TumbleTrack

Your personal Tumblr journey starts here

Pathoftotality - Blog Posts

7 years ago

You don't necessarily need fancy equipment to watch one of the sky's most awesome shows: a solar eclipse. With just a few simple supplies, you can make a pinhole camera that allows you to view the event safely and easily. Before you get started, remember: You should never look at the Sun directly without equipment that's specifically designed for solar viewing. Do not use standard binoculars or telescopes to watch the eclipse, as the light could severely damage your eyes. Sunglasses also do NOT count as protection when attempting to look directly at the Sun. Stay safe and still enjoy the Sun's stellar show by creating your very own pinhole camera. It's easy! 

See another pinhole camera tutorial at https://www.jpl.nasa.gov/edu/learn/project/how-to-make-a-pinhole-camera/

Watch this and other eclipse videos on our YouTube channel:  https://youtu.be/vWMf5rYDgpc?list=PL_8hVmWnP_O2oVpjXjd_5De4EalioxAUi

A pinhole camera is just one of many viewing options. Learn more at https://eclipse2017.nasa.gov/safety 

Music credit: Apple of My Eye by Frederik Wiedmann

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Everything You Need to Know About the Aug. 21 Eclipse

On Aug. 21, all of North America will experience a solar eclipse.

image

If skies are clear, eclipse-watchers will be able to see a partial solar eclipse over several hours, and some people – within the narrow path of totality – will see a total solar eclipse for a few moments.

How to Watch

It’s never safe to look at the Sun, and an eclipse is no exception. During a partial eclipse (or on any regular day) you must use special solar filters or an indirect viewing method to watch the Sun.

image

If you have solar viewing glasses, check to make sure they’re safe and undamaged before using them to look at the Sun. Make sure you put them on before looking up at the Sun, and look away before removing them. Eclipse glasses can be used over your regular eyeglasses, but they should never be used when looking through telescopes, binoculars, camera viewfinders, or any other optical device.

If you don’t have eclipse glasses, you can still watch the eclipse indirectly! You can make a pinhole projector out of a box, or use any other object with tiny holes – like a piece of cardstock with a hole, or your outstretched, interlaced fingers – to project an image of the partially eclipsed Sun onto the ground.

image

Of course, if it’s cloudy (or you’d just rather stay inside), you can watch the whole thing online with us at nasa.gov/eclipselive. Tune in starting at noon ET.

If you’re in the path of totality, there will be a few brief moments when it is safe to look directly at the eclipse. Only once the Moon has completely covered the Sun and there is no light shining through is it safe to look at the eclipse. Make sure you put your eclipse glasses back on or return to indirect viewing before the first flash of sunlight appears around the Moon’s edge.

image

Why do eclipses happen?

A solar eclipse happens when the Moon passes directly between the Sun and Earth, casting its shadow down on Earth’s surface. The path of totality – where the Moon completely covers the Sun – is traced out by the Moon’s inner shadow, the umbra. People within the Moon’s outer shadow, the penumbra, can see a partial eclipse.

image

The Moon’s orbit around Earth is tilted by about five degrees, meaning that its shadow usually doesn’t fall on Earth. Only when the Moon lines up exactly between the Sun and Earth do we see an eclipse.

image

Though the Sun is about 400 times wider than the Moon, it is also about 400 times farther away, making their apparent sizes match up almost exactly. This is what allows the Moon to block out the Sun’s bright face, while revealing the comparatively faint, pearly-white corona.

The Science of Eclipses

Eclipses are a beautiful sight to see, and they’re also helpful for our scientists, so we’re funding eleven ground-based science investigations to learn more about the Sun and Earth.

image

Total solar eclipses reveal the innermost regions of the Sun’s atmosphere, the corona. Though it’s thought to house the processes that kick-start much of the space weather that can influence Earth, as well as heating the whole corona to extraordinarily high temperatures, we can’t study this region at any other time. This is because coronagraphs – the instruments we use to study the Sun’s atmosphere by creating artificial eclipses – must cover up much of the corona, as well as the Sun’s face in order to produce clear images.

image

Eclipses also give us the chance to study Earth’s atmosphere under uncommon conditions: the sudden loss of solar radiation from within the Moon’s shadow. We’ll be studying the responses of both Earth’s ionosphere – the region of charged particles in the upper atmosphere – and the lower atmosphere.

Learn all about the Aug. 21 eclipse at eclipse2017.nasa.gov, and follow @NASASun on Twitter and NASA Sun Science on Facebook for more. Watch the eclipse through the eyes of NASA at nasa.gov/eclipselive starting at 12 PM ET on Aug. 21. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

On Monday, August 21, 2017, our nation will be treated to a total eclipse of the Sun. The eclipse will be visible – weather permitting – across all of North America. The entire continent will experience at least a partial eclipse lasting two to three hours. Halfway through the event, anyone within a 60 to 70 mile-wide path from Oregon to South Carolina will experience a total eclipse. During those brief moments when the moon completely blocks the Sun's bright face for 2+ minutes, day will turn into night, making visible the otherwise hidden solar corona, the Sun's outer atmosphere. Bright stars and planets will become visible as well. This is truly one of nature's most awesome sights. The eclipse provides a unique opportunity to study the Sun, Earth, Moon and their interaction because of the eclipse's long path over land coast to coast.

Scientists will be able to take ground-based and airborne observations over a period of about 90 minutes to complement the wealth of data provided by NASA assets.

Watch this and other eclipse videos on our YouTube channel: https://youtu.be/8jaxiha8-rY?list=PL_8hVmWnP_O2oVpjXjd_5De4EalioxAUi

To learn all about the 2017 Total Eclipse: https://eclipse2017.nasa.gov/

Music credit: Ascending Lanterns by Philip Hochstrate

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

How to Safely Watch the Aug. 21 Solar Eclipse

On Aug. 21, 2017, a solar eclipse will be visible in North America. Throughout the continent, the Moon will cover part – or all – of the Sun’s super-bright face for part of the day.

image

Since it’s never safe to look at the partially eclipsed or uneclipsed Sun, everyone who plans to watch the eclipse needs a plan to watch it safely. One of the easiest ways to watch an eclipse is solar viewing glasses – but there are a few things to check to make sure your glasses are safe:

 Glasses should have an ISO 12312-2 certification

They should also have the manufacturer’s name and address, and you can check if the manufacturer has been verified by the American Astronomical Society

Make sure they have no scratches or damage

image

To use solar viewing glasses, make sure you put them on before looking up at the Sun, and look away before you remove them. Proper solar viewing glasses are extremely dark, and the landscape around you will be totally black when you put them on – all you should see is the Sun (and maybe some types of extremely bright lights if you have them nearby).

Never use solar viewing glasses while looking through a telescope, binoculars, camera viewfinder, or any other optical device. The concentrated solar rays will damage the filter and enter your eyes, causing serious injury. But you can use solar viewing glasses on top of your regular eyeglasses, if you use them!

image

If you don’t have solar viewing glasses, there are still ways to watch, like making your own pinhole projector. You can make a handheld box projector with just a few simple supplies – or simply hold any object with a small hole (like a piece of cardstock with a pinhole, or even a colander) above a piece of paper on the ground to project tiny images of the Sun.

image

Of course, you can also watch the entire eclipse online with us. Tune into nasa.gov/eclipselive starting at noon ET on Aug. 21! 

For people in the path of totality, there will be a few brief moments when it is safe to look directly at the eclipse. Only once the Moon has completely covered the Sun and there is no light shining through is it safe to look at the eclipse. Make sure you put your eclipse glasses back on or return to indirect viewing before the first flash of sunlight appears around the Moon’s edge.

image

You can look up the length of the total eclipse in your area to help you set a time for the appropriate length of time. Remember – this only applies to people within the path of totality.

Everyone else will need to use eclipse glasses or indirect viewing throughout the entire eclipse!

Photographing the Eclipse

Whether you’re an amateur photographer or a selfie master, try out these tips for photographing the eclipse.  

image

#1 — Safety first: Make sure you have the required solar filter to protect your camera.

#2 — Any camera is a good camera, whether it’s a high-end DSLR or a camera phone – a good eye and vision for the image you want to create is most important.

#3 — Look up, down, and all around. As the Moon slips in front of the Sun, the landscape will be bathed in long shadows, creating eerie lighting across the landscape. Light filtering through the overlapping leaves of trees, which creates natural pinholes, will also project mini eclipse replicas on the ground. Everywhere you can point your camera can yield exceptional imagery, so be sure to compose some wide-angle photos that can capture your eclipse experience.

#4 — Practice: Be sure you know the capabilities of your camera before Eclipse Day. Most cameras, and even many camera phones, have adjustable exposures, which can help you darken or lighten your image during the tricky eclipse lighting. Make sure you know how to manually focus the camera for crisp shots.

#5 —Upload your eclipse images to NASA’s Eclipse Flickr Gallery and relive the eclipse through other peoples’ images.

Learn all about the Aug. 21 eclipse at eclipse2017.nasa.gov, and follow @NASASun on Twitter and NASA Sun Science on Facebook for more. Watch the eclipse through the eyes of NASA at nasa.gov/eclipselive starting at 12 PM ET on Aug. 21.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Eclipse 2017: A Unique Chance for Science

On Aug. 21, the Moon will cast its shadow down on Earth, giving all of North America the chance to see a solar eclipse. Within the narrow, 60- to 70-mile-wide band stretching from Oregon to South Carolina called the path of totality, the Moon will completely block out the Sun’s face; elsewhere in North America, the Moon will cover only a part of the star, leaving a crescent-shaped Sun visible in the sky.

image

Find eclipse times for your location with our interactive version of this map.

A total solar eclipse happens somewhere on Earth about once every 18 months. But because Earth’s surface is mostly ocean, most eclipses are visible over land for only a short time, if at all. The Aug. 21 total solar eclipse is different – its path stretches over land for nearly 90 minutes, giving scientists an unprecedented opportunity to make scientific measurements from the ground.

No matter where you are, it is never safe to look directly at the partially eclipsed or uneclipsed Sun. Make sure you’re prepared to watch safely, whether that’s with solar viewing glasses, a homemade pinhole projector, or online with us at nasa.gov/eclipselive.

image

Within the path of totality, the Moon will completely obscure the Sun’s face for up to 2 minutes and 40 seconds, depending on location. This will give people within the path of totality a glimpse of the innermost reaches of the Sun’s corona, the outer region of the atmosphere that is thought to house the processes that kick-start much of the space weather that can influence Earth, as well as heating the whole corona to extraordinarily high temperatures.

In fact, scientists got their first hint at these unusually high temperatures during the total solar eclipse of 1869, when instruments detected unexpected light emission. It was later discovered that this emission happens when iron is stripped of its electrons at extremely high temperatures.

This region of the Sun’s atmosphere can’t be measured at any other time, as human-made instruments that create artificial eclipses must block out much of the Sun’s atmosphere – as well as its bright face – in order to produce clear images.

image

We’re funding six science investigations to study the Sun’s processes on Aug. 21. Teams will spread out across the path of totality, focusing their instruments on the Sun’s atmosphere. One team will use a pair of retro-fitted WB-57F jets to chase the Moon’s shadow across the eastern US, extending the time of totality to more than 7 minutes combined, up from the 2 minutes and 40 seconds possible on the ground.

Our scientists are also using the Aug. 21 eclipse as a natural science experiment to study how Earth’s atmosphere reacts to the sudden loss of solar radiation within the Moon’s shadow.

image

One region of interest is Earth’s ionosphere. Stretching from roughly 50 to 400 miles above Earth’s surface, the tenuous ionosphere is an electrified layer of the atmosphere that reacts to changes from both Earth below and space above and can interfere with communication and navigation signals.

image

The ionosphere is created by ionizing radiation from the Sun. When totality hits on Aug. 21, we’ll know exactly how much solar radiation is blocked, the area of land it’s blocked over and for how long. Combined with measurements of the ionosphere during the eclipse, we’ll have information on both the solar input and corresponding ionosphere response, enabling us to study the mechanisms underlying ionospheric changes better than ever before.

The eclipse is also a chance for us to study Earth’s energy system, which is in a constant dance to maintain a balance between incoming radiation from the Sun and outgoing radiation from Earth to space, called the energy budget. Like a giant cloud, the Moon during the 2017 total solar eclipse will cast a large shadow across a swath of the United States.

image

Our scientists already know the dimensions and light-blocking properties of the Moon, and will use ground and space instruments to learn how this large shadow affects the amount of sunlight reaching Earth’s surface, especially around the edges of the shadow. This will help develop new calculations that improve our estimates of the amount of solar energy reaching the ground, and our understanding of one of the key players in regulating Earth’s energy system — clouds.

Learn all about the Aug. 21 eclipse at eclipse2017.nasa.gov, and follow @NASASun on Twitter and NASA Sun Science on Facebook for more. Watch the eclipse through the eyes of NASA at nasa.gov/eclipselive starting at 12 PM ET on Aug. 21.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Counting Down to the Solar Eclipse on August 21

On Aug. 21, 2017, everyone in North America will have the chance to see a solar eclipse if skies are clear. We’re giving you a preview of what you’ll see, how to watch and why scientists are particularly excited for this eclipse.

image

On Aug. 21, within a narrow band stretching from Oregon to South Carolina – called the path of totality – the Moon will completely obscure the Sun, giving people on the ground a view of the total solar eclipse. Outside this path – throughout North America, and even in parts of South America – the Moon will block only a portion of the Sun’s face, creating a partial solar eclipse.

image

Image credit: T. Ruen

Eclipses happen when the Moon, Sun and Earth line up just right, allowing the Moon to cast its shadow on Earth. Because the Moon’s orbit is tilted with respect to the Sun-Earth plane, its shadow usually passes above or below Earth. But when they all line up and that shadow falls on Earth, we get a solar eclipse.

image

How to Watch the Eclipse Safely  

It’s never safe to look directly at the un-eclipsed or partially eclipsed Sun – so you’ll need special solar viewing glasses or an indirect viewing method, like pinhole projection, to watch at the eclipse.

image

If you’re using solar viewing glasses or a handheld solar filter, there are a few important safety tips to keep in mind:

Check a few key characteristics to make sure that you have proper solar filters – sunglasses (even very dark ones) or homemade filters are NOT safe  

Double-check that your solar filter is not scratched or damaged before you use it

Always put your solar filter over your eyes before looking up at the Sun, and look away from the Sun before removing it 

Do NOT use your solar filter while looking through telescopes, binoculars, or any other optical device, such as a camera viewfinder – the concentrated solar rays will damage the filter and enter your eyes, causing serious injury

Get all the details on safety at eclipse2017.nasa.gov/safety.

No solar viewing glasses? Pinhole projection is an easy and safe way to watch the eclipse. You can create a pinhole projector from a box, or simply use any object with tiny holes – like a colander or a piece of cardstock with a hole – to project an image of the Sun onto the ground or a piece of paper.

image

If you are in the path of totality, there will come a time when the Moon completely obscures the Sun’s bright face. This is called totality, and it is only during this phase – which may last only a few seconds, depending on your location – that it is safe to look directly at the eclipse.

Wherever you are, you can tune into nasa.gov/eclipselive throughout the day on Aug. 21 to hear from our experts and see the eclipse like never before – including views from our spacecraft, aircraft, and more than 50 high-altitude balloons.

A Unique Chance for Scientists

Total solar eclipses provide a unique opportunity to study the Sun and Earth. During a total eclipse, the lower parts of the Sun's atmosphere, or corona, can be seen in a way that cannot completely be replicated by current human-made instruments.

The lower part of the corona is key to understanding many processes on the Sun, including why the Sun’s atmosphere is so much hotter than its surface and the origins of the Sun’s constant stream of solar material and radiation – which can cause changes in the nature of space and impact spacecraft, communications systems, and orbiting astronauts.

image

Photo credit: S. Habbal, M. Druckmüller and P. Aniol

For those in the path of totality, the few moments of the total solar eclipse will reveal the Sun’s atmosphere, the corona. 

Total solar eclipses are also a chance to study Earth under uncommon conditions: In contrast to the global change in light that occurs every day at dusk and dawn, a solar eclipse changes illumination of Earth and its atmosphere only under a comparatively small region of the Moon’s shadow. This localized blocking of solar energy is useful in evaluating our understanding of the Sun’s effects – temperature, for example – on our atmosphere. Of particular interest is the impact on Earth’s upper atmosphere, where solar illumination is primarily responsible for the generation of a layer of charged particles called the ionosphere.

image

We’re also inviting eclipse viewers around the country to become citizen scientists and participate in a nationwide science experiment by collecting cloud and air temperature data and reporting it via the GLOBE Observer smartphone app.

For more eclipse info, visit eclipse2017.nasa.gov and follow @NASASun on Twitter and NASA Sun Science on Facebook.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Five Eclipses in NASA History

On Monday, August 21, 2017, people in North America will have the chance to see an eclipse of the Sun. Anyone within the path of totality may see one of nature’s most awe-inspiring sights – a total solar eclipse. 

Along this path, the Moon will completely cover the Sun, revealing the Sun’s tenuous atmosphere, the corona. The path of totality will stretch from Salem, Oregon, to Charleston, South Carolina. Observers outside this path will still see a partial solar eclipse, where the Moon covers part of the Sun’s disk. Remember: you can never look at the Sun directly, and an eclipse is no exception – be sure to use a solar filter or indirect viewing method to watch partial phases of the eclipse.

image

Total solar eclipses are a rare chance to study the Sun and Earth in unique ways. During the total eclipse, scientists can observe the faintest regions of the Sun, as well as study the Sun’s effects on Earth’s upper atmosphere. We’ve been using eclipses to learn more about our solar system for more than 50 years. Let’s take a look back at five notable eclipses of the past five decades.

May 30, 1965

image

A total eclipse crossed the Pacific Ocean on May 30, 1965, starting near the northern tip of New Zealand and ending in Peru. Totality – when the Moon blocks all of the Sun’s face – lasted for 5 minutes and 15 seconds at peak, making this the 3rd-longest solar eclipse totality in the 20th century. Mexico and parts of the Southwestern United States saw a partial solar eclipse, meaning the Moon only blocked part of the Sun. We sent scientists to the path of totality, stationing researchers on South Pacific islands to study the response of the upper atmosphere and ionosphere to the eclipse. 

Additionally, our high-flying jets, scientific balloons, and sounding rockets – suborbital research rockets that fly and collect data for only a few minutes – recorded data in different parts of the atmosphere. A Convair 990 research jet chased the Moon’s shadow as it crossed Earth’s surface, extending totality up to more than nine minutes, and giving scientists aboard more time to collect data. A NASA-funded team of researchers will use the same tactic with two jets to extend totality to more than 7 minutes on Aug. 21, 2017, up from the 2 minutes and 40 seconds observable on the ground. 

March 7, 1970

image

The total solar eclipse of March 7, 1970, was visible in North America and the northwestern part of South America, with totality stretching to 3 minutes and 28 seconds at maximum. This was the first time a total eclipse in the United States passed over a permanent rocket launch facility – NASA’s Wallops Station (now Wallops Flight Facility) on the coast of Virginia. This eclipse offered scientists from NASA, four universities and seven other research organizations a unique way to conduct meteorology, ionospheric and solar physics experiments using 32 sounding rockets. 

Also during this eclipse, the Space Electric Propulsion Test, or SERT, mission temporarily shut down because of the lack of sunlight. The experimental spacecraft was unable to restart for two days.

July 10, 1972

Five Eclipses In NASA History

Two years later, North America saw another total solar eclipse. This time, totality lasted 2 minutes and 36 seconds at the longest. A pair of scientists from Marshall Space Flight Center in Huntsville, Alabama, traveled to the Canadian tundra to study the eclipse – specifically, a phenomenon called shadow bands. These are among the most ephemeral phenomena that observers see during the few minutes before and after a total solar eclipse. They appear as a multitude of faint rapidly moving bands that can be seen against a white background, such as a large piece of paper on the ground. 

While the details of what causes the bands are not completely understood, the simplest explanation is that they arise from atmospheric turbulence. When light rays pass through eddies in the atmosphere, they are refracted, creating shadow bands.

February 26, 1979

image

The last total solar eclipse of the 20th century in the contiguous United States was in early 1979. Totality lasted for a maximum of 2 minutes 49 seconds, and the total eclipse was visible on a narrow path stretching from the Pacific Northwest to Greenland. Agencies from Canada and the United States – including NASA – joined forces to build a sounding rocket program to study the atmosphere and ionosphere during the eclipse by observing particles on the edge of space as the Sun’s radiation was suddenly blocked.

July 31, 1981

image

The USSR got a great view of the Moon passing in front of the Sun in the summer of 1981, with totality lasting just over 2 minutes at maximum. Our scientists partnered with Hawaiian and British researchers to study the Sun’s atmosphere – specifically, a relatively thin region called the chromosphere, which is sandwiched between the Sun’s visible surface and the corona – using an infrared telescope aboard the Kuiper Airborne Observatory. The chromosphere appears as the red rim of the solar disk during a total solar eclipse, whereas the corona has no discernible color to the naked eye.

Watch an Eclipse: August 21, 2017 

image

On August 21, a total solar eclipse will cross the continental United States from coast to coast for the first time in 99 years, and you can watch.

If skies are clear, people in North America will be able to see a partial or total solar eclipse. Find out what the eclipse will look like in your area, then make sure you have a safe method to watch – like solar viewing glasses or a pinhole projector – and head outside. 

You can also tune into nasa.gov/eclipselive throughout the day on Aug. 21 to see the eclipse like you’ve never seen it before – including a NASA TV show, views from our spacecraft, aircraft, and more than 50 high-altitude balloons.

Get all your eclipse information at https://eclipse2017.nasa.gov/, and follow along with @NASASun on Twitter and NASA Sun Science on Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags