Can you guess the subject of each of these pictures? How many will you get right? Test your friends and family to see who knows their space photos the best.
1. Mars. You might be surprised, but this image taken by our Mars Reconnaissance Orbiter is of a light-toned deposit on the Martian surface. Some shapes in the terrain suggest erosion by a fluid moving north to south.
2. Earth. This image taken by our Earth Observing-1 satellite shows Lake Frome in central Australia. In this image, the salt lake appears bone-dry, filled with off-white sediment. This area of Australia receives 149 to 216 millimeters of rainfall a year on average, and the basins pass most of their time as saltpans.
3. Mercury. Our MESSENGER spacecraft captured this image of Mercury during a fly by in October 2008. It shows previously uncharted regions of the planet that have large craters with an internal smoothness similar to Earth’s own moon. It is thought that these craters were to have been flooded by lava flows that are old but not as old as the surrounding more highly cratered surface.
4. Earth. Surprisingly, this image take from the International Space Station shows the western half of the Arabian peninsula in Saudi Arabia. It not only contains large expanses of sand and gravel, but extensive lava fields known as haraat.
5. Saturn. Although this pattern of waves is similar to those seen on Jupiter, this is actually a picture of Saturn. The pattern of an iconic surfer’s wave, has been observed in many places all over the universe, including at the edges of Earth’s magnetic environment.
6. Mars. This image was taken by our Mars Reconnaissance Orbiter and shows dunes of sand-sized materials that have been trapped on the floors of many Martian craters. The dunes are linear, thought to be due to shifting wind directions.
7. Left: Europa. Right: Frying Pan. Europa is one of Jupiter’s moons, and is about the same size as Earth’s moon.
8. Ceres. This image taken by our Dawn spacecraft shows an intriguing mountain on dwarf planet Ceres protruding from a relatively smooth area.
9. Earth. This image of the Bazman volcano is located in a remote region of souther Iran. While the volcano has the classic cone shape of a stratovolcano, it is also heavily dissected by channels that extend downwards from the summit.
10. Earth. This image of the Great Sandy Desert in northwest Australia shows a variety of dune forms across the region. The photo was taken by the Expedition 35 crew from the International Space Station.
Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com
as flight directors, you are in charge of a lot of the operations, but do you ever get to experience handling controls or zero gravity simulation? do you have to know every aspect of everyone's job?
Matter makes up all the stuff we can see in the universe, from pencils to people to planets. But there’s still a lot we don’t understand about it! For example: How does matter work when it’s about to become a black hole? We can’t learn anything about matter after it becomes a black hole, because it’s hidden behind the event horizon, the point of no return. So we turn to something we can study – the incredibly dense matter inside a neutron star, the leftover of an exploded massive star that wasn’t quite big enough to turn into a black hole.
Our Neutron star Interior Composition Explorer, or NICER, is an X-ray telescope perched on the International Space Station. NICER was designed to study and measure the sizes and masses of neutron stars to help us learn more about what might be going on in their mysterious cores.
When a star many times the mass of our Sun runs out of fuel, it collapses under its own weight and then bursts into a supernova. What’s left behind depends on the star’s initial mass. Heavier stars (around 25 times the Sun’s mass or more) leave behind black holes. Lighter ones (between about eight and 25 times the Sun’s mass) leave behind neutron stars.
Neutron stars pack more mass than the Sun into a sphere about as wide as New York City’s Manhattan Island is long. Just one teaspoon of neutron star matter would weigh as much as Mount Everest, the highest mountain on Earth!
These objects have a lot of cool physics going on. They can spin faster than blender blades, and they have powerful magnetic fields. In fact, neutron stars are the strongest magnets in the universe! The magnetic fields can rip particles off the star’s surface and then smack them down on another part of the star. The constant bombardment creates hot spots at the magnetic poles. When the star rotates, the hot spots swing in and out of our view like the beams of a lighthouse.
Neutron stars are so dense that they warp nearby space-time, like a bowling ball resting on a trampoline. The warping effect is so strong that it can redirect light from the star’s far side into our view. This has the odd effect of making the star look bigger than it really is!
NICER uses all the cool physics happening on and around neutron stars to learn more about what’s happening inside the star, where matter lingers on the threshold of becoming a black hole. (We should mention that NICER also studies black holes!)
Scientists think neutron stars are layered a bit like a golf ball. At the surface, there’s a really thin (just a couple centimeters high) atmosphere of hydrogen or helium. In the outer core, atoms have broken down into their building blocks – protons, neutrons, and electrons – and the immense pressure has squished most of the protons and electrons together to form a sea of mostly neutrons.
But what’s going on in the inner core? Physicists have lots of theories. In some traditional models, scientists suggested the stars were neutrons all the way down. Others proposed that neutrons break down into their own building blocks, called quarks. And then some suggest that those quarks could recombine to form new types of particles that aren’t neutrons!
NICER is helping us figure things out by measuring the sizes and masses of neutron stars. Scientists use those numbers to calculate the stars’ density, which tells us how squeezable matter is!
Let’s say you have what scientists think of as a typical neutron star, one weighing about 1.4 times the Sun’s mass. If you measure the size of the star, and it’s big, then that might mean it contains more whole neutrons. If instead it’s small, then that might mean the neutrons have broken down into quarks. The tinier pieces can be packed together more tightly.
NICER has now measured the sizes of two neutron stars, called PSR J0030+0451 and PSR J0740+6620, or J0030 and J0740 for short.
J0030 is about 1.4 times the Sun’s mass and 16 miles across. (It also taught us that neutron star hot spots might not always be where we thought.) J0740 is about 2.1 times the Sun’s mass and is also about 16 miles across. So J0740 has about 50% more mass than J0030 but is about the same size! Which tells us that the matter in neutron stars is less squeezable than some scientists predicted. (Remember, some physicists suggest that the added mass would crush all the neutrons and make a smaller star.) And J0740’s mass and size together challenge models where the star is neutrons all the way down.
So what’s in the heart of a neutron star? We’re still not sure. Scientists will have to use NICER’s observations to develop new models, perhaps where the cores of neutron stars contain a mix of both neutrons and weirder matter, like quarks. We’ll have to keep measuring neutron stars to learn more!
Keep up with other exciting announcements about our universe by following NASA Universe on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
This dwarf planet sure knows how to get a BIG reaction because we’re stunned by the latest images from our New Horizons spacecraft!
Back on July 14, the spacecraft completed it’s historic Pluto flyby, and is now in an intensive downlink phase. During this time, New Horizons will send us some of the best data and images we’ve seen!
These latest images were taken just 15 minutes after New Horizons’ closest approach to Pluto. The spacecraft looked back toward the sun and captured this near-sunset view. Icy mountains, flat plains and the horizon can all be seen in detail.
When we take a closer look, these features truly begin to stand out. Mountains up to 11,000 feet high are met by flat icy plains that extend out to Pluto’s horizon. There, more than a dozen layers of haze in the dwarf planet’s atmosphere can be seen. It’s almost as if we’re flying over the surface with the New Horizons spacecraft.
Speaking of flyover, this new animation of Pluto has been created from images returned from the spacecraft this month. This view shows us what it might be like to take an aerial tour through Pluto’s thin atmosphere and soar above the surface.
These images and videos are not only stunning, but also provide us with important information about the dwarf planet. So far, scientists can tell that the weather changes from day to day on Pluto. These images, combined with others that have been downloaded, provide evidence for a remarkably Earth-like “hydrological” cycle on Pluto.
For updates on the data and images received by the New Horizons spacecraft, check our blog: https://blogs.nasa.gov/pluto/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What are the different fields of Earth Science? Are they related to each other?
You’ve heard us say that we’re on a journey to Mars, but the Red Planet is big. Once we get there, where will we land the first humans? We’re holding the first Landing Sites/Exploration Zones Workshop for Human Missions to the Surface of Mars to figure it out. This first workshop was held Oct. 27-30, 2015 at the Lunar and Planetary Institute in Houston.
The goal of this workshop was to collect proposals for locations on Mars that would be of high scientific research value while also providing natural resources to enable explorers to land, live and work safely on the Red Planet. Determining where we will land humans on Mars is a multi-year process. There was around 45 proposal teams at the workshop. This was the first of many workshops to determine the best landing site for human exploration on Mars.
We plan to use existing assets at Mars, such as the Mars Reconnaissance Orbiter (MRO) and the Odyssey spacecraft, to support the selection process of potential Exploration Zones. However, the life expectancy of MRO and Odyssey are limited. We are eager to take advantage of the remaining operational years of those Martian images to gather high resolution maps of potential Exploration Zones while the spacecraft remain operational.
The workshop will be aired live USTREAM starting at 2 p.m. EDT Tuesday, Oct. 27.
This blog post will also be updated daily with a recap from the workshop’s events.
For a full schedule of the event visit: http://www.hou.usra.edu/meetings/explorationzone2015/pdf/program.pdf
"There is no such thing as robotic exploration. All exploration is human exploration — the robot is just a tool.” - John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate
Day one of the workshop answered a lot of basic questions about why looking at landing sites now is important for the future of our journey to Mars.
Attendees heard from many presenters, including Ellen Ochoa, Director of Johnson Space Center and John Grunsfeld, Associate Administrator of NASA’s Science Mission Directorate.
Experts explained that in order to leverage our current assets at Mars and start the process of picking possible landing sites, we need to start the discussion now.
This data will Inform our efforts to define what we need as far as future reconnaissance capabilities at Mars and drive where we send robotic landers to get ground truth.
Check back tomorrow for the day two update, and watch live on USTREAM starting at 9 a.m. EDT.
BONUS: Have questions about potential landing sites on Mars? We’ll be hosting a live social Q&A tomorrow at 7 p.m. EDT. Two NASA experts and one 15-year old student on one of the proposal teams will be answering your questions. Tune in on USTREAM and use #askNASA.
The second day of the Mars Landing Sites Workshop was filled with presentations from various proposal groups. Contributors made cases for where the best science could be collected on the Martian surface.
We also had the opportunity to hear from a young presenter, Alex Longo. A 15-year old student from Raleigh, N.C.
Longo also joined us for the social Q&A where we answered questions from #askNASA. He, along with two NASA experts, fielded questions that ranged from specifics about the workshop, to chatting aboutMars mysteries.
Tune in tomorrow to watch more of the presentations and see potential Mars landing sites! Watch live on USTREAM starting at 9 a.m. EDT.
Check back tomorrow for the day three update.
Day 3 Recap:
The third day of the workshop included presentations from the remaining proposal teams. This final day of presentations will lead into the last day of the workshop, when groups will discuss all of the ideas shared during the past week.
The day got really exciting when our Space Exploration Vehicle (SEV) made an appearance. This SEV concept is designed to be flexible, depending on the exploration destination. The pressurized cabin can be used for surface exploration of planetary bodies, including near-Earth asteroids and Mars.
Tomorrow is the final day of the workshop and will include group discussions. Participants will have the chance to assess the proposed sites and talk about the future steps needed for selecting a potential human landing site for our journey to Mars.
Watch these discussions live on USTREAM starting at 9 a.m. EDT.
Final Day Recap:
The final day of our workshop on potential Mars landing sites included discussions on the presentations that were made throughout the week.
Participants also had the opportunity to hear from NASA experts like Jim Green, director of planetary science, about future exploration and our journey to Mars.
Video of the full workshop will be available on the Lunar Planetary Institute’s YouTube channel. For more information and updates on our journey to Mars, visit HERE.
Soaring to the depths of our universe, gallant spacecraft roam the cosmos, snapping images of celestial wonders. Some spacecraft have instruments capable of capturing radio emissions. When scientists convert these to sound waves, the results are eerie to hear.
In time for Halloween, we've put together a compilation of elusive "sounds" of howling planets and whistling helium that is sure to make your skin crawl.
Listen to a few here and visit our Soundcloud for more spooky sounds.
This eerie audio represents data collected by our Cassini spacecraft, as it crossed through the gap between Saturn and its rings on April 26, 2017, during the first dive of the mission's Grand Finale. The instrument is able to record ring particles striking the spacecraft in its data. In the data from this dive, there is virtually no detectable peak in pops and cracks that represent ring particles striking the spacecraft. The lack of discernible pops and cracks indicates the region is largely free of small particles.
Listen to this howling audio from our Voyager 1 spacecraft. Voyager 1 has experienced three "tsunami waves" in interstellar space. This kind of wave occurs as a result of a coronal mass ejection erupting from the Sun. The most recent tsunami wave that Voyager experienced began in February 2014, and may still be going. Listen to how these waves cause surrounding ionized matter to ring like a bell.
Our Voyager 1 spacecraft captured these high-pitched, spooky sounds of interstellar space from October to November 2012 and April to May 2013.
The soundtrack reproduces the amplitude and frequency of the plasma waves as "heard" by Voyager 1. The waves detected by the instrument antennas can be simply amplified and played through a speaker. These frequencies are within the range heard by human ears.
When scientists extrapolated this line even further back in time (not shown), they deduced that Voyager 1 first encountered interstellar plasma in August 2012.
Ominous sounds of plasma! Our Juno spacecraft has observed plasma wave signals from Jupiter’s ionosphere. The results in this video show an increasing plasma density as Juno descended into Jupiter’s ionosphere during its close pass by Jupiter on February 2, 2017.
Juno's Waves instrument recorded this supernatural sounding encounter with the bow shock over the course of about two hours on June 24, 2016. "Bow shock" is where the supersonic solar wind is heated and slowed by Jupiter's magnetosphere. It is analogous to a sonic boom on Earth. The next day, June 25, 2016, the Waves instrument witnessed the crossing of the magnetopause. "Trapped continuum radiation" refers to waves trapped in a low-density cavity in Jupiter's magnetosphere.
Visit the NASA Soundcloud for more spooky space sounds: https://soundcloud.com/nasa/sets/spookyspacesounds
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
SHAKE IT UP! The Orion Exploration Mission-1 crew module was blasted with 141 decibels of acoustic energy to make sure parts don’t come loose when exposed to extreme vibrations experienced at launch. Don’t try this at home.
What was your reaction to getting selected for the Air Force Fellows program?
Did you know you are surrounded by NASA technology? From your apartment building to the doctor’s office, and even in your cellphone camera, there is more space in your life than you think!
In the latest edition of Spinoff, we are introducing dozens of new ways NASA technology could cross your path. Whether you need an extra “hand” on the production line or a weatherproof jacket, check out how to gear up with technology made for space.
Robots are crucial to exploring space and other planets – they could even support astronauts and form the advance party for places humans have yet to reach. But the human machine is hard to replicate.
A collaboration with General Motors helped us build Robonaut 2 – and the design for this robot’s hands has been adapted into a robotic glove that helps manufacturing employees, such as automobile workers, reduce injuries and improve quality control.
The Swedish company Bioservo used the Robo-Glove technology to create the world’s first industrial-strength robotic glove for factory workers who perform repetitive manual tasks.
The Ironhand glove adds force to the user’s grip with artificial tendons and pressure sensors on the palm and the fingers.
The result? Reduced strain on the user’s own tendons and muscles, meaning fewer workplace stress injuries and better comfort for workers.
Spacesuits need major insulation and temperature control to protect astronauts on extravehicular activities, aka spacewalks. To help solve this, we created a phase-change material with help from the Triangle Research and Development Corporation.
With funding from a NASA Small Business Innovation Research contract, Triangle incorporated the material into a fabric glove insert that could maintain a steady temperature by absorbing and releasing heat, ensuring it feels just right.
While the invention never made it to orbit, it did make it into the driver’s seat.
Outlast Technologies exclusively licensed the material from Triangle and has incorporated it into outdoor gear, bedding, and now – auto racing suits with help from Cambridge, England-based Walero.
Due to extreme temperatures in the cockpit, drivers in almost every major racing championship wear Walero for its cooling properties. Cristiana Oprea (pictured) wears it while driving for the European Rally Championship. Credit: Walero
The race undergarments, bonded with fire-retardant material for added protection, help drivers maintain a lower core temperature and heart rate, which means fewer mistakes and better lap times.
The suits have been sold to both amateur racers and professional NASCAR drivers.
The superinsulating material that makes up space blankets is one of our most ubiquitous spinoffs. Found everywhere from inside the walls and roofs of buildings to cryogenic tanks and MRI machines, radiant barrier technology was first created to insulate spacesuits and spacecraft. And now this NASA spinoff can be found in weatherproof jackets as well.
Inspired by her passion to run following a series of surgeries to help correct a life-threatening injury, Hema Nambiar launched her Larchmont, New York, start-up company 13-One. To create her jacket, she worked with Advanced Flexible Materials Inc.’s brand Heatsheets. The brand was already marketing products like the space blankets traditionally distributed after races to prevent dangerous drops in temperature.
The 13-One jackets are designed to be warm and weatherproof, but their thin, reflective lining lets them also be lightweight and easily portable. Credit: Lourenso Ramautar, Out of New York Studio
The resulting line of jackets has a black exterior and a lining to reflect body heat. They weigh less than a pound, are wind- and water-resistant, and easily pack into a small, built-in pouch.
Want to check out more NASA spinoffs? Be sure to find us on spinoff.nasa.gov and on Twitter.
Interested in licensing your own NASA technologies? Check out the NASA Technology Transfer program at technology.nasa.gov.
Make sure to follow us on Tumblr for your regular dose of space!
With its blue skies, puffy white clouds, warm beaches and abundant life, planet Earth is a pretty special place. A quick survey of the solar system reveals nothing else like it. But how special is Earth, really?
One way to find out is to look for other worlds like ours elsewhere in the galaxy. Astronomers using our Kepler Space Telescope and other observatories have been doing just that!
In recent years they’ve been finding other planets increasingly similar to Earth, but still none that appear as hospitable as our home world. For those researchers, the search goes on.
Another group of researchers have taken on an entirely different approach. Instead of looking for Earth-like planets, they’ve been looking for Earth-like ingredients. Consider the following:
Our planet is rich in elements such as carbon, oxygen, iron, magnesium, silicon and sulfur…the stuff of rocks, air, oceans and life. Are these elements widespread elsewhere in the universe?
To find out, a team of astronomers led by the Japanese Aerospace Exploration Agency (JAXA), with our participation, used Suzaku. This Japanese X-ray satellite was used to survey a cluster of galaxies located in the direction of the constellation Virgo.
The Virgo cluster is a massive swarm of more than 2,000 galaxies, many similar in appearance to our own Milky Way, located about 54 million light years away. The space between the member galaxies is filled with a diffuse gas, so hot that it glows in X-rays. Instruments onboard Suzaku were able to look at that gas and determine which elements it’s made of.
Reporting their findings in the Astrophysical Journal Letters, they reported findings of iron, magnesium, silicon and sulfur throughout the Virgo galaxy cluster. The elemental ratios are constant throughout the entire volume of the cluster, and roughly consistent with the composition of the sun and most of the stars in our own galaxy.
When the Universe was born in the Big Bang 13.8 billon years ago, elements heavier than carbon were rare. These elements are present today, mainly because of supernova explosions.
Massive stars cook elements such as, carbon, oxygen, iron, magnesium, silicon and sulfur in their hot cores and then spew them far and wide when the stars explode.
According to the observations of Suzaku, the ingredients for making sun-like stars and Earth-like planets have been scattered far and wide by these explosions. Indeed, they appear to be widespread in the cosmos. The elements so important to life on Earth are available on average and in similar relative proportions throughout the bulk of the universe. In other words, the chemical requirements for life are common.
Earth is still special, but according to Suzaku, there might be other special places too. Suzaku recently completed its highly successful mission.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts