Catch the Geminids meteor shower as the peak coincides with darker skies during a new Moon. Plus, Jupiter and Saturn appear closer than in decades, and the winter solstice arrives. Check this out for when and where to observe! Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
At our Johnson Space Center, located in Houston, it has been busy since July 10. Here are six things that have been going on in Houston with our astronauts, the International Space Station and our next great telescope! Take a look:
1. Our James Webb Space Telescope is Spending 100 Days in a Freezing Cold Chamber
Imagine seeing 13.5 billion light-years back in time, watching the birth of the first stars, galaxies evolve and solar systems form…our James Webb Space Telescope will do just that once it launches in 2019.
Webb will be the premier observatory of the next decade, studying every phase in the cosmic history of our universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems.
On July 10, the Webb telescope entered Johnson Space Center’s historic Chamber A for its final cryogenic test that lasts about 100 days behind a closed giant vault-like door.
Why did we put Webb in this freezing cold chamber? To ensure it can withstand the harsh environment it will experience in space.
The telescope has been in a space-like environment in the chamber, tested at cryogenic temperatures. In space, the telescope must operate at extremely cold temperatures so that it can detect infrared light – heat radiation -- from faint, distant objects.
To keep the telescope cold while in space, Webb has a sunshield the size of a tennis court, which blocks sunlight (as well as reflected light from the Earth and Moon). This means that the sun-facing side of the observatory is incredibly hot while the telescope-side remains at sub-freezing temperatures.
2. Our 12 new astronaut candidates reported to Houston to start training
Our newest class of astronaut candidates, which were announced on June 7, reported for training on August 13. These candidates will train for two years on International Space Station systems, space vehicles and Russian language, among many other skills, before being flight-ready.
3. Our Mission Control Center operated for 2,400 hours
While astronauts are in space, Mission Control operates around the clock making sure the crew is safe and the International Space Station is functioning properly. This means workers in Mission Control work in three shifts, 7 a.m. – 4 p.m., 3 p.m. – midnight and 11 p.m. – 8 a.m. This includes holidays and weekends. Day or night, Mission Control is up and running.
4. Key Teams at Johnson Space Center Continued Critical Operations During Hurricane Harvey
Although Johnson Space Center closed during Hurricane Harvey, key team members and critical personnel stayed onsite to ensure crucial operations would continue. Mission Control remained in operation throughout this period, as well as all backup systems required to maintain the James Webb Space Telescope, which is at Johnson for testing, were checked prior to the arrival of the storm, and were ready for use if necessary.
5. Crews on the International Space Station conducted hundreds of science experiments.
Mission Control at Johnson Space Center supported astronauts on board the International Space Station as they worked their typical schedule in the microgravity environment. Crew members work about 10 hours a day conducting science research that benefits life on Earth as well as prepares us for travel deeper into space.
The space station team in Houston supported a rigorous schedule of launches of cargo that included supplies and science materials for the crew living and working in the orbiting laboratory, launched there by our commercial partners.
6. Two new crews blasted off to space and a record breaking astronaut returned from a stay on space station
Houston is home to the Astronaut Corps, some of whom end up going out-of-this-world. On July 28, NASA Astronaut Randy Bresnik launched to the International Space Station alongside Italian astronaut Paolo Naspoli and Russian cosmonaut Sergey Ryazanskiy. Joining them at the International Space Station were NASA Astronauts Joe Acaba and Mark Vande Hei who launched September 12 with Russian cosmonaut Alexander Misurkin.
When NASA Astronaut Peggy Whitson landed with crewmates Jack Fischer of NASA and Fyoder Yurchikhin of Roscosmos, she broke the record for the most cumulative time in space by a U.S. astronaut. She landed with over 650 days of cumulative flight time and more than 53 hours of spacewalk time. Upon her return, the Human Research Program in Houston studies her health and how the human body adapted to her time in space.
Learn more about the Johnson Space Center online, or on Facebook, Twitter or Instagram.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The Magnetospheric Multiscale mission, or MMS, has been studying the magnetic field on the side of Earth facing the sun, the day side – but now we’re focusing on something else. On February 9, MMS started the three-month-long process of shifting to a new orbit.
One key thing MMS studies is magnetic reconnection – a process that occurs when magnetic fields collide and re-align explosively into new positions. The new orbit will allow MMS to study reconnection on the night side of the Earth, farther from the sun.
Magnetic reconnection on the night side of Earth is thought to be responsible for causing the northern and southern lights.
To study the interesting regions of Earth’s magnetic field on the night side, the four MMS spacecraft are being boosted into an orbit that takes them farther from Earth than ever before. Once it reaches its final orbit, MMS will shatter its previous Guinness World Record for highest altitude fix of a GPS.
To save on fuel, the orbit is slowly adjusted over many weeks. The boost to take each spacecraft to its final orbit will happen during the first week of April.
On April 19, each spacecraft will be boosted again to raise its closest approach to Earth, called perigee. Without this step, the spacecraft would be way too close for comfort -- and would actually reenter Earth’s atmosphere next winter!
The four MMS spacecraft usually fly really close together – only four miles between them – in a special pyramid formation called a tetrahedral, which allows us to examine the magnetic environment in three dimensions.
But during orbit adjustments, the pyramid shape is broken up to make sure the spacecraft have plenty of room to maneuver. Once MMS reaches its new orbit in May, the spacecraft will be realigned into their tetrahedral formation and ready to do more 3D magnetic science.
Learn more about MMS and find out what it’s like to fly a spacecraft.
What’s the best piece of advice you have ever received?
Well, at least your name can.
One of the planet Jupiter’s largest and most intriguing moons is called Europa. Evidence hints that beneath its icy shell, Europa hides an ocean of liquid water – more water than all of Earth’s oceans combined. In 2024, our Europa Clipper robotic spacecraft sets sail to take a closer look…and when it launches, your name can physically be aboard! Here’s how:
NASA’s Message in a Bottle campaign invites people around the world to sign their names to a poem written by the U.S. Poet Laureate, Ada Limón. The poem connects the two water worlds — Earth, yearning to reach out and understand what makes a world habitable, and Europa, waiting with secrets yet to be explored.
The poem will be engraved on Europa Clipper, along with participants' names that will be physically etched onto microchips mounted on the spacecraft. Together, the poem and names will travel 1.8 billion miles to the Jupiter system.
Signing up is easy! Just go to this site to sign your name to the poem and get on board. You can send your name en español, too. Envía tu nombre aquí.
The Europa Clipper launch window opens in October 2024, but don’t wait – everyone’s names need to be received this year so they can be loaded onto the spacecraft in time. Sign up by Dec. 31, 2023.
We hope you’ll be riding along with us! Follow the mission at europa.nasa.gov.
Make sure to follow us on Tumblr for your regular dose of space!
Credit: NASA/Bill Ingalls
The Perseids meteor shower is here! It's one of the biggest of the year, and will peak early in the morning on Thursday, August 12, 2021 and Friday, August 13, 2021. To spot them, find a dark area away from bright lights (yes, that includes your phone), and let your eyes acclimate to the night sky. But don't worry – if you can't get away from lights, join us on Facebook, Twitter, and YouTube for a meteor shower livestream hosted by our Marshall Space Flight Center's Meteoroid Environment Office. Get all the details on our Watch the Skies blog.
Make sure to follow us on Tumblr for your regular dose of space.
On Aug. 21, 2017, everyone in North America will have the chance to see a solar eclipse if skies are clear. We’re giving you a preview of what you’ll see, how to watch and why scientists are particularly excited for this eclipse.
On Aug. 21, within a narrow band stretching from Oregon to South Carolina – called the path of totality – the Moon will completely obscure the Sun, giving people on the ground a view of the total solar eclipse. Outside this path – throughout North America, and even in parts of South America – the Moon will block only a portion of the Sun’s face, creating a partial solar eclipse.
Image credit: T. Ruen
Eclipses happen when the Moon, Sun and Earth line up just right, allowing the Moon to cast its shadow on Earth. Because the Moon’s orbit is tilted with respect to the Sun-Earth plane, its shadow usually passes above or below Earth. But when they all line up and that shadow falls on Earth, we get a solar eclipse.
It’s never safe to look directly at the un-eclipsed or partially eclipsed Sun – so you’ll need special solar viewing glasses or an indirect viewing method, like pinhole projection, to watch at the eclipse.
If you’re using solar viewing glasses or a handheld solar filter, there are a few important safety tips to keep in mind:
Check a few key characteristics to make sure that you have proper solar filters – sunglasses (even very dark ones) or homemade filters are NOT safe
Double-check that your solar filter is not scratched or damaged before you use it
Always put your solar filter over your eyes before looking up at the Sun, and look away from the Sun before removing it
Do NOT use your solar filter while looking through telescopes, binoculars, or any other optical device, such as a camera viewfinder – the concentrated solar rays will damage the filter and enter your eyes, causing serious injury
Get all the details on safety at eclipse2017.nasa.gov/safety.
No solar viewing glasses? Pinhole projection is an easy and safe way to watch the eclipse. You can create a pinhole projector from a box, or simply use any object with tiny holes – like a colander or a piece of cardstock with a hole – to project an image of the Sun onto the ground or a piece of paper.
If you are in the path of totality, there will come a time when the Moon completely obscures the Sun’s bright face. This is called totality, and it is only during this phase – which may last only a few seconds, depending on your location – that it is safe to look directly at the eclipse.
Wherever you are, you can tune into nasa.gov/eclipselive throughout the day on Aug. 21 to hear from our experts and see the eclipse like never before – including views from our spacecraft, aircraft, and more than 50 high-altitude balloons.
Total solar eclipses provide a unique opportunity to study the Sun and Earth. During a total eclipse, the lower parts of the Sun's atmosphere, or corona, can be seen in a way that cannot completely be replicated by current human-made instruments.
The lower part of the corona is key to understanding many processes on the Sun, including why the Sun’s atmosphere is so much hotter than its surface and the origins of the Sun’s constant stream of solar material and radiation – which can cause changes in the nature of space and impact spacecraft, communications systems, and orbiting astronauts.
Photo credit: S. Habbal, M. Druckmüller and P. Aniol
For those in the path of totality, the few moments of the total solar eclipse will reveal the Sun’s atmosphere, the corona.
Total solar eclipses are also a chance to study Earth under uncommon conditions: In contrast to the global change in light that occurs every day at dusk and dawn, a solar eclipse changes illumination of Earth and its atmosphere only under a comparatively small region of the Moon’s shadow. This localized blocking of solar energy is useful in evaluating our understanding of the Sun’s effects – temperature, for example – on our atmosphere. Of particular interest is the impact on Earth’s upper atmosphere, where solar illumination is primarily responsible for the generation of a layer of charged particles called the ionosphere.
We’re also inviting eclipse viewers around the country to become citizen scientists and participate in a nationwide science experiment by collecting cloud and air temperature data and reporting it via the GLOBE Observer smartphone app.
For more eclipse info, visit eclipse2017.nasa.gov and follow @NASASun on Twitter and NASA Sun Science on Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
in a male dominated profession, what were some obstacles you faced as the first Hispanic female flight director and how did you overcome them? what would be your advice to young women interested in the space program?
What was the most fun you had in Mission Control?
Two years after selecting the next generation of American spacecraft and rockets that will launch astronauts to the International Space Station, engineers and spaceflight specialists across our Commercial Crew Program, Boeing and SpaceX are putting in place the elements required for successful missions.
1. The Goal
The goal of our Commercial Crew Program is to return human spaceflight launches to U.S. soil, providing reliable and cost-effective access to low-Earth orbit on systems that meet our safety requirements. To accomplish this goal, we are taking a unique approach by asking private companies, Boeing and SpaceX, to develop human spaceflight systems to take over the task of flying astronauts to station.
2. Multi-User Spaceport
Boeing and SpaceX, like other commercial aerospace companies, are capitalizing on the unique experience and infrastructure along the Space Coast at our Kennedy Space Center and Cape Canaveral Air Force Station. Kennedy has transitioned from a government-only launch complex to a premier multi-user spaceport. In the coming years, the number of launch providers along the Space Coast is expected to more than double.
3. Innovation
Our expertise has been joined with industry innovations to produce the most advanced spacecraft to ever carry humans into orbit. Each company is developing its own unique systems to meet our safety requirements, and once certified by us, the providers will begin taking astronauts to the space station.
4. Research
With two new spacecraft that can carry up to four astronauts to the International Space Station with each of our missions, the number of resident crew will increase and will double the amount of time dedicated to research. That means new technologies and advances to improve life here on Earth and a better understanding of what it will take for long duration, deep space missions, including to Mars.
5. Crew Training
Astronauts Bob Behnken, Eric Boe, Doug Hurley and Suni Williams have been selected to train to fly flight tests aboard the Boeing CST-100 Starliner and SpaceX Crew Dragon.
The veteran crew have sent time in both spacecraft evaluating and training on their systems. Both providers are responsible for developing every aspect of the mission, from the spacesuits and training, to the rocket and spacecraft.
6. Launch Abort System
Boeing and SpaceX will equip their spacecraft with launch abort systems to get astronauts out of danger . . . FAST!
7. Expedited Delivery
Time-sensitive, critical experiments performed in orbit will be returned to Earth aboard commercial crew spacecraft, and returned to the scientists on Earth in hours, instead of days – before vital results are lost. That means better life and physical science research results, like VEGGIE, heart cells, and protein crystals.
8. Lifeboat
The spacecraft will offer safe and versatile lifeboats for the crew of the space station, whether an emergency on-orbit causes the crew to shelter for a brief time in safety, or leave the orbiting laboratory altogether. Learn more HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Pew. Pew. Lasers in space!
Iconic movie franchises like Star Wars and Star Trek feature futuristic laser technologies, but space lasers aren’t limited to the realm of science fiction. In fact, laser communications technologies are changing the way missions transmit their data. The Laser Communications Relay Demonstration (LCRD) blasts into space this weekend, demonstrating the unique – and totally awesome – capabilities of laser communications systems.
Currently, NASA missions rely on radio frequency to send data to Earth. While radio has served the agency well since the earliest days of spaceflight, there are significant benefits to laser systems. Just as the internet has gone from dial-up to high-speed connections, lasers communications’ higher frequency allows missions to send much more information per second than radio systems. With laser communications, it would only take nine days to transmit a complete map of Mars back to Earth, compared to nine weeks with radio frequency systems.
LCRD will demonstrate these enhanced capabilities from 22,000 miles above Earth’s surface. And although the mission uses lasers, these lasers are not visible to the human eye. Once in orbit, the mission will perform experiments using two telescopes on Earth that will relay data through the spacecraft from one site to the other over an optical communications link. These experiments will help NASA and the aerospace community understand the operational challenges of using lasers to communicate to and from space.
On Earth, there are ground stations telescopes that will capture LCRD’s laser signal and send the data to the mission operations center in New Mexico. The two ground stations are located on Haleakalā, Hawaii and Table Mountain, California. These picturesque locations weren’t chosen because they’re beautiful, but rather for their mostly clear skies. Clouds – and other atmospheric disturbances – can disrupt laser signals. However, when those locations do get cloudy, we’ve developed corrective technologies to ensure we receive and successfully decode signals from LCRD.
This demonstration will help NASA, researchers, and space companies learn more about potential future applications for laser communications technologies. In the next few years, NASA will launch additional laser missions to the Moon on Artemis II and to the asteroid belt, even deeper into space. These missions will give us insight on the use of laser communications further in space than ever before.
Ultimately, laser systems will allow us to glean more information from space. This means more galaxy pics, videos of deep space phenomena, and live, 4K videos from astronauts living and working in space.
Laser communications = more data in less time = more discoveries.
If laser communications interests you, check out our Space Communications and Navigation (SCaN) Internship Project. This program provides high school, undergrad, graduate, and even Ph.D. candidates with internship opportunities in space communications areas – like laser comm.
Make sure to follow us on Tumblr for your regular dose of space!
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts