If the forecast in the town you are visiting says "partly cloudy" should you be worried you won't see anything? Looking at Hillsborough, Missouri (St. Louis area)
I believe you are in the path of totality in the St. Louise area. Even if there is complete cloud cover, you’ll likely still notice it getting darker, and you’ll definitely still feel the temperature drop. I’m not sure if you’ll notice odd animal behavior as that’s not my area of expertise, but I would think you might. I would say you should still go and see it! Especially if you are in an area with a chance of partly cloudy. You never know, the clouds may disappear for at least a portion of totality!
Twenty-five years ago, an object roughly the size of an oven made space history when it plunged into the clouds of Jupiter, the largest planet in our solar system. On Dec. 7, 1995, the 750-pound Galileo probe became the first probe to enter the gas giant. Traveling at a blistering speed of 106,000 miles per hour, the probe’s protective heat shield experienced temperatures as hot as the Sun’s surface generated by friction during entry. As the probe parachuted through Jupiter’s dense atmosphere, its science instruments made measurements of the planet’s chemical and physical makeup. The probe collected data for nearly an hour before its signal was lost. Its data was transmitted to Earth via the Galileo spacecraft, an orbiter that carried the probe to Jupiter and stayed within contact during the encounter. Learn more about the mission.
The Galileo probe was managed by NASA’s Ames Research Center in California’s Silicon Valley.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What's Up for May? Two huge solar system highlights: Mercury transits the sun and Mars is closer to Earth than it has been in 11 years.
On May 9, wake up early on the west coast or step out for coffee on the east coast to see our smallest planet cross the face of the sun. The transit will also be visible from most of South America, western Africa and western Europe.
A transit occurs when one astronomical body appears to move across the face of another as seen from Earth or from a spacecraft. But be safe! You'll need to view the sun and Mercury through a solar filter when looking through a telescope or when projecting the image of the solar disk onto a safe surface. Look a little south of the sun's Equator. It will take about 7 1/2 hours for the tiny planet's disk to cross the sun completely. Since Mercury is so tiny it will appear as a very small round speck, whether it's seen through a telescope or projected through a solar filter. The next Mercury transit will be Nov. 11, 2019.
Two other May highlights involve Mars. On May 22 Mars opposition occurs. That's when Mars, Earth and the sun all line up, with Earth directly in the middle.
Eight days later on May 30, Mars and Earth are nearest to each other in their orbits around the sun. Mars is over half a million miles closer to Earth at closest approach than at opposition. But you won't see much change in the diameter and brightness between these two dates. As Mars comes closer to Earth in its orbit, it appears larger and larger and brighter and brighter.
During this time Mars rises after the sun sets. The best time to see Mars at its brightest is when it is highest in the sky, around midnight in May and a little earlier in June.
Through a telescope you can make out some of the dark features on the planet, some of the lighter features and sometimes polar ice and dust storm-obscured areas showing very little detail.
After close approach, Earth sweeps past Mars quickly. So the planet appears large and bright for only a couple weeks.
But don't worry if you miss 2016's close approach. 2018's will be even better, as Mars' close approach will be, well, even closer.
You can find out about our #JourneytoMars missions at mars.nasa.gov, and you can learn about all of our missions at http://www.nasa.gov.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
For scientists watching the Red Planet from our orbiters, the past month has been a windfall. "Global" dust storms, where a runaway series of storms create a dust cloud so large they envelop the planet, only appear every six to eight years (that’s 3-4 Mars years). Scientists still don't understand why or how exactly these storms form and evolve.
Read the full story HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Our Sun has an entourage of planets, moons, and smaller objects to keep it company as it traverses the galaxy. But it’s still lonely compared to many of the other stars out there, which often come in pairs. These cosmic couples, called binary stars, are very important in astronomy because they can easily reveal things that are much harder to learn from stars that are on their own. And some of them could even host habitable planets!
New stars emerge from swirling clouds of gas and dust that are peppered throughout the galaxy. Scientists still aren’t sure about all the details, but turbulence deep within these clouds may give rise to knots that are denser than their surroundings. The knots have stronger gravity, so they can pull in more material and the cloud may begin to collapse.
The material at the center heats up. Known as a protostar, it is this hot core that will one day become a star. Sometimes these spinning clouds of collapsing gas and dust may break up into two, three, or even more blobs that eventually become stars. That would explain why the majority of the stars in the Milky Way are born with at least one sibling.
We can’t always tell if we’re looking at binary stars using just our eyes. They’re often so close together in the sky that we see them as a single star. For example, Sirius, the brightest star we can see at night, is actually a binary system (see if you can spot both stars in the photo above). But no one knew that until the 1800s.
Precise observations showed that Sirius was swaying back and forth like it was at a middle school dance. In 1862, astronomer Alvan Graham Clark used a telescope to see that Sirius is actually two stars that orbit each other.
But even through our most powerful telescopes, some binary systems still masquerade as a single star. Fortunately there are a couple of tricks we can use to spot these pairs too.
Since binary stars orbit each other, there’s a chance that we’ll see some stars moving toward and away from us as they go around each other. We just need to have an edge-on view of their orbits. Astronomers can detect this movement because it changes the color of the star’s light – a phenomenon known as the Doppler effect.
Stars we can find this way are called spectroscopic binaries because we have to look at their spectra, which are basically charts or graphs that show the intensity of light being emitted over a range of energies. We can spot these star pairs because light travels in waves. When a star moves toward us, the waves of its light arrive closer together, which makes its light bluer. When a star moves away, the waves are lengthened, reddening its light.
Sometimes we can see binary stars when one of the stars moves in front of the other. Astronomers find these systems, called eclipsing binaries, by measuring the amount of light coming from stars over time. We receive less light than usual when the stars pass in front of each other, because the one in front will block some of the farther star’s light.
Twin stars don’t always get along with each other – their relationship may be explosive! Type Ia supernovae happen in some binary systems in which a white dwarf – the small, hot core left over when a Sun-like star runs out of fuel and ejects its outer layers – is stealing material away from its companion star. This results in a runaway reaction that ultimately detonates the thieving star. The same type of explosion may also happen when two white dwarfs spiral toward each other and collide. Yikes!
Scientists know how to determine how bright these explosions should truly be at their peak, making Type Ia supernovae so-called standard candles. That means astronomers can determine how far away they are by seeing how bright they look from Earth. The farther they are, the dimmer they appear. Astronomers can also look at the wavelengths of light coming from the supernovae to find out how fast the dying stars are moving away from us.
Studying these supernovae led to the discovery that the expansion of the universe is speeding up. Our Nancy Grace Roman Space Telescope will scan the skies for these exploding stars when it launches in the mid-2020s to help us figure out what’s causing the expansion to accelerate – a mystery known as dark energy.
Astronomers like finding binary systems because it’s a lot easier to learn more about stars that are in pairs than ones that are on their own. That’s because the stars affect each other in ways we can measure. For example, by paying attention to how the stars orbit each other, we can determine how massive they are. Since heavier stars burn hotter and use up their fuel more quickly than lighter ones, knowing a star’s mass reveals other interesting things too.
By studying how the light changes in eclipsing binaries when the stars cross in front of each other, we can learn even more! We can figure out their sizes, masses, how fast they’re each spinning, how hot they are, and even how far away they are. All of that helps us understand more about the universe.
Thanks to observatories such as our Kepler Space Telescope, we know that worlds like Luke Skywalker’s home planet Tatooine in “Star Wars” exist in real life. And if a planet orbits at the right distance from the two stars, it could even be habitable (and stay that way for a long time).
In 2019, our Transiting Exoplanet Survey Satellite (TESS) found a planet, known as TOI-1338 b, orbiting a pair of stars. These worlds are tricker to find than planets with only one host star, but TESS is expected to find several more!
Want to learn more about the relationships between stellar couples? Check out this Tumblr post: https://nasa.tumblr.com/post/190824389279/cosmic-couples-and-devastating-breakups
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What is the most interesting fact that you discovered about Black Holes? And what is the one you would most want to find out?
When Yellowstone National Park became the first national park in the United States in 1872, there was no one to oversee its maintenance. From this beginning, a steady movement grew to embrace the country’s unique natural beauties.
Today, we can witness these natural beauties from space, courtesy of Expedition 48 commander, astronaut Jeff Williams, from aboard the International Space Station.
Williams captured the beauty of Florida Bay in the Everglades National Park, focusing on the Crocodile Sanctuary, a protected wildlife area.
Sail down the Ice Ages at Glacier Bay National Park and Preserve. From Tarr Inlet Tidewater glacier to Sitakaday Narrows.
Grand indeed, here’s the Grand Canyon National Park seen from the International Space Station. Even from space, it took 13 pictures merged together to capture all 277 miles in this fly over.
From visionary leaders of the movement, who worked to create and manage national parks like Teddy Roosevelt to Charles Young, the first African American park superintendent, Congress heeded the call and passed the National Park Service Organic Act, creating the National Park Service (NPS). One hundred years ago today, on August 25, 1916, President Woodrow Wilson signed the bill into law.
Continue to explore the America’s natural beauty and unique features with “Exploring America’s National Parks,” a feature story from our Earth Observatory website and on Tumblr at @americasgreatoutdoors.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Swirling bands of light and dark clouds on Jupiter are seen in this image made by citizen scientists using data from our Juno spacecraft. Each of the alternating light and dark atmospheric bands in this image is wider than Earth, and each rages around Jupiter at hundreds of miles (km) per hour. The lighter areas are regions where gas is rising, and the darker bands are regions where gas is sinking. This image was acquired on May 19, 2017 from about 20,800 miles (33,400km) above Jupiter's cloud tops. Learn more
Credits: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt /Seán Doran
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
In the past 60 years, we’ve advanced our understanding of our solar system and beyond. We continually ask “What’s out there?” as we advance humankind and send spacecraft to explore. Since opening for business on Oct. 1, 1958, our history tells a story of exploration, innovation and discoveries. The next 60 years, that story continues. Learn more: https://www.nasa.gov/60
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
On Thursday, Sept. 1, U.S. astronauts Jeff Williams and Kate Rubins will conduct the station’s 195th American spacewalk. As part of their activities, the pair will install the first of several enhanced high-definition television cameras that will monitor activities outside the station, including the comings and goings of visiting cargo and crew vehicles
Working on the station’s backbone, or truss, Williams and Rubins will retract a thermal radiator that is part of the station’s cooling system.
As was the case for their first spacewalk together on Aug. 19, Williams will be designated as extravehicular crew member 1 (EV1), wearing a spacesuit with a red stripe, while Rubins will be EV2, wearing a suit with no stripes.
Coverage of the spacewalk begins at 6:30 a.m. EDT on Thursday, Sept. 1; with the spacewalk scheduled to begin at 8:05 a.m. EDT. Stream live online HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What part did you take in Perseverance' development?
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts