The Magnetic Field Lines Between A Pair Of Active Regions Formed A Beautiful Set Of Swaying Arches, Seen

The magnetic field lines between a pair of active regions formed a beautiful set of swaying arches, seen in this footage captured by our Solar Dynamics Observatory on April 24-26, 2017. 

These arches, which form a connection between regions of opposite magnetic polarity, are visible in exquisite detail in this wavelength of extreme ultraviolet light. Extreme ultraviolet light is typically invisible to our eyes, but is colorized here in gold. 

Take a closer look: https://go.nasa.gov/2pGgYZt

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

5 years ago

Want to Become an Astronaut? You Might Be More Qualified Than You Think

Have you ever wondered if you have what it takes to become a NASA Astronaut? We’re accepting applications starting March 2, and we’re encouraging all eligible Americans to apply by March 31! 

It’s an incredible time in human spaceflight to be an astronaut. With Artemis, our sights are set on the Moon – to stay – by utilizing sustainable lunar missions, and you could be one of the humans on the surface! During their careers, this next class of astronauts may also fly on any of four different U.S. spacecraft: the International Space Station, Boeing’s CST-100 Starliner, SpaceX’s Crew Dragon and our Orion deep-space exploration vehicle; They will be at the cutting edge of a new era in human exploration. 

So, still interesting in joining our ranks as an Artemis generation astronaut? Here are a few things to note.

Myths about becoming an astronaut:

image

MYTH: All astronauts have piloting experience.

FACT: You don’t need to be a pilot to be an astronaut. Flying experience is not a requirement, but could be beneficial to have.

image

MYTH: All astronauts have perfect vision.

FACT: It’s okay if you don’t have 20/20 vision. As of September 2007, corrective surgical procedures of the eye (PRK and LASIK), are now allowed, providing at least 1 year has passed since the date of the procedure with no permanent adverse after effects.

image

MYTH: All astronauts have advanced degrees like, a PhD.

FACT: While a Master’s degree from an accredited university is necessary, the requirement can also be met with the completion (or current enrollment that will result in completion by June 2021) of a nationally recognized test pilot school program.

image

MYTH: Astronauts are required to have military experience in order to be selected.

FACT: Military experience is not required to become an astronaut.

image

MYTH: You have to be a certain age in order to be an astronaut.

FACT: There are no age restrictions. Astronaut candidates selected in the past have ranged between the ages of 26 and 46, with the average age being 34.

Okay, but what are the requirements?

image

The basic requirements to apply include United States citizenship and a master’s degree in a STEM field, including engineering, biological science, physical science, computer science, or mathematics, from an accredited institution. The requirement for the master’s degree can also be met by:

Two years (36 semester hours or 54 quarter hours) of work toward a Ph.D. program in a related science, technology, engineering or math field;

A completed doctor of medicine or doctor of osteopathic medicine degree;

Completion (or current enrollment that will result in completion by June 2021) of a nationally recognized test pilot school program.

Candidates also must have at least two years of related, progressively responsible professional experience, or at least 1,000 hours of pilot-in-command time in jet aircraft. Astronaut candidates must pass the NASA long-duration spaceflight physical.

image

Applications for our next Artemis astronaut class open on March 2! Shoot for the stars and visit: https://www.nasa.gov/astronauts

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
7 years ago

Launching the Future of Space Communications

Our newest communications satellite, named the Tracking and Data Relay Satellite-M or TDRS-M, launches Aug. 18 aboard an Atlas V rocket from our Kennedy Space Center in Florida. It will be the 13th TDRS satellite and will replenish the fleet of satellites supporting the Space Network, which provides nearly continuous global communications services to more than 40 of our missions.

image

Communicating from space wasn’t always so easy. During our third attempt to land on the moon in 1970, the Apollo 13 crew had to abort their mission when the spacecraft’s oxygen tank suddenly exploded and destroyed much of the essential equipment onboard. Made famous in the movie ‘Apollo 13’ by Ron Howard and starring Tom Hanks, our NASA engineers on the ground talked to the crew and fixed the issue. Back in 1970 our ground crew could only communicate with their ground teams for 15 percent of their orbit – adding yet another challenge to the crew. Thankfully, our Apollo 13 astronauts survived and safely returned to Earth. 

image

Now, our astronauts don’t have to worry about being disconnected from their teams! With the creation of the TDRS program in 1973, space communications coverage increased rapidly from 15 percent coverage to 85 percent coverage. And as we’ve continued to add TDRS spacecraft, coverage zoomed to over 98 percent!

Launching The Future Of Space Communications

TDRS is a fleet of satellites that beam data from low-Earth-orbiting space missions to scientists on the ground. These data range from cool galaxy images from the Hubble Space Telescope to high-def videos from astronauts on the International Space Station! TDRS is operated by our Space Network, and it is thanks to these hardworking engineers and scientists that we can continuously advance our knowledge about the universe!  

image

What’s up next in space comm? Only the coolest stuff ever! LASER BEAMS. Our scientists are creating ways to communicate space data from missions through lasers, which have the ability to transfer more data per minute than typical radio-frequency systems. Both radio-frequency and laser comm systems send data at the speed of light, but with laser comm’s ability to send more data at a time through infrared waves, we can receive more information and further our knowledge of space.

image

How are we initiating laser comm? Our Laser Communications Relay Demonstration is launching in 2019! We’re only two short years away from beaming space data through lasers! This laser communications demo is the next step to strengthen this technology, which uses less power and takes up less space on a spacecraft, leaving more power and room for science instruments.

image

Watch the TDRS launch live online at 8:03 a.m. EDT on Aug. 18: https://www.nasa.gov/nasalive

Join the conversation on Twitter: @NASA_TDRS and @NASALasercomm!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Much of the western United States began the morning with the view of a super blue blood moon total lunar eclipse. In this silent time lapse video, the complete eclipse is seen over NASA's Jet Propulsion Laboratory, located at the base of the San Gabriel Mountains near Pasadena, California.  This Jan. 31 full moon was special for three reasons: it was the third in a series of “supermoons,” when the Moon is closer to Earth in its orbit -- known as perigee -- and about 14 percent brighter than usual. It was also the second full moon of the month, commonly known as a “blue moon.” The super blue moon will pass through Earth’s shadow to give viewers in the right location a total lunar eclipse. While the Moon is in the Earth’s shadow it will take on a reddish tint, known as a “blood moon.”

Credits: NASA/JPL-Caltech

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
6 years ago

Demo-1: What’s the Deal?

Whether or not you caught the SpaceX Crew Dragon launch this past weekend, here’s your chance to learn why this mission, known as Demo-1, is such a big deal.

The First of its Kind

Demo-1 is the first flight test of an American spacecraft designed for humans built and operated by a commercial company. 

Liftoff

image

The SpaceX Crew Dragon lifted off at 2:49 a.m. EST Saturday, March 2, on the company’s Falcon 9 rocket from Kennedy Space Center. 

This was the first time in history a commercially-built American crew spacecraft and rocket launched from American soil. 

A New Era in Human Spaceflight

Demo-1: What’s The Deal?

Upon seeing the arriving spacecraft, NASA astronaut Anne McClain snapped a photo from the International Space Station: “Welcome to a new era in human spaceflight.” 

Docking the Dragon

image

After making 18 orbits of Earth, the Crew Dragon spacecraft successfully attached to the International Space Station’s Harmony module at 5:51 a.m. EST Sunday, March 3. The Crew Dragon used the station’s new international docking adapter for the first time since astronauts installed it in August 2016. 

The docking phase, in addition to the return and recovery of Crew Dragon, are critical to understanding the system’s ability to support crew flights.

Opening the Hatch

Demo-1: What’s The Deal?

After opening the hatch between the two spacecraft, the crewmates configured Crew Dragon for its stay. 

They installed a ventilation system that cycles air from Crew Dragon to the station, installed window covers and checked valves. After that, the crew was all set for a welcoming ceremony for the visiting vehicle. 

Ripley and Little Earth

Demo-1: What’s The Deal?

Although the test is uncrewed, that doesn’t mean the Crew Dragon is empty. Along for the ride was Ripley, a lifelike test device outfitted with sensors to provide data about potential effects on future astronauts. (There is also a plush Earth doll included inside that can float in the microgravity!)

Inside the Dragon

For future operational missions, Crew Dragon will be able to launch as many as four crew members and carry more than 220 pounds of cargo. This will increase the number of astronauts who are able to live onboard the station, which will create more time for research in the unique microgravity environment.

Integration

Demo-1: What’s The Deal?

Since the arrival of SpaceX Crew Dragon, the three Expedition 58 crew members have returned to normal operations (with some new additions to the team!) 

Undocking

image

The Crew Dragon is designed to stay docked to station for up to 210 days, although the spacecraft used for this flight test will remain docked to the space station for only five days, departing Friday, March 8. (We will be providing live coverage — don’t miss it!)

SpaceX and NASA

image

Elon Musk, CEO and lead designer at SpaceX, expressed appreciation for NASA’s support: “SpaceX would not be here without NASA, without the incredible work that was done before SpaceX even started and without the support after SpaceX did start.”

Preparation for Demo-2

image

NASA and SpaceX will use data from Demo-1 to further prepare for Demo-2, the crewed flight test that will carry NASA astronauts and Doug Hurley and Bob Behnken to the International Space Station. NASA will validate the performance of SpaceX’s systems before putting crew on board for the Demo-2 flight, currently targeted for July 2019.

Demo-1: So What?

image

Demo-1 is a big deal because it demonstrates NASA and commercial companies working together to advance future space exploration! With Demo-1’s success, NASA and SpaceX will begin to prepare to safely fly astronauts to the orbital laboratory.

Follow along with mission updates with the Space Station blog.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

21 Years of Amazing Earth Imagery

On April 29, 1999, NASA Earth Observatory started delivering science stories and imagery to the public through the Internet. Today, we turn 21! So much has changed in the past two decades... 

One of the most notable changes is the way we view our home planet. Check out some of the beautiful imagery of our planet over the past 21 years.

2000: Pine Island Glacier

image

Most people will never see Pine Island Glacier in person. Located near the base of the Antarctic Peninsula—the “thumb” of the continent—the glacier lies more than 2,600 kilometers (1,600 miles) from the tip of South America. That’s shorter than a cross-country flight from New York to Los Angeles, but there are no runways on the glacier and no infrastructure. Only a handful of scientists have ever set foot on its ice.

This animation shows a wide view of Pine Island Glacier and the long-term retreat of its ice front. Images were acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on our Terra satellite from 2000 to 2019. Notice that there are times when the front appears to stay in the same place or even advance, though the overall trend is toward retreat. Read more.

2002: The Blue Marble

image

In February 2002, Earth Observatory published this “blue marble” image based on the most detailed collection of true-color imagery of the entire Earth at that time. Using a collection of satellite-based observations, scientists and visualizers stitched together months of observations of the land surface, oceans, sea ice and clouds into a seamless, true-color mosaic of every square kilometer (.386 square mile) of our planet. Most of the information contained in this image came from Moderate Resolution Imaging Spectrometer (MODIS), illustrating the instrument's outstanding capacity to act as an integrated tool for observing a variety of terrestrial, oceanic and atmospheric features of the Earth. Read more.

2009: Tsauchab River Bed

image

The Tsauchab River is a famous landmark for the people of Namibia and tourists. Yet few people have ever seen the river flowing with water. In December 2009, an astronaut on the International Space Station caught this glimpse of the Tsauchab River bed jutting into the sea of red dunes. It ends in a series of light-colored, silty mud holes on the dry lake floor.

Like several other rivers around the Namib Desert, the Tsauchab brings sediment down from the hinterland toward the coastal lowland. This sediment is then blown from the river beds, and over tens of millions of years it has accumulated as the red dunes of the Namib Sand Sea. Read more. 

2012: Manning Island and Foxe Basin, Canada

image

Although it may look like a microscope’s view of a thin slice of mineral-speckled rock, this image was actually acquired in space by the Earth Observing-1 satellite in July 2012. It shows a small set of islands and a rich mixture of ice in Foxe Basin, the shallow northern reaches of Hudson Bay.

The small and diverse sizes of the ice floes indicate that they were melting. The darkest colors in the image are open water. Snow-free ice appears gray, while snow-covered ice appears white. The small, dark features on many of the floes are likely melt ponds. Read more.

2013: A Lava Lamp Look at the Atlantic

image

Stretching from tropical Florida to the doorstep of Europe, this river of water carries a lot of heat, salt, and history. The Gulf Stream is an important part of the global ocean conveyor belt that moves water and heat across the North Atlantic from the equator toward the poles. It is one of the strongest currents on Earth, and one of the most studied.

This image shows a small portion of the Gulf Stream as it appears in infrared imagery. Data for this image was acquired on April 9, 2013, by the Thermal Infrared Sensor (TIRS) on the Landsat 8 satellite. TIRS observes in wavelengths of 10.9 micrometers and 12.0 micrometers. The image above is centered at 33.06° North latitude, 73.86° West longitude, about 500 kilometers (300 miles) east of Charleston, South Carolina. Read more.

2016: Curious Ensemble of Wonderful Features

image

When John Wesley Powell explored the Colorado River in 1869, he made the first thorough survey of one of the last blank spots on the map. The expedition began in May at Green River, Wyoming, and ended three months later at the confluence of the Colorado and Virgin Rivers in present-day Nevada.

About two months into their journey, the nine men of the expedition found themselves in Glen Canyon. As the men traveled along the serpentine river channel, they encountered what Powell later described in Canyons of Colorado as a “curious ensemble of wonderful features.”

From above, the view of Glen Canyon is equally arresting. In 2016, an astronaut aboard the International Space Station took several photographs that were combined to make a long mosaic. The water has an unnatural shade of blue because of sunglint, an optical phenomenon that occurs when sunlight reflects off the surface of water at the same angle that a camera views it. Click here to see the long mosaic.

2019: Lena Delta Shakes Off Water

image

For most of the year, the Lena River Delta—a vast wetland fanning out from northeast Siberia into the Arctic Ocean—is either frozen over and barren or thawed out and lush. Only briefly will you see it like this.

After seven months encased in snow and ice, the delta emerges for the short Arctic summer. The transition happens fast. The animation above, composed of images from the Moderate Resolution Imaging Spectroradiometer (MODIS) on our Aqua satellite, shows the transformation from June 3-10, 2019. Read more.

2020: Making Waves in the Andaman Sea

image

When tides, currents and gravity move water masses over seafloor features, they can create wave actions within the ocean. Oceanographers began studying these internal waves from ships in the 1960s, and the modern era of satellites has made it possible to see them on a grand scale. The Operational Land Imager (OLI) on Landsat 8 captured these images of the Andaman Sea on November 29, 2019. The reflection of the Sun on the ocean—sunglint—helps make the internal waves visible.

Internal waves form because the ocean is layered. Deep water tends to be colder, denser and saltier, while shallower water is often warmer, lighter and fresher. The differences in density and salinity cause layers of the ocean to behave like different fluids. When tides, currents, gravity and Earth’s rotation move these different water masses over seafloor formations (such as ridges or canyons), they create waves within the sea. Read more.

These images were taken from NASA Earth Observatory! 

Interested in receiving Earth Observatory's Images of the Day? Subscribe to our newsletters or RSS feeds.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
4 years ago

Celebrating 81 Years of Ingenuity

image

Eighty-one years ago, our world-class research center in California’s Silicon Valley was born. Ground broke on Ames Research Center on Dec. 20, 1939. It was the second aeronautical laboratory established by the National Advisory Committee for Aeronautics to perform fundamental research on all things flight. From its very beginnings, Ames was a place for innovation. Tests performed in its wind tunnels transformed military aircraft during World War II and paved the way for air travel at supersonic speeds. In the 1950s and ‘60s, its researchers looked to the stars and came up with new designs and materials for spacecraft that would make human spaceflight a reality. Fast-forward to the present, and the center contributes to virtually every major agency mission through its expertise in spacecraft entry systems, robotics, aeronautics, supercomputing, and so much more! Here are things to know about Ames.

Ames Research Center is home to the world’s largest wind tunnel.

image

The center is also home to Pleiades, our most powerful supercomputer.

image

Its modeling and simulation work plays a key role in designing new vehicles for exploring space.

image

The center invented heat shield materials for landing rovers on Mars.

image

It built robots to assist astronauts living and working aboard the International Space Station.

image

It launched a space telescope that revealed thousands of worlds beyond our solar system.

image

The center has also led multiple missions to explore the Moon.

image

It found water on the Moon ... more than once, and in places no one would have guessed.

image

The Volatiles Investigating Polar Exploration Rover is the latest lunar exploration mission led by Ames. Launching in 2023, the mobile robot will search for water ice inside craters and other places at the Moon's South Pole. Its survey will help pave the way for astronaut missions to the lunar surface beginning in 2024 as part of the Artemis program.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago
DYK The Bright Clusters And Nebulae Of Planet Earth's Night Sky Are Often Named For Flowers Or Insects? 

DYK the bright clusters and nebulae of planet Earth's night sky are often named for flowers or insects? 

Though its wingspan covers over 3 light-years, NGC 6302: The Butterfly Nebula is no exception! With an estimated surface temperature of about 250,000 degrees C, the dying central star of this particular planetary nebula has become exceptionally hot, shining brightly in ultraviolet light but hidden from direct view by a dense torus of dust. This sharp close-up was recorded by the Hubble Space Telescope in 2009. The Hubble image data is reprocessed here, showing off the remarkable details of the complex planetary nebula.

Image Credit: NASA, ESA, Hubble, HLA; Reprocessing & Copyright: Robert Eder

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
4 years ago

How did COVID19 affect your teamwork leading up to the launch? I hope everyone is staying well and sane:)


Tags
1 year ago
An artist’s concept of NASA’s Advanced Composite Solar Sail System spacecraft in orbit as seen from directly above the spacecraft looking down at Earth below. The solar sail has four black triangular-shaped parts arranged in a diamond. In between the parts are small, thin cross-shaped pieces which connect the black parts. Credit: NASA

Setting Sail to Travel Through Space: 5 Things to Know about our New Mission

Our Advanced Composite Solar Sail System will launch aboard Rocket Lab’s Electron rocket from the company’s Launch Complex 1 in Māhia, New Zealand no earlier than April 23, at 6 p.m. EDT. This mission will demonstrate the use of innovative materials and structures to deploy a next-generation solar sail from a CubeSat in low Earth orbit.

Here are five things to know about this upcoming mission:

1. Sailing on Sunshine

Solar sails use the pressure of sunlight for propulsion much like sailboats harness the wind, eliminating the need for rocket fuel after the spacecraft has launched. If all goes according to plan, this technology demonstration will help us test how the solar sail shape and design work in different orbits.

Color GIF from animation of NASA’s Advanced Composite Solar Sail System mission. The spacecraft is seen rotating above Earth in orbit, with its reflective solar sail unfurled. The solar sail has four silver triangular-shaped parts arranged in a diamond. In between the parts are small, thin cross-shaped pieces which are the booms connecting the sail. Credit: NASA/Ben Schweighart

2. Small Package, Big Impact

The Advanced Composite Solar Sail System spacecraft is a CubeSat the size of a microwave, but when the package inside is fully unfurled, it will measure about 860 square feet (80 square meters) which is about the size of six parking spots. Once fully deployed, it will be the biggest, functional solar sail system – capable of controlled propulsion maneuvers – to be tested in space.

Setting Sail To Travel Through Space: 5 Things To Know About Our New Mission

3. Second NASA Solar Sail in Space

If successful, the Advanced Composite Solar Sail System will be  the second NASA solar sail to deploy in space, and not only will it be much larger, but this system will also test navigation capabilities to change the spacecraft’s orbit. This will help us gather data for future missions with even larger sails.

Color GIF from animation of NASA’s Advanced Composite Solar Sail System mission. The view is a close-up of two different angles from the perspective of the spacecraft above Earth. We see gears onboard turning as part of the system that deploys the tubular booms unfurling the silver sail material. Credit: NASA/Ben Schweighart

4. BOOM: Stronger, Lighter Booms

Just like a sailboat mast supports its cloth sails, a solar sail has support beams called booms that provide structure. The Advanced Composite Solar Sail System mission’s primary objective is to deploy a new type of boom. These booms are made from flexible polymer and carbon fiber materials that are stiffer and 75% lighter than previous boom designs. They can also be flattened and rolled like a tape measure. Two booms spanning the diagonal of the square (23 feet or about 7 meters in length) could be rolled up and fit into the palm of your hand!

Color GIF from animation of NASA’s Advanced Composite Solar Sail System mission. First, we see the full system sailing above Earth with its four silver triangular sail segments forming a diamond shape. In between the parts are small, thin cross-shaped pieces which are the booms connecting the sail. The Sun is seen distantly in the background. The second view shows the solar sail system sailing away into deep space. Credit: NASA/Ben Schweighart

5. It’s a bird...it’s a plane...it’s our solar sail!

About one to two months after launch, the Advanced Composite Solar Sail System spacecraft will deploy its booms and unfurl its solar sail. Because of its large size and reflective material, the spacecraft may be visible from Earth with the naked eye if the lighting conditions and orientation are just right!

To learn more about this mission that will inform future space travel and expand our understanding of our Sun and solar system, visit https://www.nasa.gov/mission/acs3/.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
5 years ago

How is Biotechnology Preparing us to Live on the Moon and Mars?

The adventures awaiting astronauts on future long-duration missions have technologists researching sustainable ways to live away from Earth. We’re using what we know from almost 20 years of a continuous human presence on the International Space Station and looking at new technologies to prepare for missions to the Moon and Mars. 

image

Biotechnology – technology that uses living organisms to make products that provide a new use – is key to this research.

With biotechnology, we’re developing new ways to manufacture medicines, build habitats and more in space. Here are some ways biotechnology is advancing spaceflight and how the same research is reaping benefits on Earth.

image

Healthy astronauts

Planning ways to supply food for a multi-year mission on the Moon or Mars may require making food and nutrients in space. Our scientists are testing an early version of a potential solution: get microorganisms to produce vital nutrients like those usually found in vegetables. Then, whenever they’re needed, astronauts can drink them down. 

The microorganisms are genetically engineered to rapidly produce controlled quantities of essential nutrients. Because the microorganisms and their food source both have a long shelf-life at room temperature and only need water to be activated, the system provides a simple, practical way to produce essential nutrients on-demand. The same kind of system designed for space could also help provide nutrition for people in remote areas of our planet.

Our researchers are evaluating the first batches of BioNutrient samples that came back to Earth after an experimental run on the International Space Station.

image

Because space travel takes a toll on the human body, we’re also researching how biotechnology can be used to advance the field of regenerative medicine. 

Related cells that are joined together are collectively referred to as tissue, and these cells work together as organs to accomplish specific functions in the human body. Blood vessels around the cells vascularize, providing nutrients to the tissue to keep it healthy. 

Our Vascular Tissue Challenge offers a $500,000 prize to be divided among the first three teams that successfully create thick, metabolically-functional human vascularized organ tissue in a controlled laboratory environment. The vascularized, thick-tissue models resulting from this challenge will function as organ analogs, or models, that can be used to study deep space environmental effects, such as radiation, and to develop strategies to minimize the damage to healthy cells.  

Plant factories

Humans have relied on plants’ medicinal qualities for thousands of years for everything from alleviating minor ailments to curing serious diseases. Now, researchers are trying to simplify the process of turning plants into medicine (i.e. how to make it compact and portable). If successful, the cost of biomanufacturing pharmaceuticals on Earth could go down, and plants could produce medicines in space.

image

Creating medicine on demand isn’t something we typically do, so we’re turning to experts in the field for help. Researchers at the University of California, Davis are transforming plants into mini-medicine factories for future Mars missions. They’re genetically altering an ordinary type of lettuce so that it produces a protein called parathyroid hormone. This hormone is an approved drug for treating osteoporosis, a common condition where bones become weak and brittle.

image

This type of research is important to long duration spaceflight. When astronauts land on Mars, they will have spent more than half a year in zero gravity on the flight there, and they’ll need to be strong and ready to explore. Having the technologies needed to treat that possibility, and other unanticipated health effects of long duration spaceflight, is crucial.

Growing habitats

Vitamins aren’t the only thing astronauts could be growing on Mars; we’re exploring technologies that could grow structures out of fungi.

An early-stage research project underway at our Ames Research Center is prototyping technologies that could "grow" habitats on the Moon, Mars and beyond out of life – specifically, fungi and the unseen underground threads that make up the main part of the fungus. These tiny threads build complex structures with extreme precision, networking out into larger structures like mushrooms. With the right conditions, they can be coaxed into making new structures – ranging from a material similar to leather to the building blocks for a planetary home.

The myco-architecture project envisions a future where astronauts can construct a habitat out of the lightweight fungi material. Upon arrival, by unfolding a basic structure made up of dormant fungi and simply adding water, the fungi would grow around that framework into a fully functional human habitat – all while being safely contained to avoid contaminating the external environment.

image

Recycling waste

Once astronauts arrive on the surface of the Moon or a more distant planet, they’ll have to carefully manage garbage. This waste includes some stuff that gets flushed on Earth.

Today, we’re already using a recycling system on the space station to turn urine into drinking water. Poop on the other hand is contained then disposed of on spacecraft returning to Earth. That won’t be possible on more distant journeys, so, we’re turning to biomanufacturing for a practical solution.

Biology can serve as an effective recycling factory. Microorganisms such as yeast and algae feed on all kinds of things classified as “mission waste.” Processing their preferred form of nourishment generates products that can serve as raw materials used to make essential supplies like nutrients, medicines, plastic and fuel.

image

By taking a careful look at biological processes, we hope to develop new, lightweight systems to leverage that biology to do some helpful in-space manufacturing.

From Space to Earth

Biotechnology is preparing us for longer space missions to the Moon and then Mars – farther from Earth than humans have ever traveled before. As we prepare for those exciting missions, we’re also conducting research on the space station for the primary benefit of everyone on Earth.

January is National Biotechnology Month. To learn more about some of the ways NASA is using biotechnology to solve challenges in space and improve life on Earth, visit this link. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • hypocritical-thoughts
    hypocritical-thoughts reblogged this · 2 months ago
  • scienceb4religion
    scienceb4religion liked this · 4 months ago
  • hypocritical-thoughts
    hypocritical-thoughts reblogged this · 5 months ago
  • supersirchefstuff
    supersirchefstuff liked this · 1 year ago
  • tomasma76
    tomasma76 liked this · 1 year ago
  • juanchotmb
    juanchotmb liked this · 2 years ago
  • cosmicsuspension
    cosmicsuspension liked this · 2 years ago
  • chanr512
    chanr512 liked this · 4 years ago
  • somnambulant-seraphim
    somnambulant-seraphim liked this · 5 years ago
  • teacompletesme
    teacompletesme liked this · 5 years ago
  • gersonheck
    gersonheck liked this · 5 years ago
  • blackpointgame
    blackpointgame liked this · 6 years ago
  • hellisstyless
    hellisstyless reblogged this · 6 years ago
  • bebilalabsjuls-blog
    bebilalabsjuls-blog reblogged this · 6 years ago
  • piperhicks8430-blog
    piperhicks8430-blog liked this · 6 years ago
  • eldavruegseggergj
    eldavruegseggergj liked this · 6 years ago
  • xochitlxkoepnickgy
    xochitlxkoepnickgy liked this · 6 years ago
  • jeanneplavalliemu-blog
    jeanneplavalliemu-blog liked this · 6 years ago
  • delilaymccabehn
    delilaymccabehn liked this · 6 years ago
  • daemondamian
    daemondamian liked this · 6 years ago
  • genocider-syo-is-still-my-queen
    genocider-syo-is-still-my-queen liked this · 6 years ago
  • haileymason3798
    haileymason3798 liked this · 6 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags