There was a time when even NASA didn’t know if humans could eat in the microgravity environment of space. Thankfully for the future of long-term crewed missions, John Glenn proved that it was indeed possible when he ate applesauce from an aluminum tube while orbiting the Earth in 1962.
Since then, the research conducted at our Space Food Systems Laboratory at Johnson Space Center has resulted in improved taste, variety and packaging of foods intended for space travel. Current-day astronauts are now given a standard menu of over 200 approved food and drink items months before launch, allowing them to plan their daily meals far in advance.
So, with such a variety of foods to choose from, what does the typical astronaut eat in a day? Here is an example from the International Space Station standard menu:
Sounds tasty, right?
However, these are only suggestions for astronauts, so they still have some choice over what they ultimately eat. Many astronauts, including Tim Kopra, combine different ingredients for meals.
Others plan to eat special foods for the holidays. Astronauts Scott Kelly and Kjell Lindgren did just that on Thanksgiving last year when they ate smoked turkey, candied yams, corn and potatoes au gratin.
Another key factor that influences what astronauts eat is the availability of fresh fruits and vegetables, which are delivered via resupply spacecrafts. When these foods arrive to the space station, they must be eaten quickly before they spoil. Astronaut Tim Peake doesn’t seem to mind.
Nutrition is important to help counteract some of the effects spaceflight have on the body, such as bone and muscle loss, cardiovascular degradation, impairment of immune function, neurovestibular changes and vision changes.
“Nutrition is vital to the mission,” Scott M. Smith, Ph.D., manager for NASA’s Nutritional Biochemistry Lab said. “Without proper nutrition for the astronauts, the mission will fail. It’s that simple.”
We work hard to help astronauts feel less homesick by providing them with food that not only reminds them of life back on Earth, but is also nutritious and healthy.
Here are some unusual space food inventions that are no longer in use:
Gelatin-coated sandwich and cookie cubes
Compressed bacon squares
Freeze dried ice cream
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This month you can catch a rare sight in the pre-dawn sky: five planets at once! If you look to the south (or to the north if you’re in the southern hemisphere) between about 5:30 and 6 a.m. local time you’ll see Mercury, Venus, Saturn, Mars and Jupiter lined up like jewels on a necklace. They’re beautiful in the sky, and even more fascinating when you look closely.
This week we’re taking a tour of the planets with recent information about each:
1. Artistic License
Craters on Mercury are named for writers and artists of all kinds. There are Tolstoy, Thoreau and Tolkien craters, for example, as well as those that bear the names of the Brontës, photographer Dorothea Lange and dancer Margot Fonteyn. See the complete roster of crater names HERE.
2. Lifting the Veil of Venus
A thick covering of clouds made Venus a mystery for most of human history. In recent decades, though, a fleet of robotic spacecraft has helped us peer past the veil and learn more about this world that is so like the Earth in some ways — and in some ways it’s near opposite.
3. Curious?
Have you ever wanted to drive the Mars Curiosity rover? You can take the controls using our Experience Curiosity simulation. Command a virtual rover as you explore the terrain in Gale Crater, all using real data and images from Mars. Try it out HERE.
4. Now That’s a Super Storm
Winter weather often makes headlines on Earth — but on Jupiter there’s a storm large enough to swallow our entire planet several times over. It’s been raging for at least three hundred years! Learn about the Great Red Spot HERE.
5. Ring Watcher
This week, the Cassini spacecraft will be making high-resolution observations of Saturn’s entrancing rings. This is a simulated look at Saturn, along with actual photos of the rings from the Cassini mission.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
A rocket is launching to the International Space Station next week, carrying tons of science and supplies to the orbiting laboratory. It’s Northrop Grumman’s 14th (NG-14) commercial resupply cargo mission, and includes plant research, a new space toilet, and a special virtual reality camera designed to immerse you in a spacewalk. Let’s take a closer look at what’s on board, and how you can ask some of the scientists anything.
A new space toilet is heading to the space station. It’s smaller than the current toilets aboard the station, and includes a 3D printed titanium cover for its dual fan separator. These are just some of the upgrades that make it better suited for our deep space exploration missions. Engineers also gathered feedback from astronauts and set out to design more comfortable attachments that would make “boldly going” in space a more enjoyable experience. The toilet is being tested on the space station, and will also be used on a future Artemis mission. The new design will allow us to increase how much water we recover for use, because yep … yesterday’s coffee becomes tomorrow’s drinking water. See below for an opportunity to speak with the folks who made the new space toilet happen.
Astronauts traveling to the Moon and Mars will need to grow food to supplement their diets. The latest in plant studies aboard the space station hopes to pack a crunch in that research. We’ll be growing radishes in a special plant chamber, and learning how light, water, atmosphere, and soil conditions affect the bulbous vegetables. Radishes are nutritious, grow quickly (roughly four weeks from sowing to harvest), and are genetically similar to Arabidopsis, a plant frequently studied in microgravity. What we learn could help optimize growth of the plants in space as well as provide an assessment of their nutrition and taste. See below for an opportunity to ask anything of the scientist and engineer behind this new crop.
If going to space is on your bucket list, you might be closer than you think to checking that box. Felix & Paul Studios is creating an immersive 360 virtual reality film of a spacewalk that will put you right next to the astronauts as they go about their work on the outside of the space station … at 17,500 miles per hour. The new camera, specially designed to withstand the incredibly harsh environment of space, will be mounted on the station’s robotic arm so it can be maneuvered around the outside of the space station. Félix Lajeunesse and Paul Raphaël are the co-founders of the immersive entertainment studio, and have been producing a film aboard the space station – from Earth – for more than a year already. See below for a chance to ask them anything about what filming in space takes.
You can join in the NG-14 Reddit Ask Me Anything on Friday, Sept. 25 to ask anything of these folks and their projects. Here’s the schedule:
Space toilet (a.k.a the Universal Waste Management System): Melissa McKinley with NASA’s Advanced Exploration Systems and Jim Fuller of Collins Aerospace, and program manager for UWMS at 12 p.m. EDT at https://www.reddit.com/r/space.
Radishes in space (a.k.a. Plant Habitat-02): Dr. Karl Hasenstein is the scientist behind the Plant Habitat-02, and Dave Reed knows the ins and outs of the Advanced Plant Habitat of the space station. Their Reddit AMA begins at 3 p.m. EDT at https://www.reddit.com/r/gardening.
Virtual reality spacewalk camera: Félix Lajeunesse and Paul Raphaël co-founders and creative directors of Felix & Paul Studios will be taking questions at 5 p.m. EDT on https://www.reddit.com/r/filmmakers.
These are just a few of the payloads launching aboard the NG-14 Cygnus cargo vehicle to the space station next week. Read about the cancer research, and new commercial products also heading to space and watch the video above to learn more. Launch is targeted for Tuesday, Sept. 29, with a five-minute launch window opening at approximately 10:26 p.m. EDT. Live coverage begins on NASA TV at 10 p.m. EDT.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
What science is headed to the International Space Station with Orbital ATK’s cargo resupply launch? From investigations that study magnetic cell culturing to crystal growth, let’s take a look…
Orbital ATK is targeted to launch its Cygnus spacecraft into orbit on April 18, delivering tons of cargo, supplies and experiments to the crew onboard.
Efficacy and Metabolism of Azonafide Antibody-Drug Conjugates in Microgravity Investigation
In microgravity, cancer cells grow in 3-D. Structures that closely resemble their form in the human body, which allows us to better test the efficacy of a drug. This experiment tests new antibody drug conjugates.
These conjugates combine an immune-activating drug with antibodies and target only cancer cells, which could potentially increase the effectiveness of chemotherapy and potentially reduce the associated side-effects. Results from this investigation could help inform drug design for cancer patients, as well as more insight into how microgravity effects a drug’s performance.
Genes in Space
The Genes in Space-2 experiment aims to understand how the regulation of telomeres (protective caps on the tips of chromosomes) can change during spaceflight. Julian Rubinfien, 16-year-old DNA scientist and now space researcher, is sending his experiment to space as part of this investigation.
3-D Cell Culturing in Space
Cells cultured in space spontaneously grow in 3-D, as opposed to cells cultured on Earth which grow in 2-D, resulting in characteristics more representative of how cells grow and function in living organisms. The Magnetic 3-D Cell Culture for Biological Research in Microgravity investigation will test magnetized cells and tools that may make it easier to handle cells and cell cultures.
This could help investigators improve the ability to reproduce similar investigations on Earth.
SUBSA
The Solidification Using a Baffle in Sealed Ampoules (SUBSA) investigation was originally operated successfully aboard the space station in 2002.
Although it has been updated with modernized software, data acquisition, high definition video and communications interfaces, its objective remains the same: advance our understanding of the processes involved in semiconductor crystal growth.
Space Debris
Out-of-function satellites, spent rocket stages and other debris frequently reenter Earth’s atmosphere, where most of it breaks up and disintegrates before hitting the ground. However, some larger objects can survive. The Thermal Protection Material Flight Test and Reentry Data Collection (RED-Data2) investigation will study a new type of recording device that rides alongside of a spacecraft reentering the Earth’s atmosphere. Along the way, it will record data about the extreme conditions it encounters, something scientists have been unable to test on a large scale thus afar.
Understanding what happens to a spacecraft as it reenters the atmosphere could lead to increased accuracy of spacecraft breakup predictions, an improved design of future spacecraft and the development of materials that can resist the extreme heat and pressure of returning to Earth.
IceCube CubeSat
IceCube, a small satellite known as a CubeSat, will measure cloud ice using an 883-Gigahertz radiometer. Used to predict weather and climate models, IceCube will collect the first global map of cloud-induced radiances.
The key objective for this investigation is to raise the technology readiness level, a NASA assessment that measures a technology’s maturity level.
Advanced Plant Habitat
Joining the space station’s growing list of facilities is the Advanced Plant Habitat, a fully enclosed, environmentally controlled plant habitat used to conduct plant bioscience research. This habitat integrates proven microgravity plant growth processes with newly-developed technologies to increase overall efficiency and reliability.
The ability to cultivate plants for food and oxygen generation aboard the space station is a key step in the planning of longer-duration, deep space missions where frequent resupply missions may not be a possibility.
Watch Launch!
Orbital ATK and United Launch Alliance (ULA) are targeting Tuesday, April 18 for launch of the Cygnus cargo spacecraft to the International Space Station. Liftoff is currently slated for 11 a.m. EST.
You can also watch the launch live in 360! This will be the world’s first live 360-degree stream of a rocket launch. Watch the 360 stream HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What made you want to become a pilot for NASA? What’s your favorite part of this job?
6th grade South Lamar student, Alexis S., asked, " How old are you & how many hours a day do you train to be ready for space?"
I am 46 years old, but I don’t feel like I’m 46 because I have the best job in the world. I train everyday at least 8 hours, and even on the weekends I’m constantly thinking about work.
Our newest communications satellite, named the Tracking and Data Relay Satellite-M or TDRS-M, launches Aug. 18 aboard an Atlas V rocket from our Kennedy Space Center in Florida. It will be the 13th TDRS satellite and will replenish the fleet of satellites supporting the Space Network, which provides nearly continuous global communications services to more than 40 of our missions.
Communicating from space wasn’t always so easy. During our third attempt to land on the moon in 1970, the Apollo 13 crew had to abort their mission when the spacecraft’s oxygen tank suddenly exploded and destroyed much of the essential equipment onboard. Made famous in the movie ‘Apollo 13’ by Ron Howard and starring Tom Hanks, our NASA engineers on the ground talked to the crew and fixed the issue. Back in 1970 our ground crew could only communicate with their ground teams for 15 percent of their orbit – adding yet another challenge to the crew. Thankfully, our Apollo 13 astronauts survived and safely returned to Earth.
Now, our astronauts don’t have to worry about being disconnected from their teams! With the creation of the TDRS program in 1973, space communications coverage increased rapidly from 15 percent coverage to 85 percent coverage. And as we’ve continued to add TDRS spacecraft, coverage zoomed to over 98 percent!
TDRS is a fleet of satellites that beam data from low-Earth-orbiting space missions to scientists on the ground. These data range from cool galaxy images from the Hubble Space Telescope to high-def videos from astronauts on the International Space Station! TDRS is operated by our Space Network, and it is thanks to these hardworking engineers and scientists that we can continuously advance our knowledge about the universe!
What’s up next in space comm? Only the coolest stuff ever! LASER BEAMS. Our scientists are creating ways to communicate space data from missions through lasers, which have the ability to transfer more data per minute than typical radio-frequency systems. Both radio-frequency and laser comm systems send data at the speed of light, but with laser comm’s ability to send more data at a time through infrared waves, we can receive more information and further our knowledge of space.
How are we initiating laser comm? Our Laser Communications Relay Demonstration is launching in 2019! We’re only two short years away from beaming space data through lasers! This laser communications demo is the next step to strengthen this technology, which uses less power and takes up less space on a spacecraft, leaving more power and room for science instruments.
Watch the TDRS launch live online at 8:03 a.m. EDT on Aug. 18: https://www.nasa.gov/nasalive
Join the conversation on Twitter: @NASA_TDRS and @NASALasercomm!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This month, we are set to launch the latest weather satellite from the National Oceanic and Atmospheric Administration (NOAA). The Joint Polar Satellite System-1, or JPSS-1, satellite will provide essential data for timely and accurate weather forecasts and for tracking environmental events such as forest fires and droughts.
On Friday, May 12, NASA astronauts Peggy Whitson and Jack Fischer will venture outside the International Space Station, into the vacuum of space, for a spacewalk.
Space Fact: This will be the 200th spacewalk performed on the space station!
You can watch their entire 6.5 hour spacewalk live online! (Viewing info below!) To tell the two astronauts apart in their bulky spacewalk suits, Whitson will be wearing the suit with red stripes, while Jack Fischer will have white stripes.
Space Fact: The first-ever spacewalk on the International Space Station was performed on Dec. 7, 1998.
For Peggy, this will be her ninth spacewalk! She actually holds the record for most spacewalks by a female astronaut. For Fischer, this is his first time in space, and will be his first spacewalk. You can see from the below Tweet, he’s pretty excited!
Once both astronauts venture outside the Quest airlock, their tasks will focus on:
Replacing a large avionic box that supplies electricity and data connections to the science experiments
Replacing hardware stored outside the station
Specifically, the ExPRESS Carrier Avionics, or ExPCA will be replaced with a unit delivered to the station last month aboard the Orbital ATK Cygnus cargo spacecraft.
Ever wonder how astronauts prepare and practice for these activities? Think about it, wearing a bulky spacesuit (with gloves!), floating in the vacuum of space, PLUS you have to perform complex tasks for a period of ~6.5 hours!
In order to train on Earth, astronauts complete tasks in our Neutral Buoyancy Laboratory (NBL). It’s a gigantic pool with a full mock up of the International Space Station! Here’s a clip of astronauts practicing to install the ExPCA in that practice pool at Johnson Space Center in Houston.
In addition, Whitson and Fischer will install a connector that will route data to the Alpha Magnetic Spectrometer and help the crew determine the most efficient way to conduct future maintenance on the cosmic ray detector.
The astronauts will also install a protective shield on the Pressurized Mating Adapter-3, which was moved in March. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.
Finally, the duo will rig a new high-definition camera and pair of wireless antennas to the exterior of the outpost.
Live coverage will begin at 6:30 a.m. EDT, with spacewalk activities starting at 8 a.m. EDT.
Stream the entire spacewalk live online at nasa.gov/live
OR
Watch live on the International Space Station Facebook page starting at 7:00 a.m. EDT
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This month, we are set to launch the latest weather satellite from the National Oceanic and Atmospheric Administration (NOAA). The Joint Polar Satellite System-1, or JPSS-1, satellite will provide essential data for timely and accurate weather forecasts and for tracking environmental events such as forest fires and droughts.
Image Credit: Ball Aerospace
JPSS-1 is the primary satellite launching, but four tiny satellites will also be hitchhiking a ride into Earth orbit. These shoebox-sized satellites (part of our CubeSat Launch Initiative) were developed in partnership with university students and used for education, research and development. Here are 4 reasons why MiRaTA, one of the hitchhikers, is particularly interesting…
Miniaturized Weather Satellite Technology
The Microwave Radiometer Technology Acceleration (MiRaTA) CubeSat is set to orbit the Earth to prove that a small satellite can advance the technology necessary to reduce the cost and size of future weather satellites. At less than 10 pounds, these nanosatellites are faster and more cost-effective to build and launch since they have been constructed by Principal Investigator Kerri Cahoy’s students at MIT Lincoln Laboratory (with lots of help). There’s even a chance it could be put into operation with forecasters.
The Antenna? It’s a Measuring Tape
That long skinny piece coming out of the bottom right side under MiRaTA’s solar panel? That’s a measuring tape. It’s doubling as a communications antenna. MiRaTA will measure temperature, water vapor and cloud ice in Earth’s atmosphere. These measurements are used to track major storms, including hurricanes, as well as everyday weather. If this test flight is successful, the new, smaller technology will likely be incorporated into future weather satellites – part of our national infrastructure.
Tiny Package Packing a Punch MiRaTA will also test a new technique using radio signals received from GPS satellites in a higher orbit. They will be used to measure the temperature of the same volume of atmosphere that the radiometer is viewing. The GPS satellite measurement can then be used for calibrating the radiometer. “In physics class, you learn that a pencil submerged in water looks like it’s broken in half because light bends differently in the water than in the air,” Principal Investigator Kerri Cahoy said. “Radio waves are like light in that they refract when they go through changing densities of air, and we can use the magnitude of the refraction to calculate the temperature of the surrounding atmosphere with near-perfect accuracy and use this to calibrate a radiometer.”
What’s Next?
In the best-case scenario, three weeks after launch MiRaTA will be fully operational, and within three months the team will have obtained enough data to study if this technology concept is working. The big goal for the mission—declaring the technology demonstration a success—would be confirmed a bit farther down the road, at least half a year away, following the data analysis. If MiRaTA’s technology validation is successful, Cahoy said she envisions an eventual constellation of these CubeSats orbiting the entire Earth, taking snapshots of the atmosphere and weather every 15 minutes—frequent enough to track storms, from blizzards to hurricanes, in real time.
Learn more about MiRaTA
The mission is scheduled to launch this month (no sooner than Nov. 14), with JPSS-1 atop a United Launch Alliance (ULA) Delta II rocket lifting off from Space Launch Complex 2 at Vandenberg Air Force Base in California. You’ll be able to watch on NASA TV or at nasa.gov/live.
Watch the launch live HERE on Nov. 14, liftoff is scheduled for Tuesday, 4:47 a.m.!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Have you heard the news? Astronaut applications are opening soon (March 2), and there’s never been a better time to apply then now. Here are a few signs that might mean you’re ready to take to the stars:
When you’re an astronaut, you have to work and live with your crew mates for extended periods of time. It’s important to the mission and your safety that everyone can collaborate and work together.
If the Milky Way, planets and space travel doesn’t excite you then this might not be the perfect job for you. But if you love galaxies, space station research and deep space exploration, then maybe you should take a look at our application.
Being an astronaut means that you get to take part in adventures that most people will never experience. Imagine: sitting on the launch pad in the Orion spacecraft, atop a rocket that’s getting ready to launch. You’ll travel farther into space than any other humans have been and help push the boundaries of technology in the proving ground of deep space lunar orbits, leading the way for future missions to Mars.
Not only do astronauts get to travel to space, but they also get to conduct really cool research in microgravity. Did you know that right now they’re monitoring veggie growth on the International Space Station? This research could help with our future deep space exploration and could teach us a few things about growing plants on Earth. Learn more about all the awesome research on the space station HERE.
One of the coolest things about being an astronaut, is that you get to go to SPACE! At the very least, you’ll travel to the International Space Station, which is 250 miles above Earth. Or, you could be one of the first astronauts to travel to a distant asteroid or even Mars!
Space is a place where people from all around the world come together to push the boundaries of human exploration. Whether you’re living on the space station with an international crew, or embarking on Artemis missions to the Moon – you’re sure to make new friendships wherever you go.
Meal time is family time aboard the space station, and what better way to bond than pizza night! Getting to know your crew mates AND channelling your inner chef is always a win win.
The International Space Station orbits Earth 16 times a day, so get ready to rack up those frequent flyer miles! A favorite past time of many astronauts is Earth watching from the station’s cupola observatory. Get lost in the Pacific Ocean’s blue hue, gaze at the Himalayas or photograph your favorite cities all from a bird’s eye view. Get assigned to an Artemis Moon mission? Even better! Have fun expanding your travels to the solar system.
Perk about the job? Your childhood dreams to fly finally come true. Whether you’re floating around the International Space Station or getting adjusted to our new spaceship, Gateway, your inner superhero will be beaming.
Astronauts don’t just push the boundaries of human exploration, they also help pave the way for scientific breakthroughs back at home. Thanks to the microgravity environment of space, discoveries not possible on Earth are able to be unlocked. Investigations into Parkinson’s Disease, cancer and more have been conducted on the orbital lab.
Interested in applying to become an astronaut? You’re in luck, applications are open from March 2- 31! Learn about some common myths about becoming an astronaut HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts