It’s only Tuesday and this week is already filled with news about our solar system. Here are the top five things to know this week:
1) Mars!
With five spacecraft in orbit and two rovers exploring the ground, there’s always something new and interesting about the Red Planet. Yesterday things got even more exciting when we released the most compelling evidence yet that liquid water sometimes flows on Mars today.
2) HTV-5 Cargo Ship
On Monday, the HTV-5 cargo ship was released from the International Space Station to burn up as it reenters Earth’s atmosphere. The HTV-5 carried a variety of experiments and supplies to the space station, and was docked for five weeks.
3) Pluto Continues to Excite
If you haven’t been keeping up with the weekly releases of newly downloaded pictures from our New Horizons spacecraft, you are definitely missing out. But don’t worry, we have you covered. The latest updates can be found HERE, be sure to follow along as new information is released. More images are scheduled to be featured on Oct. 1.
4) Cassini Mission
This week on Sept. 30, our Cassini spacecraft will reach the closest point to Saturn in it’s latest orbit around the planet. Just to put things in perspective, that will be Cassini’s 222nd orbit around Saturn! Learn more about this mission HERE.
5) What Happened to Mars’ Atmosphere?
Believe it or not, the Martian atmosphere we see today used to be much more substantial many years ago. What happened? Our Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has been in orbit around Mars for one Earth year, searching for the answers. Learn more HERE.
Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com
Along this path, the Moon will completely cover the Sun, revealing the Sun’s tenuous atmosphere, the corona. The path of totality will stretch from Salem, Oregon, to Charleston, South Carolina. Observers outside this path will still see a partial solar eclipse, where the Moon covers part of the Sun’s disk. Remember: you can never look at the Sun directly, and an eclipse is no exception – be sure to use a solar filter or indirect viewing method to watch partial phases of the eclipse.
Total solar eclipses are a rare chance to study the Sun and Earth in unique ways. During the total eclipse, scientists can observe the faintest regions of the Sun, as well as study the Sun’s effects on Earth’s upper atmosphere. We’ve been using eclipses to learn more about our solar system for more than 50 years. Let’s take a look back at five notable eclipses of the past five decades.
A total eclipse crossed the Pacific Ocean on May 30, 1965, starting near the northern tip of New Zealand and ending in Peru. Totality – when the Moon blocks all of the Sun’s face – lasted for 5 minutes and 15 seconds at peak, making this the 3rd-longest solar eclipse totality in the 20th century. Mexico and parts of the Southwestern United States saw a partial solar eclipse, meaning the Moon only blocked part of the Sun. We sent scientists to the path of totality, stationing researchers on South Pacific islands to study the response of the upper atmosphere and ionosphere to the eclipse.
Additionally, our high-flying jets, scientific balloons, and sounding rockets – suborbital research rockets that fly and collect data for only a few minutes – recorded data in different parts of the atmosphere. A Convair 990 research jet chased the Moon’s shadow as it crossed Earth’s surface, extending totality up to more than nine minutes, and giving scientists aboard more time to collect data. A NASA-funded team of researchers will use the same tactic with two jets to extend totality to more than 7 minutes on Aug. 21, 2017, up from the 2 minutes and 40 seconds observable on the ground.
The total solar eclipse of March 7, 1970, was visible in North America and the northwestern part of South America, with totality stretching to 3 minutes and 28 seconds at maximum. This was the first time a total eclipse in the United States passed over a permanent rocket launch facility – NASA’s Wallops Station (now Wallops Flight Facility) on the coast of Virginia. This eclipse offered scientists from NASA, four universities and seven other research organizations a unique way to conduct meteorology, ionospheric and solar physics experiments using 32 sounding rockets.
Also during this eclipse, the Space Electric Propulsion Test, or SERT, mission temporarily shut down because of the lack of sunlight. The experimental spacecraft was unable to restart for two days.
Two years later, North America saw another total solar eclipse. This time, totality lasted 2 minutes and 36 seconds at the longest. A pair of scientists from Marshall Space Flight Center in Huntsville, Alabama, traveled to the Canadian tundra to study the eclipse – specifically, a phenomenon called shadow bands. These are among the most ephemeral phenomena that observers see during the few minutes before and after a total solar eclipse. They appear as a multitude of faint rapidly moving bands that can be seen against a white background, such as a large piece of paper on the ground.
While the details of what causes the bands are not completely understood, the simplest explanation is that they arise from atmospheric turbulence. When light rays pass through eddies in the atmosphere, they are refracted, creating shadow bands.
The last total solar eclipse of the 20th century in the contiguous United States was in early 1979. Totality lasted for a maximum of 2 minutes 49 seconds, and the total eclipse was visible on a narrow path stretching from the Pacific Northwest to Greenland. Agencies from Canada and the United States – including NASA – joined forces to build a sounding rocket program to study the atmosphere and ionosphere during the eclipse by observing particles on the edge of space as the Sun’s radiation was suddenly blocked.
The USSR got a great view of the Moon passing in front of the Sun in the summer of 1981, with totality lasting just over 2 minutes at maximum. Our scientists partnered with Hawaiian and British researchers to study the Sun’s atmosphere – specifically, a relatively thin region called the chromosphere, which is sandwiched between the Sun’s visible surface and the corona – using an infrared telescope aboard the Kuiper Airborne Observatory. The chromosphere appears as the red rim of the solar disk during a total solar eclipse, whereas the corona has no discernible color to the naked eye.
On August 21, a total solar eclipse will cross the continental United States from coast to coast for the first time in 99 years, and you can watch.
If skies are clear, people in North America will be able to see a partial or total solar eclipse. Find out what the eclipse will look like in your area, then make sure you have a safe method to watch – like solar viewing glasses or a pinhole projector – and head outside.
You can also tune into nasa.gov/eclipselive throughout the day on Aug. 21 to see the eclipse like you’ve never seen it before – including a NASA TV show, views from our spacecraft, aircraft, and more than 50 high-altitude balloons.
Get all your eclipse information at https://eclipse2017.nasa.gov/, and follow along with @NASASun on Twitter and NASA Sun Science on Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Other than joy, why do you do the things you do?
What do hurricanes look like from space? It depends on how you look! We have satellites, cameras and instruments all working together to give us the big picture of storms like Florence.
As the International Space Station passed over Hurricane Florence, astronauts and cameras on board got a look down into the hurricane’s eye.
Our Global Precipitation Measurement (GPM) mission sees storms all around the planet by measuring rainfall. These measurements come from a constellation of satellites working together, including some from our partner organizations like the National Oceanic and Atmospheric Administration (NOAA) and the Japanese Aerospace Exploration Agency (JAXA).
On Sept. 7, our GPM core observatory satellite flew over Florence, capturing a 3D image as the storm’s clouds started to break apart before reforming.
Other NOAA satellites, like GOES, gather high-resolution, detailed views of hurricanes, letting us peek into the eye of the storm.
Zooming out a bit, the Suomi-NPP satellite helps us track Hurricane Florence, and the following tropical storms, as they move closer to landfall or dissipate over the ocean.
From farther away (a million miles from Earth!), the EPIC instrument on NOAA’s DSCOVR satellite captured images of all three of these storms as they moved closer to North America.
We use our space-based and airborne instruments to provide innovative data on hurricanes to advance scientists’ understanding of these storms. You can follow our latest views of Hurricane Florence here and get the latest forecast from NOAA’s National Hurricane Center here.
Hello there 👋
Welcome back to the third week of Mindful Mondays. It’s very good to see you 🧘
Here is another installment of mindfulness to get the first day of your week well underway, and underway well. Experience the phases of the Moon as you turn on, tune in, and space out to relaxing music and stunning ultra-high-definition visuals of our cosmic neighborhood… 🌌
Sounds good, right? Of course it does. Mysterious, even. You can watch even more Space Out episodes on NASA+, a new no-cost, ad-free streaming service.
Why not give it a try? There is nothing to lose, everything to gain. Because just a few minutes this Monday morning can make all the difference to your entire week, as @nasa helps to bring mindfulness from the stars and straight to you.
🧘WATCH: Space Out with NASA: Moon Phase 12/11 at 1pm EST🧘
Humanity has observed the nighttime sky for millennia, eyeing celestial bodies with wonder. Until the last 50 years or so, telescopes provided our best views of the sky at night. That is, until the Ranger mission broadcast the craft’s descent onto the moon live on March 24, 1965.
+Learn more about Ranger 9
+Watch the video
Our fascination with the moon continues, and since 2010 the organizers of International Observe the Moon Night (InOMN) have turned it into a worldwide, public celebration of lunar science and exploration held annually. One day each year, they invite everyone, everywhere to learn about the moon and to celebrate the cultural and personal connections. We’ll all invited and anyone can host an InOMN event.
+Locations of InOMN Events Around the World
+ Visit International Observe the Moon Night’s site
And, we’re doing our part to let the public know more about our moon. This month’s "What's up" video is very moon-centric.
+View JPL’s What’s Up for October
Our Night Sky Network at JPL, which bills itself as “astronomy clubs bringing the wonders of the universe to the public,” has a list of astronomy clubs and events across by area, as well as a monthly calendar.
+Learn more
Organizations in our Museum Alliance across the country are also hosting activities. The Museum Alliance was created to be the "front door" to NASA for the world of informal education. The Alliance is a NASA-centric STEAM "community of practice" that includes informal educational organizations, namely, all those outside of the traditional K-12 school system. Our STEAM--Science, Technology, Engineering, Art, and Math--communities include more than 1,400 professionals at more than 700 U.S. museums, science centers, planetariums, NASA Visitor Centers, Challenger Centers, observatories, parks, libraries, camps, and youth-serving organizations as partners in the Museum Alliance.
+Learn more about the Museum Alliance
All us Earth-dwellers can tour the moon via our Moon Tours app that lets you explore the lunar surface from your mobile device. The app includes imagery from lunar orbiters and Apollo missions and is a free download for iOS and Android.
+iOS
+Android
+Check out a full range of NASA apps
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Why are we studying them? What’s purpose of this field for us on earth?
We need your help! There are a number of exciting space-related panels proposed for next year’s South by Southwest Interactive Festival in Austin, Texas. SXSW is a community-driven event and voting accounts for 30% of the decision-making process for any given programming slot. The selection process is extremely competitive and the more votes we submit for the space panels, the more likely a panel related to space exploration will be included in the final SXSW program.
To help you out as you consider what to vote for, we’ve put together a list of all the NASA-related panel proposals.
These proposals look at ways we explore the solar system and beyond:
New Eyes on our Home System: NASA's Next Telescope
Dark Energy and Exoplanets: NASA's WFIRST Mission
Capturing NASA's James Webb Space Telescope
Lessons from the Fringes of the Solar System
Into the Unknown: The People Behind Webb Telescope
These proposals looks at how we’re using out-of-this-world tech and data to create incredible experiences here on Earth and helping solve challenges through your participation:
Space 360: Experience NASA Missions in VR/AR/video
The Power of Many: Wisdom from the Crowd
It’s Time to Ask More of Open Data
A little closer to home, this proposal explores our work to study and observe our dynamic home world, Earth:
NASA - Doing Work to Keep it Cool
We want to send humans on a journey to Mars. How? These proposals would dive into this question and more:
So you want to go to Mars?
Humans, Robots + Microbes: The Challenge of Mars
"Because They Are Hard": NASA & Mars
Lastly, we’re proposing a meetup for NASA and the entire space community at SXSW 2017:
Space Meetup
Community voting and commenting for SXSW 2017 is open through September 2, 2016.
We look forward to seeing you in Austin in March at the SXSW Interactive Festival. Thanks!
Have you ever wondered what it takes to get a technology ready for space? The NASA TechRise Student Challenge gives middle and high school students a chance to do just that – team up with their classmates to design an original science or technology project and bring that idea to life as a payload on a suborbital vehicle.
Since March 2021, with the help of teachers and technical advisors, students across the country have dreamed up experiments with the potential to impact space exploration and collect data about our planet.
So far, more than 180 TechRise experiments have flown on suborbital vehicles that expose them to the conditions of space. Flight testing is a big step along the path of space technology development and scientific discovery.
The 2023-2024 TechRise Challenge flight tests took place this summer, with 60 student teams selected to fly their experiments on one of two commercial suborbital flight platforms: a high-altitude balloon operated by World View, or the Xodiac rocket-powered lander operated by Astrobotic. Xodiac flew over the company’s Lunar Surface Proving Ground — a test field designed to simulate the Moon’s surface — in Mojave, California, while World View’s high-altitude balloon launched out of Page, Arizona.
Here are four innovative TechRise experiments built by students and tested aboard NASA-supported flights this summer:
1. Oobleck Reaches the Skies
Oobleck, which gets its name from Dr. Seuss, is a mixture of cornstarch and water that behaves as both a liquid and a solid. Inspired by in-class science experiments, high school students at Colegio Otoqui in Bayomón, Puerto Rico, tested how Oobleck’s properties at 80,000 feet aboard a high-altitude balloon are different from those on Earth’s surface. Using sensors and the organic elements to create Oobleck, students aimed to collect data on the fluid under different conditions to determine if it could be used as a system for impact absorption.
2. Terrestrial Magnetic Field
Middle school students at Phillips Academy International Baccalaureate School in Birmingham, Alabama, tested the Earth’s magnetic field strength during the ascent, float, and descent of the high-altitude balloon. The team hypothesized the magnetic field strength decreases as the distance from Earth’s surface increases.
3. Rocket Lander Flame Experiment
To understand the impact of dust, rocks, and other materials kicked up by a rocket plume when landing on the Moon, middle school students at Cliff Valley School in Atlanta, Georgia, tested the vibrations of the Xodiac rocket-powered lander using CO2 and vibration sensors. The team also used infrared (thermal) and visual light cameras to attempt to detect the hazards produced by the rocket plume on the simulated lunar surface, which is important to ensure a safe landing.
4. Rocket Navigation
Middle and high school students at Tiospaye Topa School in LaPlant, South Dakota, developed an experiment to track motion data with the help of a GPS tracker and magnetic radar. Using data from the rocket-powered lander flight, the team will create a map of the flight path as well as the magnetic field of the terrain. The students plan to use their map to explore developing their own rocket navigation system.
The 2024-2025 TechRise Challenge is now accepting proposals for technology and science to be tested on a high-altitude balloon! Not only does TechRise offer hands-on experience in a live testing scenario, but it also provides an opportunity to learn about teamwork, project management, and other real-world skills.
“The TechRise Challenge was a truly remarkable journey for our team,” said Roshni Ismail, the team lead and educator at Cliff Valley School. “Watching them transform through the discovery of new skills, problem-solving together while being driven by the chance of flying their creation on a [rocket-powered lander] with NASA has been exhilarating. They challenged themselves to learn through trial and error and worked long hours to overcome every obstacle. We are very grateful for this opportunity.”
Are you ready to bring your experiment design to the launchpad? If you are a sixth to 12th grade student, you can make a team under the guidance of an educator and submit your experiment ideas by November 1. Get ready to create!
Make sure to follow us on Tumblr for your regular dose of space!
Mars is hard. Forty years ago this week, our Viking mission found a place in history when it became the first U.S. mission to land a spacecraft safely on the surface of Mars and return images of the surface. This is astonishing considering that many of the spacecraft destined for Mars failed before completing their missions and some failed before their observations could begin.
Here’s a few things to know about the Viking missions that ushered in a new era of Mars explorations 40 years ago:
1. Multi Mission
The Viking mission consisted of four spacecraft – two orbiters and two landers. All four made significant science discoveries.
2. Last Minute Switch
The spacecraft eventually named Viking 2 was supposed to launch first, but a battery problem prompted us to send the second spacecraft first. Batteries recharged, Viking 2 was then sent to rendezvous with the Red Planet.
3. Not Quite the First
Viking 1 was the first to send back science from the surface of Mars, but the honor of the first Mars landing goes to the Soviet Union’s Mars 3. The Soviet spacecraft landed on Mars in December 1970, but sent back only 20 seconds of video data before going silent.
4. Viking 1 Quick Stats
Viking 1 was launched Aug. 20 1975, and arrived at Mars on June 19, 1976. On July 20, 1976, the Viking 1 lander separated from the orbiter and touched down at Chryse Planitia.
5. Viking 2 Quick Stats
Viking 2 was launched Sept. 9, 1975, and entered Mars orbit Aug. 7, 1976. The Viking 2 lander touched down at Utopia Planitia on Sept. 3, 1976.
Discover the full list of 10 things to know about our solar system this week HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We just finished the second hottest year on Earth since global temperature estimates first became feasible in 1880. Although 2016 still holds the record for the warmest year, 2017 came in a close second, with average temperatures 1.6 degrees Fahrenheit higher than the mean.
2017’s temperature record is especially noteworthy, because we didn’t have an El Niño this year. Often, the two go hand-in-hand.
El Niño is a climate phenomenon that causes warming of the tropical Pacific Ocean waters, which affect wind and weather patterns around the world, usually resulting in warmer temperatures globally. 2017 was the warmest year on record without an El Niño.
We collect the temperature data from 6,300 weather stations and ship- and buoy-based observations around the world, and then analyze it on a monthly and yearly basis. Researchers at the National Oceanic and Atmospheric Administration (NOAA) do a similar analysis; we’ve been working together on temperature analyses for more than 30 years. Their analysis of this year’s temperature data tracks closely with ours.
The 2017 temperature record is an average from around the globe, so different places on Earth experienced different amounts of warming. NOAA found that the United States, for instance, had its third hottest year on record, and many places still experienced cold winter weather.
Other parts of the world experienced abnormally high temperatures throughout the year. Earth’s Arctic regions are warming at roughly twice the rate of the rest of the planet, which brings consequences like melting polar ice and rising sea levels.
Increasing global temperatures are the result of human activity, specifically the release of greenhouse gases like carbon dioxide and methane. The gases trap heat inside the atmosphere, raising temperatures around the globe.
We combine data from our fleet of spacecraft with measurements taken on the ground and in the air to continue to understand how our climate is changing. We share this important data with partners and institutions across the U.S. and around the world to prepare and protect our home planet.
Earth’s long-term warming trend can be seen in this visualization of NASA’s global temperature record, which shows how the planet’s temperatures are changing over time, compared to a baseline average from 1951 to 1980.
Learn more about the 2017 Global Temperature Report HERE.
Discover the ways that we are constantly monitoring our home planet HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts