MAVEN, the Mars Atmospheric and Volatile Evolution, was the second mission selected for our Mars Scout program and the first to explore the planet’s upper atmosphere . It launched on November 18, 2013 and entered orbit around Mars on September 21, 2014.
+ MAVEN Quick Facts
This time-lapse sequence of Hubble Space Telescope images shows Jupiter’s moon Europa as it moved across the planet’s face over the course of 19 minutes. Europa is at the bottom center on Jupiter's disk, the Great Red Spot to the left and Europa's shadow to its right. The video was created by combining six snapshots taken in ultraviolet light with Hubble's Wide Field Camera 3.
+ Learn more
Orionid shower peaks November 28. Look for the constellation Orion in the Southeast sky by 9 p.m. Using binoculars, look for the Orion Nebula.
Comet 45P/Honda-Mrkos-Pajdu áková will brighten to expected stunning binocular visibility in mid to late December, but is near Venus on November 23rd.
+ Track the Comet
A newly discovered "great valley" in the southern hemisphere of Mercury provides more evidence that the planet closest to the sun is shrinking. Using stereo images from our MESSENGER spacecraft to create a high-resolution map, scientists have discovered that revealed the broad valley -- more than 620 miles (1,000 kilometers) long -- extending into the Rembrandt basin, one of the largest and youngest impact basins on Mercury. About 250 miles (400 kilometers) wide and 2 miles (3 kilometers) deep, Mercury's great valley is smaller than Mars' Valles Marineris, but larger than North America's Grand Canyon and wider and deeper than the Great Rift Valley in East Africa.
+ Learn more
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
@saraxmix: What is it that makes you go back up there once you're home?
Astronauts train all over the world, including at Johnson Space Center. Here, they learn not just how to live aboard the International Space Station, but also how to conduct science in microgravity.
Astronauts serve as the eyes and hands of researchers while their experiments are in space, so they must be trained in everything from using a microscope, to maintaining the equipment for combustion experiments.
Check out this week’s episode of NASA Explorers as we go to class with an astronaut.
Follow NASA Explorers on Facebook to catch new episodes of season 4 every Wednesday!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Commercial Crew Program is working with the American aerospace industry to develop and operate a new generation of spacecraft to carry astronauts to and from low-Earth orbit!
As we prepare to launch humans from American soil for the first time since the final space shuttle mission in 2011, get to know the astronauts who will fly with Boeing and SpaceX as members of our commercial crew!
Bob Behnken served as Chief of the NASA Astronaut Office from July 2012 to July 2015, where he was responsible for flight assignments, mission preparation, on-orbit support of International Space Station crews and organization of astronaut office support for future launch vehicles. Learn more about Bob.
Eric Boe first dreamed of being an astronaut at age 5 after his parents woke him up to watch Neil Armstrong take his first steps onto the lunar surface. Learn more about Eric.
Josh Cassada holds a Master of Arts Degree and a Doctorate in Physics with a specialty in high energy particle physics from the University of Rochester, in Rochester, New York. He was selected as a NASA astronaut in 2013, and his first spaceflight will be as part of the Commercial Crew Program. Learn more about Josh.
Chris Ferguson served as a Navy pilot before becoming a NASA astronaut, and was commander aboard Atlantis for the final space shuttle flight, as part of the same crew as Doug Hurley. He retired from NASA in 2011 and has been an integral part of Boeing's CST-100 Starliner program. Learn more about Chris.
Victor Glover was selected as a NASA astronaut in 2013 while working as a Legislative Fellow in the United States Senate. His first spaceflight will be as part of the Commercial Crew Program. Learn more about Victor.
Mike Hopkins was a top flight test engineer at the United States Air Force Test Pilot School. He also studied political science at the Università degli Studi di Parma in Parma, Italy, in 2005, and became a NASA astronaut in 2009. Learn more about Mike.
In 2009, Doug Hurley was one of the record-breaking 13 people living on the space station at the same time. In 2011, he served as the pilot on Atlantis during the final space shuttle mission, delivering supplies and spare parts to the International Space Station. Now, he will be one of the first people to launch from the U.S. since that last shuttle mission. Learn more about Doug.
Nicole Mann is a Naval Aviator and a test pilot in the F/A-18 Hornet. She was selected as a NASA astronaut in 2013, and her first spaceflight will be as part of the Commercial Crew Program. Learn more about Nicole.
Suni Williams has completed 7 spacewalks, totaling 50 hours and 40 minutes. She’s also known for running. In April 2007, Suni ran the first marathon in space, the Boston Marathon, in 4 hours and 24 minutes. Learn more about Suni.
Boeing and SpaceX are scheduled to complete their crew flight tests in mid-2019 and April 2019, respectively. Once enabled, commercial transportation to and from the International Space Station will empower more station use, more research time and more opportunities to understand and overcome the challenges of living in space, which is critical for us to create a sustainable presence on the Moon and carry out missions deeper into the solar system, including Mars!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Our Human Research Program is conducting a Twins Study on retired twin astronauts Scott and Mark Kelly. The study began during Scott Kelly’s One-Year Mission, which encompassed International Space Station Expeditions 43, 44, 45 and 46.
Now that Scott has returned from space, researchers are integrating data as well as taking measurements on Earth from the twins. This is the first time we have conducted Omics research on identical twins. Omics is a broad area of biological and molecular studies that, in general, means the study of the entire complement of biomolecules, like proteins; metabolites or genes.
Comparing various types of molecular information on identical individuals while one undergoes unique stresses, follows a defined diet, and resides in microgravity to one who resides on Earth, with gravity, should yield interesting results. It is hoped one day that all individuals will have access to having their Omics profiles done. This is a first step towards personalizing medicine for astronauts and hopefully for the rest of us.
For background, check out NASA’s Omics video series at https://www.nasa.gov/twins-study.
Kjell Lindgren, M.D., NASA astronaut, Expedition 44/45 Flight Engineer and medical officer
Susan M. Bailey, Ph.D., Twins Study Principal Investigator, Professor, Radiation Cancer Biology & Oncology, Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University
Christopher E. Mason, Ph.D., Twins Study Principal Investigator, WorldQuant Foundations Scholar, Affiliate Fellow of Genomics, Ethics, and Law, ISP, Yale Law School, Associate Professor, Department of Physiology and Biophysics, Weill Cornell Medicine
Brinda Rana, Ph.D., Associate Professor, Department of Psychiatry, University of California San Diego School of Medicine
Michael P. Snyder, Ph.D., M.D., FACS, Twins Study Principal Investigator, Stanford W. Ascherman, Professor in Genetics, Chair, Dept. of Genetics, Director, Center for Genomics and Personalized Medicine, Stanford School of Medicine
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
When NASA astronauts return to the Moon through Artemis, they will benefit from decades of innovation, research, and technological advancements. We’ll establish long-term lunar science and exploration capabilities at the Moon and inspire a new generation of explorers—the Artemis Generation.
Meet the Space Launch System rocket, or SLS. This next-generation super heavy-lift rocket was designed to send astronauts and their cargo farther into deep space than any rocket we’ve ever built. During liftoff, SLS will produce 8.8 million pounds (4 million kg) of maximum thrust, 15 percent more than the Saturn V rocket.
SLS will launch the Orion spacecraft into deep space. Orion is the only spacecraft capable of human deep space flight and high-speed return to Earth from the vicinity of the Moon. More than just a crew module, Orion has a launch abort system to keep astronauts safe if an emergency happens during launch, and a European-built service module, which is the powerhouse that fuels and propels Orion and keeps astronauts alive with water, oxygen, power, and temperature control.
Orion and SLS will launch from NASA’s Kennedy Space Center in Florida with help from Exploration Ground Systems (EGS) teams. EGS operates the systems and facilities necessary to process and launch rockets and spacecraft during assembly, transport, launch, and recovery.
The knowledge we've gained while operating the International Space Station has opened new opportunities for long-term exploration of the Moon's surface. Gateway, a vital component of our Artemis plans, is a Moon-orbiting space station that will serve as a staging post for human expeditions to the lunar surface. Crewed and uncrewed landers that dock to Gateway will be able to transport crew, cargo, and scientific equipment to the surface.
Our astronauts will need a place to live and work on the lunar surface. Artemis Base Camp, our first-ever lunar science base, will include a habitat that can house multiple astronauts and a camper van-style vehicle to support long-distance missions across the Moon’s surface. Apollo astronauts could only stay on the lunar surface for a short while. But as the Artemis base camp evolves, the goal is to allow crew to stay at the lunar surface for up to two months at a time.
The Apollo Program gave humanity its first experience traveling to a foreign world. Now, America and the world are ready for the next era of space exploration. NASA plans to send the first woman and first person of color to the lunar surface and inspire the next generation of explorers.
Our next adventure starts when SLS and Orion roar off the launch pad with Artemis I. Together with commercial and international partners, NASA will establish a long-term presence on the Moon to prepare for missions to Mars. Everything we’ve learned, and everything we will discover, will prepare us to take the next giant leap: sending the first astronauts to Mars.
Make sure to follow us on Tumblr for your regular dose of space!
This GIF shows a drop of insulin solution contained by surface tension in the Ring Sheared Drop device as part of an experiment conducted aboard the International Space Station. The device pins a drop of liquid between two rings and rotates one while keeping the other stationary to create shear flow, or a difference in velocity between adjacent liquid layers. Researchers used the device to study protein aggregates called amyloid fibrils, which may be related to diseases such as Alzheimer’s, Parkinson’s, and type 2 diabetes.
Scientists investigating the mechanisms of certain diseases on Earth must contend with the forces of gravity and the interaction between liquids and solid containers. These forces differ from such interfaces in the body, such as those in arteries and brain tissue, and can affect results. The Ring Sheared Drop investigation team developed a device that uses surface tension rather than a solid container to hold liquids, something possible only in microgravity!
Fluid extracted after each run will return to Earth aboard a Dragon capsule on September 30 so researchers can determine the extent of protein fibril formation, study their structure, and compare both to what happens in ground-based controls. Results could improve the fundamental understanding of how amyloid fibrils form and are transported, as well as the effects of shear at fluid interfaces relevant to conditions in the body.
Make sure to follow us on Tumblr for your regular dose of space!
Did you know we’re watching the Sun 24/7 from space?
We use a whole fleet of satellites to monitor the Sun and its influences on the solar system. One of those is the Solar Dynamics Observatory. It’s been in space for eight years, keeping an eye on the Sun almost every moment of every day. Launched on Feb. 11, 2010, this satellite (also known as SDO) was originally designed for a two-year mission, but it’s still collecting data to this day — and one of our best ways to keep an eye on our star.
To celebrate another year of SDO, we’re sharing some of our favorite solar views that the spacecraft sent back to Earth in 2017.
For 15 days starting on March 7, SDO saw the yolk-like spotless Sun in visible light.
The Sun goes through a natural 11-year cycle of activity marked by two extremes: solar maximum and solar minimum. Sunspots are dark regions of complex magnetic activity on the Sun’s surface, and the number of sunspots at any given time is used as an index of solar activity.
Solar maximum = intense solar activity and more sunspots
Solar minimum = less solar activity and fewer sunspots
This March 2017 period was the longest stretch of spotlessness since the last solar minimum in April 2010 – a sure sign that the solar cycle is marching on toward the next minimum, which scientists expect in 2019-2020. For comparison, the images on the left are from Feb. 2014 – during the last solar maximum – and show a much spottier Sun.
A pair of relatively small but frenetic active regions – areas of intense and complex magnetic fields – rotated into SDO’s view May 31 – June 2, while spouting off numerous small flares and sweeping loops of plasma. The dynamic regions were easily the most remarkable areas on the Sun during this 42-hour period.
On July 5, SDO watched an active region rotate into view on the Sun. The satellite continued to track the region as it grew and eventually rotated across the Sun and out of view on July 17.
With their complex magnetic fields, sunspots are often the source of interesting solar activity: During its 13-day trip across the face of the Sun, the active region — dubbed AR12665 — put on a show for our Sun-watching satellites, producing several solar flares, a coronal mass ejection and a solar energetic particle event.
While millions of people in North America experienced a total solar eclipse on Aug. 21, SDO saw a partial eclipse from space. SDO actually sees several lunar transits a year from its perspective – but an eclipse on the ground doesn’t necessarily mean that SDO will see anything out of the ordinary. Even on Aug. 21, SDO saw only 14 percent of the Sun blocked by the Moon, while most US residents saw 60 percent blockage or more.
In September 2017, SDO saw a spate of solar activity, with the Sun emitting 31 notable flares and releasing several powerful coronal mass ejections between Sept. 6-10. Solar flares are powerful bursts of radiation, while coronal mass ejections are massive clouds of solar material and magnetic fields that erupt from the Sun at incredible speeds.
One of the flares imaged by SDO on Sept. 6 was classified as X9.3 – clocking in at the most powerful flare of the current solar cycle. The current cycle began in December 2008 and is now decreasing in intensity, heading toward solar minimum. During solar minimum, such eruptions on the Sun are increasingly rare, but history has shown that they can nonetheless be intense.
Three distinct solar active regions with towering arches rotated into SDO’s view over a three-day period from Sept. 24-26. Charged particles spinning along the ever-changing magnetic field lines above the active regions trace out the magnetic field in extreme ultraviolet light, a type of light that is typically invisible to our eyes, but is colorized here in gold. To give some sense of scale, the largest arches are many times the size of Earth.
SDO saw a small prominence arch up and send streams of solar material curling back into the Sun over a 30-hour period on Dec. 13-14. Prominences are relatively cool strands of solar material tethered above the Sun’s surface by magnetic fields.
An elongated coronal hole — the darker area near the center of the Sun’s disk — looked something like a question mark when seen in extreme ultraviolet light by SDO on Dec. 21-22. Coronal holes are magnetically open areas on the Sun that allow high-speed solar wind to gush out into space. They appear as dark areas when seen in certain wavelengths of extreme ultraviolet light.
For all the latest on the Solar Dynamics Observatory, visit nasa.gov/sdo. Keep up with the latest on the Sun on Twitter @NASASun or at facebook.com/NASASunScience.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
At this very moment, spacecraft are surveying the solar system, from Mars, to Saturn, to Pluto and beyond. Now you can ride along to see the latest discoveries from deep space. For this week's edition of 10 Things, we've assembled a toolkit of 10 essential resources for the desktop astronaut.
Or is it more of a Hitchhiker's Guide to the Solar System? Whatever one calls it, our planets page offers quick rundowns, as well as in-depth guides, for all the major bodies in the solar system. Explore from the sun all the way to the Oort Cloud.
+ Peruse the planets + See how objects in the solar system stack up against each other
If you still haven't tried Eyes on the Solar System, you're missing out. This free, downloadable simulation app lets you tour the planets and track the past, current and future positions of spacecraft--all in 3D. Eyes on the Solar System uses real NASA data to help you take a virtual flight across both space and time.
+ Prepare for departure
With so much exploration underway, discoveries and new insights into the solar system come at a pace that borders on bewildering. NASA is rewriting the textbooks, literally, on a regular basis. Relax, though: there are several easy ways to stay up to date with what's happening in space.
+ See the latest headlines + Stay connected on social media: Twitter, Facebook, Instagram + Find more top NASA social media accounts
NASA offers phone and tablet apps for star gazing, pictures, news, 3D tours, satellite tracking, live NASA TV and many other kinds of info.
+ Start downloading + See other cool apps
We’re in constant communication with spacecraft all over the solar system. The Deep Space Network is a global network of giant antenna dishes that makes it possible. With this online app, you can learn how it works -- and even see which spacecraft are phoning home right now.
+ Deep Space Network (DSN) Now
Spacecraft 3D is an augmented reality (AR) application that lets you learn about and interact with a variety of spacecraft that are used to explore our solar system, study Earth and observe the universe. Print out the AR target and your camera will do the rest, making the spacecraft appear in 3D right in front of you. Learn more about these robotic explorers as they pop up on your desk, in your hand, or on your dog's head.
+ Download Spacecraft 3D + See more cool 3-D resources from NASA
This site will give you a 3D look at the Mars Curiosity rover, along with some of the terrain it has explored. It will even let you take the controls.
+ Experience Curiosity
But wait, there's more. NASA offers a variety of other fascinating (and free) online experiences, all based on actual data from real missions. Here are a few to explore:
+ Mars Trek + Vesta Trek + Moon Trek
Studying the solar system makes for a compelling route into learning and teaching science, engineering and math. We have some great places to start.
+ Find resources for teachers + Build your own solar system with your classroom
After you've toured the far reaches of the solar system, you can always come home again. When you have spent time studying the harsh conditions on our neighboring planets, the charms of a unique paradise come into sharp focus, the place we call Earth.
+ Watch a real-time video feed from Earth orbit + See a daily global view of our planet from a million miles away + Hold the earth in your hands with the Earth Now mobile app
Follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
How does NASA technology benefit life on Earth? It probably has an impact in more ways than you think! Since 1976, our Spinoff program has profiled nearly 2,000 space technologies that have transformed into commercial products and services. In celebration of Spinoff’s 40th year of publication, we’ve assembled a collection of spinoffs that have had the greatest impact on Earth.
Take a look and see how many you utilize on a regular basis:
Digital Image Sensors
Whether you take pictures and videos with a DSLR camera or a cell phone, or even capture action on the go with a device like a GoPro Hero, you’re using NASA technology. The CMOS active pixel sensor in most digital image- capturing devices was invented when we needed to miniaturize cameras for interplanetary missions. This technology is also widely used in medical imaging and dental X-ray devices.
Enriched Baby Formula
While developing life support for Mars missions, NASA-funded researchers discovered a natural source for an omega-3 fatty acid previously found primarily in breast milk that plays a key role in infant development. The ingredient has since been added to more than 90% of infant formula on the market and is helping babies worldwide develop healthy brains, eyes and hearts.
NASTRAN Software
NASTRAN is a software developed by our engineers that performs structural analysis in the 1960s. Still popular today, it’s been used to help design everything from airplanes and cars to nuclear reactors and even Disney’s Space Mountain roller coaster.
Food Safety Standards
Looking to ensure the absolute safety of prepackaged foods for spaceflight, we partnered with the Pillsbury Company to create a new, systematic approach to quality control. Now known as Hazard Analysis and Critical Control Points (HACCP), the method has become an industry standard that benefits consumers worldwide by keeping food free from a wide range of potential chemical, physical and biological hazards.
Neutral Body Posture Specifications
What form does the human body naturally assume when all physical influences, including the pull of gravity, stop affecting it? We conducted research to find out using Skylab, America’s first space station, and later published specifications for what it called neutral body posture. The study has informed seat designs in everything from airplanes and office chairs to several models of Nissan automobiles.
Advanced Water Filtration
We recently discovered unexpected sources of water on the moon and Mars, but even so, space remains a desert for human explorers, and every drop must be recycled and reused. A nano filter devised to purify water in orbit is currently at work on Earth, in devices that supply water to remote villages as well as in a water bottle that lets hikers and adventurers stay hydrated using streams and lakes.
Swimsuit Designs
Wind-tunnel testing at our Langley Research Center played a key role in the development of Speedo’s LZR Racer swimsuit, proving which materials and seams best reduced drag as a swimmer cuts through the water. The swimsuit made a splash during its Olympic debut in 2008, as nearly every medal winner and world-record breaker wore the suit.
Air Purifier
When plants grow, they release a gas called ethylene that accelerates decay, hastening the wilting of flowers and the ripening of fruits and vegetables. Air circulation on Earth keeps the fumes from building up, but in the hermetically sealed environment of a spacecraft, ethylene poses a real challenge to the would-be space farmers. We funded the development of an ethylene scrubber for the International Space Station that has subsequently proved capable of purifying air on Earth from all kinds of pathogens and particulates. Grocery stores use it to keep produce fresh longer. It’s also been marketed for home use and has even been embraced by winemakers, who employ the scrubber to keep aging wine in barrels free from mold, mildew and musty odors.
Scratch-Resistant, UV-Reflective Lenses
Some of the earliest research into effective scratch-resistant coatings for prescription and sunglass lenses drew from work done at Ames Research Center on coatings for astronaut helmet visors and plastic membranes used in water purification systems. In the 1980s, we developed sunlight-filtering lenses to provide eye protection and enhance colors, and these lenses have found their way into sunglasses, ski goggles and safety masks for welders.
Dustbuster
An Apollo-era partnership with Black & Decker to build battery-operated tools for moon exploration and sample collection led to the development of a line of consumer, medical and industrial hand-held cordless tools. This includes the popular Dustbuster cordless vacuum.
To see even more of our spinoff technologies, visit: http://www.nasa.gov/offices/oct/40-years-of-nasa-spinoff
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Catch the Geminids meteor shower as the peak coincides with darker skies during a new Moon. Plus, Jupiter and Saturn appear closer than in decades, and the winter solstice arrives. Check this out for when and where to observe! Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts