myskinlikesnow-blog-blog
    myskinlikesnow-blog-blog reblogged this · 6 years ago
  • myskinlikesnow-blog-blog
    myskinlikesnow-blog-blog liked this · 6 years ago
  • astrosciencechick
    astrosciencechick reblogged this · 6 years ago
  • amwhhh
    amwhhh liked this · 6 years ago
  • mackerelshark
    mackerelshark liked this · 6 years ago
  • joshua503
    joshua503 reblogged this · 6 years ago
  • alicias-left-brain
    alicias-left-brain reblogged this · 6 years ago
  • sir-henry-may
    sir-henry-may reblogged this · 6 years ago
  • marcelluswallace73
    marcelluswallace73 liked this · 6 years ago
  • themissdreamingstories
    themissdreamingstories liked this · 6 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags