How To Safely Watch The Aug. 21 Solar Eclipse

How to Safely Watch the Aug. 21 Solar Eclipse

On Aug. 21, 2017, a solar eclipse will be visible in North America. Throughout the continent, the Moon will cover part – or all – of the Sun’s super-bright face for part of the day.

image

Since it’s never safe to look at the partially eclipsed or uneclipsed Sun, everyone who plans to watch the eclipse needs a plan to watch it safely. One of the easiest ways to watch an eclipse is solar viewing glasses – but there are a few things to check to make sure your glasses are safe:

 Glasses should have an ISO 12312-2 certification

They should also have the manufacturer’s name and address, and you can check if the manufacturer has been verified by the American Astronomical Society

Make sure they have no scratches or damage

image

To use solar viewing glasses, make sure you put them on before looking up at the Sun, and look away before you remove them. Proper solar viewing glasses are extremely dark, and the landscape around you will be totally black when you put them on – all you should see is the Sun (and maybe some types of extremely bright lights if you have them nearby).

Never use solar viewing glasses while looking through a telescope, binoculars, camera viewfinder, or any other optical device. The concentrated solar rays will damage the filter and enter your eyes, causing serious injury. But you can use solar viewing glasses on top of your regular eyeglasses, if you use them!

image

If you don’t have solar viewing glasses, there are still ways to watch, like making your own pinhole projector. You can make a handheld box projector with just a few simple supplies – or simply hold any object with a small hole (like a piece of cardstock with a pinhole, or even a colander) above a piece of paper on the ground to project tiny images of the Sun.

image

Of course, you can also watch the entire eclipse online with us. Tune into nasa.gov/eclipselive starting at noon ET on Aug. 21! 

For people in the path of totality, there will be a few brief moments when it is safe to look directly at the eclipse. Only once the Moon has completely covered the Sun and there is no light shining through is it safe to look at the eclipse. Make sure you put your eclipse glasses back on or return to indirect viewing before the first flash of sunlight appears around the Moon’s edge.

image

You can look up the length of the total eclipse in your area to help you set a time for the appropriate length of time. Remember – this only applies to people within the path of totality.

Everyone else will need to use eclipse glasses or indirect viewing throughout the entire eclipse!

Photographing the Eclipse

Whether you’re an amateur photographer or a selfie master, try out these tips for photographing the eclipse.  

image

#1 — Safety first: Make sure you have the required solar filter to protect your camera.

#2 — Any camera is a good camera, whether it’s a high-end DSLR or a camera phone – a good eye and vision for the image you want to create is most important.

#3 — Look up, down, and all around. As the Moon slips in front of the Sun, the landscape will be bathed in long shadows, creating eerie lighting across the landscape. Light filtering through the overlapping leaves of trees, which creates natural pinholes, will also project mini eclipse replicas on the ground. Everywhere you can point your camera can yield exceptional imagery, so be sure to compose some wide-angle photos that can capture your eclipse experience.

#4 — Practice: Be sure you know the capabilities of your camera before Eclipse Day. Most cameras, and even many camera phones, have adjustable exposures, which can help you darken or lighten your image during the tricky eclipse lighting. Make sure you know how to manually focus the camera for crisp shots.

#5 —Upload your eclipse images to NASA’s Eclipse Flickr Gallery and relive the eclipse through other peoples’ images.

Learn all about the Aug. 21 eclipse at eclipse2017.nasa.gov, and follow @NASASun on Twitter and NASA Sun Science on Facebook for more. Watch the eclipse through the eyes of NASA at nasa.gov/eclipselive starting at 12 PM ET on Aug. 21.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

6 years ago

Discover NASA Technology in Your Life

Have you ever wondered how space exploration impacts you? “Spinoffs” are products and services developed from NASA technology or improved through NASA partnerships. These innovations—first created to help explore space and study Earth—are responsible for billions of dollars in both revenue and saved costs, tens of thousands of jobs created, and for changing the world around us.

Our NASA Home & City interactive web platform allows you to explore some of the spinoff technologies you can find in your everyday life, demonstrating the wider benefits of America’s investments in its space program.

image

Here are the seven most unexpected items you can find in your homes and cities which were “spun off” from technologies to enable the study and exploration of space.

1. Wireless Headsets

“That’s one small step for man, one giant leap for mankind.” On July 20, 1969, millions were glued to their television sets when NASA astronaut Neil Armstrong offered these famous words via live broadcast, upon becoming the first man to ever step foot on the Moon. This historic transmission was delivered from Armstrong’s headset to the headsets of Mission Control personnel at NASA, and then on to the world.

Improved by the technology that carried Neil Armstrong’s words, more compact and comfortable headsets were developed for airline pilots in the 1960s and '70s. Today those advancements continue to evolve in all forms of communications and telephone equipment. Mobile headsets provide greater efficiency and flexibility for everyone from professionals to video gamers.

image

2. Water Quality Monitoring

On the International Space Station very little goes to waste. This includes water, which is recovered from every possible source, cleaned and recycled.

Following our development of a simplified bacteria test for water quality on the space station, one engineer created a foundation to distribute test kits suitable for use in rural communities around the world. Water contamination is still a major problem in many places, and the test helps local communities and governments obtain and share water quality data using a smartphone app.

3. Skin Cream

We know that on Earth, gravity is a constant. For astronauts in orbit, however, it’s a different story—and according to a scientist at NASA's Johnson Space Center, studying what happens to bodies in microgravity “can lead to significant new discoveries in human biology for the benefit of humankind.”

As our researchers experimented with replicating microgravity conditions in the lab, they invented a bioreactor that could help simulate conditions that human cells experience in a space-like environment. This allowed them to perform tissue-growth experiments on the ground and in space, and eventually, to consider the question of how to protect human cells from the toxic effects of long-duration space missions.

Now, thanks to this NASA-patented bioreactor, one company uses agents from human cells that produce collagen to enrich its skin cream products. Lab tests have shown the rejuvenating cream to increase skin moisture content by 76 percent and reduce darkness and wrinkles by more than 50 percent.

image

4. Acoustic Guitars

From its start, NASA has innovated in all branches of aeronautics, which has led to numerous advances in helicopters, including ways to limit vibrations as they fly and advanced composites to build tougher, safer vehicles. 

An industrious helicopter manufacturer that built up its expertise with NASA contracts later used the same special vibration analysis equipment to enhance the sound of acoustic guitars. The company also built the body out of a fiberglass composite used for rotor blades. The resulting instruments are stronger and less expensive to produce than those of traditional rosewood and produce a rich, full sound.

image

5. Tiny [Mobile] Homes

While the International Space Station is the largest spacecraft ever flown—it's about the size of a football field—living and working space for astronauts is still at a premium. NASA created a studio called the Habitability Design Center to experiment with the interior design of spacecraft to maximize usable space and make scientific research as efficient and effective as possible.

An architect who helped NASA design the interior of the International Space Station launched a company specializing in compact trailers for camping and exploration. Suitable for a full hookup campsite or going completely off-grid, the company's flagship trailer can accommodate two adults and two children for sleeping and can be customized with a range of features including a shower, refrigerator, toilet, and more. And it all fits into a unit light enough to be towed by a four-cylinder car.

image

6. Blue Light Blocking Ski Goggles

Skiers and snowboarders face extremely bright sunlight, especially when it's reflected off the white snow. That can make it hard to see, and not just because of glare. The blue in sunlight makes it more difficult to discern colors at the edge of the visible light spectrum, like reds. A NASA-designed filter used in snow goggles helps block up to 95 percent of blue light, making it easier for people on the slopes to see the terrain clearly.

image

7. Implants for the Hearing Impaired

Hearing aids, which make sound louder, can only do so much for those who were born or have become deaf. Cochlear implants work in a completely different way, converting sound into digital signals that can be processed by the brain.  And the technology traces back in part to a NASA space shuttle engineer who used skills in electronics instrumentation and his own experiences with hearing loss to develop an early version of the life-changing device.

image

These are just a few examples of thousands of NASA Spinoff and dual-purpose technologies benefiting the world around us. 

Trace space back to you and visit NASA Home and City today!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
7 years ago

Back to School Resources

Need help with your science homework? We’ve got you covered! Here are some out-of-this world (pun intended) resources for your science and space questions.

Let’s take a look…

NASA Space Place

image

From questions like “Why does Saturn have rings?” to games that allow you to explore different galaxies, NASA Space Place has a variety of content for elementary-age kids, parents and anyone who likes science and technology topics. 

Visit the NASA Space Place website or follow @NASASpacePlace on Twitter.

SciJinks

image

Targeting middle-school students and teachers, this NOAA and NASA partnership has games and useful information about weather and other Earth science subjects. 

Visit the SciJinks website or follow @SciJinks on Twitter. 

NASA Education

image

The NASA Education website includes an A-Z list of education opportunities that we offer throughout the year, as well as education programs, events and resources for both students and educators. 

We have a diverse set of resources for multiple age groups:

Grades K-4

Grades 5-8

Grades 9-12

Higher Education

Informal Education

Visit the NASA Education website or follow @NASAedu on Twitter. 

Want to get NASA Education materials for your classroom? Click HERE. 

A Year of Education on the International Space Station

image

Although on different crews, astronauts Joe Acaba and Ricky Arnold - both former teachers - will work aboard the International Space Station. K-12 and higher education students and educators can do NASA STEM activities related to the station and its role in our journey to Mars. Click HERE for more. 

Sally Ride EarthKAM

image

Also on the International Space Station, the Sally Ride EarthKAM @ Space Camp allows students to program a digital camera on board the space station to photograph a variety of geographical targets for study in the classroom. 

Registration is now open until Sept. 25 for the Sept. 26-30 mission. Click HERE for more. 

NASA eClips™

image

NASA eClips™ are short, relevant educational video segments. These videos inspire and engage students, helping them see real world connections by exploring current applications of science, technology, engineering and mathematics, or STEM, topics. The programs are produced for targeted audiences: K-5, 6-8, 9-12 and the general public.

Space Operations Learning Center

image

The Space Operations Learning Center teaches school-aged students the basic concepts of space operations using the web to present this educational content in a fun and engaging way for all grade levels. With fourteen modules, there’s lots to explore for all ages.

The Mars Fun Zone

image

The Mars Fun Zone is a compilation of Red Planet-related materials that engage the explorer inside every kid through activities, games, and educational moments. 

Fly Away with NASA Aeronautics

Back To School Resources

Frequent flyer or getting ready to earn your first set of wings? From children’s books for story time to interactive flight games, we’ve got Aeronautics activities for students of all ages that are sure to inspire future scientists, mathematicians and engineers. 

On Pinterest? We have a board that highlights NASA science, technology, engineering and math (STEM) lessons, activities, tools and resources for teachers, educators and parents. 

Check it out here: https://www.pinterest.com/nasa/nasa-for-educators/ 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Throwback Thursday: Answers to Apollo Moon Landing Questions

image

The first six missions to the Moon helped us answer questions about our nearest celestial neighbor, but a curious public wanted to know more about how we did it. With the help of the NASA History Office, we’ve identified some of the most frequently asked questions surrounding the first time humans walked on the surface of another world. Read on and click here to check out our post from last week and the week before. 

Why do some shadows on the Moon appear to go in different directions?

image

For Apollo astronauts, the Sun wasn’t the sole source of light. The high reflectivity of the lunar surface or “albedo” means that the Moon's many craters, hills and rocks bounce sunlight to wash out the stars multiple shadows on objects. The highly uneven terrain means that shadows can have slightly different lengths, as well. For example, two astronauts standing several feet away from each other can have different shadow lengths because one may be on a slope.

image

While the Lunar Module itself was also reflective, Apollo astronauts had yet another bright source of light: Earth! To a moonwalker, a half-full Earth would be about 20 times brighter than a full Moon as seen from our home planet. This also explains why stars are not visible in pictures. Think about it: if you wanted to photograph all the stars that can be seen from Earth, would you want to do it during a full Moon? 

Why are there no blast craters under the Lunar Modules? 

image

The Moon has endured billions of years of bombardment from micrometeorites and large meteorites, compacting the dust into extremely dense rock. A thin layer of fine and powdery moondust covers the ground, but the dense rock beneath this layer makes it hard to penetrate the surface. That, paired with an engine thrusting in a vacuum means that the exhaust would expand rapidly outward instead of straight down like it would on Earth. The large engine nozzle. Still, many pictures clearly show dust markings radiating from the landing site. 

Can Humans Really Survive Passing Through the Van Allen Radiation Belts?

image

The short answer is yes, but with protection. The Van Allen radiation belts, named after their discoverer James van Allen, are regions high above Earth’s surface that trap highly charged particles that radiate off the Sun. This energetic region contains harmful radiation that would be lethal to anybody who encountered them unprotected. Thankfully, the 12 astronauts that passed through the belts did so relatively quickly in the comfort of their shielded spacecraft that had been tested to withstand high doses of radiation. Although all six crews had to pass through the Van Allen belts, the dosimeters indicated that they received a dosage no higher than that of a chest X-ray or a single CAT scan. 

Why are we going back to the Moon?

image

Exploring the Moon is only the first part in our mission to expand humanity’s presence on Mars and beyond. The Moon is the ideal stepping stone for testing technology that will enable us to expand humanity’s presence on Mars and beyond. Click here to learn more about the Artemis program that will take humans to the lunar surface within five years -- this time, to stay. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

What exactly did you do during your time as a flight surgeon? I guess im just trying to ask, what does that job include?


Tags
5 years ago

Women in Exploration: From Human Computers to All-Woman Spacewalks

image

Since the 19th century, women have been making strides in areas like coding, computing, programming and space travel, despite the challenges they have faced. Sally Ride joined NASA in 1983 and five years later she became the first female American astronaut. Ride's accomplishments paved the way for the dozens of other women who became astronauts, and the hundreds of thousands more who pursued careers in science and technology. Just last week, we celebrated our very first #AllWomanSpacewalk with astronauts Christina Koch and Jessica Meir.

Here are just a couple of examples of pioneers who brought us to where we are today:

The Conquest of the Sound Barrier

image

Pearl Young was hired in 1922 by the National Advisory Committee for Aeronautics (NACA), NASA’s predecessor organization, to work at its Langley site in support in instrumentation, as one of the first women hired by the new agency. Women were also involved with the NACA at the Muroc site in California (now Armstrong Flight Research Center) to support flight research on advanced, high-speed aircraft. These women worked on the X-1 project, which became the first airplane to fly faster than the speed of sound. 

Young was the first woman hired as a technical employee and the second female physicist working for the federal government.

The Human Computers of Langley

image

The NACA hired five women in 1935 to form its first “computer pool”, because they were hardworking, “meticulous” and inexpensive. After the United States entered World War II, the NACA began actively recruiting similar types to meet the workload. These women did all the mathematical calculations – by hand – that desktop and mainframe computers do today.

Computers played a role in major projects ranging from World War II aircraft testing to transonic and supersonic flight research and the early space program. Women working as computers at Langley found that the job offered both challenges and opportunities. With limited options for promotion, computers had to prove that women could successfully do the work and then seek out their own opportunities for advancement.

Revolutionizing X-ray Astronomy

image

Marjorie Townsend was blazing trails from a very young age. She started college at age 15 and became the first woman to earn an engineering degree from the George Washington University when she graduated in 1951. At NASA, she became the first female spacecraft project manager, overseeing the development and 1970 launch of the UHURU satellite. The first satellite dedicated to x-ray astronomy, UHURU detected, surveyed and mapped celestial X-ray sources and gamma-ray emissions.

Women of Apollo

NASA’s mission to land a human on the Moon for the very first time took hundreds of thousands workers. These are some of the stories of the women who made our recent #Apollo50th anniversary possible:

image

• Margaret Hamilton led a NASA team of software engineers at the Massachusetts Institute of Technology and helped develop the flight software for NASA’s Apollo missions. She also coined the term “software engineering.” Her team’s groundbreaking work was perfect; there were no software glitches or bugs during the crewed Apollo missions. 

• JoAnn Morgan was the only woman working in Mission Control when the Apollo 11 mission launched. She later accomplished many NASA “firsts” for women:  NASA winner of a Sloan Fellowship, division chief, senior executive at the Kennedy Space Center and director of Safety and Mission Assurance at the agency.

• Judy Sullivan, was the first female engineer in the agency’s Spacecraft Operations organization, was the lead engineer for health and safety for Apollo 11, and the only woman helping Neil Armstrong suit up for flight.

Hidden Figures

Author Margot Lee Shetterly’s book – and subsequent movie – Hidden Figures, highlighted African-American women who provided instrumental support to the Apollo program, all behind the scenes.

image

• An alumna of the Langley computing pool, Mary Jackson was hired as the agency’s first African-American female engineer in 1958. She specialized in boundary layer effects on aerospace vehicles at supersonic speeds. 

• An extraordinarily gifted student, Katherine Johnson skipped several grades and attended high school at age 13 on the campus of a historically black college. Johnson calculated trajectories, launch windows and emergency backup return paths for many flights, including Apollo 11.

• Christine Darden served as a “computress” for eight years until she approached her supervisor to ask why men, with the same educational background as her (a master of science in applied mathematics), were being hired as engineers. Impressed by her skills, her supervisor transferred her to the engineering section, where she was one of few female aerospace engineers at NASA Langley during that time.

Lovelace’s Woman in Space Program

image

Geraldyn “Jerrie” Cobb was the among dozens of women recruited in 1960 by Dr. William Randolph "Randy" Lovelace II to undergo the same physical testing regimen used to help select NASA’s first astronauts as part of his privately funded Woman in Space Program.

Ultimately, thirteen women passed the same physical examinations that the Lovelace Foundation had developed for NASA’s astronaut selection process. They were: Jerrie Cobb, Myrtle "K" Cagle, Jan Dietrich, Marion Dietrich, Wally Funk, Jean Hixson, Irene Leverton, Sarah Gorelick, Jane B. Hart, Rhea Hurrle, Jerri Sloan, Gene Nora Stumbough, and Bernice Trimble Steadman. Though they were never officially affiliated with NASA, the media gave these women the unofficial nicknames “Fellow Lady Astronaut Trainees” and the “Mercury Thirteen.”

The First Woman on the Moon

image

The early space program inspired a generation of scientists and engineers. Now, as we embark on our Artemis program to return humanity to the lunar surface by 2024, we have the opportunity to inspire a whole new generation. The prospect of sending the first woman to the Moon is an opportunity to influence the next age of women explorers and achievers.

This material was adapted from a paper written by Shanessa Jackson (Stellar Solutions, Inc.), Dr. Patricia Knezek (NASA), Mrs. Denise Silimon-Hill (Stellar Solutions), and Ms. Alexandra Cross (Stellar Solutions) and submitted to the 2019 International Astronautical Congress (IAC). For more information about IAC and how you can get involved, click here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago
Http://bit.ly/rawcuriosity

http://bit.ly/rawcuriosity

Take a look around Mars. Here’s where I’m working right now.

Click the link to see all my latest pictures from the surface of Mars.

6 years ago

NASA’s 60th Anniversary: How It All Began

Congress passed the National Aeronautics and Space Act, on July 16 and President Eisenhower signed it into law on July 29, 1958. We opened for business on Oct. 1, 1958, with T. Keith Glennan as our first administrator. Our history since then tells a story of exploration, innovation and discoveries. The next 60 years, that story continues. Learn more: https://www.nasa.gov/60

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
4 years ago

What Would NASA Imagery Experts Pack for the Moon?

image

We are one step closer to landing the first woman and the next man on the Moon, and we want to know: What would you take with you to the Moon? 🌙

We are getting ready for our Green Run Hot Fire test, which will fire all four engines of the rocket that will be used for the Artemis I mission. This test will ensure the Space Launch System — the most powerful rocket ever built — is ready for the first and future missions beyond Earth’s orbit to the Moon.  

In celebration of this important milestone, we’ve been asking you — yes, you! — to tell us what you would pack for the Moon with the hashtag #NASAMoonKit!

To provide a little inspiration, here are some examples of what NASA imagery experts would put in their Moon kits:

image

“The first thing that went into my #NASAMoonKit was my camera. Some of the most iconic photographs ever taken were captured on the surface of the Moon by NASA astronauts. The camera has to go. The hat and sunscreen will be a must to protect me from the unfiltered sunlight. Warm socks? Of course, my feet are always cold. A little “Moon Music” and a photo of Holly, the best dog in the world, will pass the time during breaks.  Lastly, I need to eat. Water and gummy peach rings will go in a small corner of my pack.”

— Marv Smith, Lead Photographer, NASA Glenn Research Center 

image

“I may not always pack light, but I tried to only pack the essentials — with a couple of goodies. I get cold fairly easily hence the blanket, extra NASA shirt, hat and gloves. No trip is complete without my favorite snack of almonds, water, sunglasses, lip balm, phone, and my headphones to listen to some music. I figured I could bring my yoga mat, because who wouldn’t want to do yoga on the Moon? The most important part of this kit is my camera! I brought a couple of different lenses for a variety of options, along with a sports action camera, notebook and computer for editing. The Van Gogh doll was just for fun!”

— Jordan Salkin, Scientific Imaging, NASA Glenn Research Center

image

“The first thing I thought of for my #NASAMoonKit was the first book I ever read when I was learning to read. It is about going on a journey to the Moon. I really liked that book and read it many times, looking at the illustrations and wondering about if I would ever actually go to the Moon. Of the many belongings that I have lost through the years from moving, that book has stayed with me and so it would, of course, go to the Moon with me. A family photo was second to get packed since we always had photos taken and volumes of old family photos in the house. Photography has played an important role in my life so my camera gear is third to get packed. As a kid I spent a lot of time and money building rockets and flying them. I bet my rocket would go very high on the Moon. I also like a little candy wherever I go.”  

— Quentin Schwinn, Scientific Imaging, NASA Glenn Research Center

image

“I couldn’t go to the moon without my two mirrorless digital SLR cameras, lenses, my 120 6x4.5 film camera, several rolls of 120 film, my singing bowl (for meditation), my wireless printer, my son’s astronaut toy, several pictures of both my sons and wife, my oldest son’s first shoes (they are good luck), cell phone (for music and extra photos), tablet and pen (for editing and books), my laptop, and my water bottle (I take it everywhere).”

— Jef Janis, Photographer, NASA Glenn Research Center  

image

“I’m taking my NASA coffee mug because let’s be honest; nothing is getting done on the moon until I’ve had my morning coffee out of my favorite mug. I’m taking two cameras: the 360-degree camera and the vintage range finder camera my father bought during the Korean War when he was a Captain and Base Doctor in the Air Force. I’m also taking my awesome camera socks so I can be a fashion embarrassment to my family in space as well as on Earth. The lucky rabbit is named Dez — for years I have carried her all over the world in my pocket whenever I needed a little good luck on a photo shoot. She’s come along to photograph hurricanes, presidents, and sports championships. Being from New Orleans, I would love to be the first to carry out a Mardi Gras tradition on the moon, flinging doubloons and beads to my fellow astronauts (especially if we are up there during Carnival season). I also want to take a picture of this picture on the moon so my wife and son know they are with me no matter where I go. Lastly, it’s a well-known fact that space travelers should always bring a towel on their journey.”

— Michael DeMocker, photographer, videographer & UAS, Michoud Assembly Facility

image

“I couldn’t go to the Moon without my camera, a 45-rpm vinyl record (My husband’s band — I really want to know how a record sounds in space. Gravity is what makes the needle lay on the record so will the change in gravity make it sound different?), a book to read, a photograph of my daughter, my phone or rather my communication and photo editing device, a snack, and I definitely couldn’t go to the Moon without my moon boots!”

— Bridget Caswell, Photographer, NASA Glenn Research Center  


Tags
5 years ago

Watch Mercury Transit the Sun on Nov. 11

On Nov. 11, Earthlings will be treated to a rare cosmic event — a Mercury transit.

image

For about five and a half hours on Monday, Nov. 11 — from about 7:35 a.m. EST to 1:04 p.m. EST — Mercury will be visible from Earth as a tiny black dot crawling across the face of the Sun. This is a transit and it happens when Mercury lines up just right between the Sun and Earth.

Mercury transits happen about 13 times a century. Though it takes Mercury only about 88 days to zip around the Sun, its orbit is tilted, so it's relatively rare for the Sun, Mercury and Earth to line up perfectly. The next Mercury transit isn't until 2032 — and in the U.S., the next opportunity to catch a Mercury transit is in 2049!

How to watch

Our Solar Dynamics Observatory satellite, or SDO, will provide near-real time views of the transit. SDO keeps a constant eye on the Sun from its position in orbit around Earth to monitor and study the Sun's changes, putting it in the front row for many eclipses and transits.

Visit mercurytransit.gsfc.nasa.gov to tune in!

image

Our Solar Dynamics Observatory also saw Mercury transit the Sun in 2016.

If you're thinking of watching the transit from the ground, keep in mind that it is never safe to look directly at the Sun. Even with solar viewing glasses, Mercury is too small to be easily seen with the unaided eye. Your local astronomy club may have an opportunity to see the transit using specialized, properly-filtered solar telescopes — but remember that you cannot use a regular telescope or binoculars in conjunction with solar viewing glasses.

Transits in other star systems

Transiting planets outside our solar system are a key part of how we look for exoplanets.

Our Transiting Exoplanet Survey Satellite, or TESS, is NASA’s latest planet-hunter, observing the sky for new worlds in our cosmic neighborhood. TESS searches for these exoplanets, planets orbiting other stars, by using its four cameras to scan nearly the whole sky one section at a time. It monitors the brightness of stars for periodic dips caused by planets transiting those stars.

image

This is similar to Mercury’s transit across the Sun, but light-years away in other solar systems! So far, TESS has discovered 29 confirmed exoplanets using transits — with over 1,000 more candidates being studied by scientists!

image

Discover more transit and eclipse science at nasa.gov/transit, and tune in on Monday, Nov. 11, at mercurytransit.gsfc.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Ultra-Close Orbits of Saturn = Ultra-Cool Science

On Sept. 15, 2017, our Cassini spacecraft ended its epic exploration of Saturn with a planned dive into the planet’s atmosphere–sending back new science to the very last second. The spacecraft is gone, but the science continues!

image

New research emerging from the final orbits represents a huge leap forward in our understanding of the Saturn system -- especially the mysterious, never-before-explored region between the planet and its rings. Some preconceived ideas are turning out to be wrong while new questions are being raised. How did they form? What holds them in place? What are they made of?

image

Six teams of researchers are publishing their work Oct. 5 in the journal Science, based on findings from Cassini's Grand Finale. That's when, as the spacecraft was running out of fuel, the mission team steered Cassini spectacularly close to Saturn in 22 orbits before deliberately vaporizing it in a final plunge into the atmosphere in September 2017.

image

Knowing Cassini's days were numbered, its mission team went for gold. The spacecraft flew where it was never designed to fly. For the first time, it probed Saturn's magnetized environment, flew through icy, rocky ring particles and sniffed the atmosphere in the 1,200-mile-wide (2,000-kilometer-wide) gap between the rings and the cloud tops. Not only did the engineering push the spacecraft to its limits, the new findings illustrate how powerful and agile the instruments were.

Many more Grand Finale science results are to come, but today's highlights include:

Complex organic compounds embedded in water nanograins rain down from Saturn's rings into its upper atmosphere. Scientists saw water and silicates, but they were surprised to see also methane, ammonia, carbon monoxide, nitrogen and carbon dioxide. The composition of organics is different from that found on moon Enceladus – and also different from those on moon Titan, meaning there are at least three distinct reservoirs of organic molecules in the Saturn system.

image

For the first time, Cassini saw up close how rings interact with the planet and observed inner-ring particles and gases falling directly into the atmosphere. Some particles take on electric charges and spiral along magnetic-field lines, falling into Saturn at higher latitudes -- a phenomenon known as "ring rain." But scientists were surprised to see that others are dragged quickly into Saturn at the equator. And it's all falling out of the rings faster than scientists thought -- as much as 10,000 kg of material per second.

image

Scientists were surprised to see what the material looks like in the gap between the rings and Saturn's atmosphere. They knew that the particles throughout the rings ranged from large to small. They thought material in the gap would look the same. But the sampling showed mostly tiny, nanograin- and micron-sized particles, like smoke, telling us that some yet-unknown process is grinding up particles. What could it be? Future research into the final bits of data sent by Cassini may hold the answer.

image

Saturn and its rings are even more interconnected than scientists thought. Cassini revealed a previously unknown electric current system that connects the rings to the top of Saturn's atmosphere.

image

Scientists discovered a new radiation belt around Saturn, close to the planet and composed of energetic particles. They found that while the belt actually intersects with the innermost ring, the ring is so tenuous that it doesn’t block the belt from forming.

image

Unlike every other planet with a magnetic field in our Solar System, Saturn's magnetic field is almost completely aligned with its spin axis. Think of the planet and the magnetic field as completely separate things that are both spinning. Both have the same center point, but they each have their own axis about which they spin. But for Saturn the two axes are essentially the same – no other planet does that, and we did not think it was even possible for this to happen. This new data shows a magnetic-field tilt of less than 0.0095 degrees. (Earth's magnetic field is tilted 11 degrees from its spin axis.) According to everything scientists know about how planetary magnetic fields are generated, Saturn should not have one. It's a mystery physicists will be working to solve.

image

Cassini flew above Saturn's magnetic poles, directly sampling regions where radio emissions are generated. The findings more than doubled the number of reported crossings of radio sources from the planet, one of the few non-terrestrial locations where scientists have been able to study a mechanism believed to operate throughout the universe. How are these signals generated? That’s still a mystery researchers are looking to uncover.

For the Cassini mission, the science rolling out from Grand Finale orbits confirms that the calculated risk of diving into the gap -- skimming the upper atmosphere and skirting the edge of the inner rings -- was worthwhile.

image

Almost everything going on in that region turned out to be a surprise, which was the importance of going there, to explore a place we'd never been before. And the expedition really paid off!

Analysis of Cassini data from the spacecraft’s instruments will be ongoing for years to come, helping to paint a clearer picture of Saturn.

To read the papers published in Science, visit: URL to papers

To learn more about the ground-breaking Cassini mission and its 13 years at Saturn, visit: https://www.nasa.gov/mission_pages/cassini/main/index.html

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
  • ushomeguard
    ushomeguard liked this · 1 year ago
  • yvespink
    yvespink liked this · 2 years ago
  • elethiea
    elethiea liked this · 5 years ago
  • batjohnsmithme
    batjohnsmithme liked this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags