Robotic “Bees” Are About To Join Astronauts In Space

Robotic “Bees” Are About to Join Astronauts in Space

image

There are some things only humans can do in space. The rest can be left to robots. To free up valuable time for astronauts living and working aboard the International Space Station, we’re sending three robotic helpers to the orbiting outpost. Developed and built at our Ames Research Center in California’s Silicon Valley, the cube-shaped Astrobee robots will each stay as busy as a bee flying around the space station and assisting crew with routine tasks like maintenance and tracking inventory. The robots will also help researchers on the ground carry out experiments, test new technologies and study human-robot interaction in space. Learning how robots can best work with humans in close proximity will be key for exploring the Moon and other destinations. Get to know more about our new robots headed to space: 

The Astrobee robots were tested inside a special lab at our Ames Research Center where researchers created a mockup of the space station’s interior. 

image

The flying robots are propelled by fans. They can move in any direction and turn on any axis in space. 

image

Each robot is equipped with cameras and sensors for navigating inside the space station and avoiding obstacles.

image

Claw power! Astrobees have a robotic arm that can be attached for handling cargo or running experiments.

Robotic “Bees” Are About To Join Astronauts In Space

Astrobee is battery powered. When its battery runs low, the robot will autonomously navigate and dock to a power station to recharge.

image

The robots can operate in either fully automated mode or under remote control by astronauts or researchers on Earth.

image

Astrobee builds on the success of SPHERES, our first-generation robotic assistant that arrived at the space station in 2006.  

image

Two of the three Astrobee robots are scheduled to launch to space this month from our Wallops Flight Facility in Virginia! Tune in to the launch at www.nasa.gov/live.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

4 years ago

An Addition to our Space Rock Collection

On October 20th, our OSIRIS-REx mission will make its first attempt to collect and retrieve a sample of asteroid Bennu, a near-Earth asteroid. On sample collection day, Bennu will be over 200 million miles away from Earth.  

Asteroids are the building blocks of our solar system. A sample of this ancient material can tell us about the history of our planet and the origins of life. Science results published from the mission on October 8th confirm that Bennu contains carbon in a form often found in biology or in compounds associated with biology.

image

To collect a sample, OSIRIS-REx will attempt a method NASA has never used before – called Touch-And-Go (TAG).  First, the spacecraft extends its robotic sampling arm, the Touch-And-Go Sample Acquisition Mechanism (TAGSAM) – from its folded storage position. The spacecraft’s two solar panels then move into a “Y-wing” configuration over the spacecraft’s body, which positions them safely up and away from the asteroid’s surface during touch down. This configuration also places the spacecraft’s center of gravity directly over the TAGSAM collector head, which is the only part of the spacecraft that will contact Bennu’s surface.

image

Finding a safe sample collection site on Bennu’s rocky landscape was a challenge. During the sampling event, the spacecraft, which is the size of a large van, will attempt to touch down in an area that is only the size of a few parking spaces, and just a few steps away from enormous boulders.

image

The spacecraft will only make contact with Bennu for a matter of seconds - just long enough to blow nitrogen gas onto the surface to roil up dust and small pebbles, which will then be captured for a return to Earth.

image

We need to conduct a few tests before we can confirm we collected a large enough sample (about 2 oz). First, OSIRIS-REx will take images of the collector head to see if it contains rocks and dust. Second, the spacecraft will spin with the TAGSAM extended to determine the mass of collected material. If these measures show a successful collection, we will stow the sample for return to Earth. If sufficient sample has not been collected, the spacecraft has onboard nitrogen charges for two more attempts. The next TAG attempt would be made no earlier than January 2021.

image

Despite the many challenges, the OSIRIS-REx team is ready. They’ve practiced and prepared for this moment.

Join in with #ToBennuAndBack and tune in on October 20th.

Learn more about the OSIRIS-REx countdown to TAG HERE.

Learn more about the OSIRIS-REx mission HERE, or follow the mission on Facebook, Twitter and Instagram.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

25 Years in Space for ESA & NASA’s Sun-Watching SOHO

A quarter-century ago, the Solar and Heliospheric Observatory (SOHO) launched to space. Its 25 years of data have changed the way we think about the Sun — illuminating everything from the Sun’s inner workings to the constant changes in its outermost atmosphere.

image

SOHO — a joint mission of the European Space Agency and NASA — carries 12 instruments to study different aspects of the Sun. One of the gamechangers was SOHO’s coronagraph, a type of instrument that uses a solid disk to block out the bright face of the Sun and reveal the relatively faint outer atmosphere, the corona. With SOHO’s coronagraph, scientists could image giant eruptions of solar material and magnetic fields, called coronal mass ejections, or CMEs. SOHO’s images revealed shape and structure of CMEs in breathtaking detail.

image

These solar storms can impact robotic spacecraft in their path, or — when intense and aimed at Earth — threaten astronauts on spacewalks and even disrupt power grids on the ground. SOHO is particularly useful in viewing Earth-bound storms, called halo CMEs — so called because when a CME barrels toward us on Earth, it appears circular, surrounding the Sun, much like watching a balloon inflate by looking down on it.

image

Before SOHO, the scientific community debated whether or not it was even possible to witness a CME coming straight toward us. Today, SOHO images are the backbone of space weather prediction models, regularly used in forecasting the impacts of space weather events traveling toward Earth.

Beyond the day-to-day monitoring of space weather, SOHO has been able to provide insight about our dynamic Sun on longer timescales as well. With 25 years under its belt, SOHO has observed a full magnetic cycle — when the Sun’s magnetic poles switch places and then flip back again, a process that takes about 22 years in total. This trove of data has led to revolutions in solar science: from revelations about the behavior of the solar core to new insight into space weather events that explode from the Sun and travel throughout the solar system.

Data from SOHO, sonified by the Stanford Experimental Physics Lab, captures the Sun’s natural vibrations and provides scientists with a concrete representation of its dynamic movements.

The legacy of SOHO’s instruments — such as the extreme ultraviolet imager, the first of its kind to fly in orbit — also paved the way for the next generation of NASA solar satellites, like the Solar Dynamics Observatory and STEREO. Even with these newer instruments now in orbit, SOHO’s data remains an invaluable part of solar science, producing nearly 200 scientific papers every year.

image

Relatively early in its mission, SOHO had a brush with catastrophe. During a routine calibration procedure in June 1998, the operations team lost contact with the spacecraft. With the help of a radio telescope in Arecibo, the team eventually located SOHO and brought it back online by November of that year. But luck only held out so long: Complications from the near loss emerged just weeks later, when all three gyroscopes — which help the spacecraft point in the right direction — failed. The spacecraft was no longer stabilized. Undaunted, the team’s software engineers developed a new program that would stabilize the spacecraft without the gyroscopes. SOHO resumed normal operations in February 1999, becoming the first spacecraft of its kind to function without gyroscopes.

image

SOHO’s coronagraph have also helped the Sun-studying mission become the greatest comet finder of all time. The mission’s data has revealed more than 4,000 comets to date, many of which were found by citizen scientists. SOHO’s online data during the early days of the mission made it possible for anyone to carefully scrutinize a image and potentially spot a comet heading toward the Sun. Amateur astronomers from across the globe joined the hunt and began sending their findings to the SOHO team. To ease the burden on their inboxes, the team created the SOHO Sungrazer Project, where citizen scientists could share their findings.

image

Keep up with the latest SOHO findings at nasa.gov/soho, and follow along with @NASASun on Twitter and facebook.com/NASASunScience.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

Why Bennu?

Our OSIRIS-REx spacecraft will travel to a near-Earth asteroid, called Bennu, where it will collect a sample to bring back to Earth for study. 

But why was Bennu chosen as the target destination asteroid for OSIRIS-REx? The science team took into account three criteria: accessibility, size and composition.

Why Bennu?

Accessibility: We need an asteroid that we can easily travel to, retrieve a sample from and return to Earth, all within a few years time. The closest asteroids are called near-Earth objects and they travel within 1.3 Astronomical Units (AU) of the sun. For those of you who don’t think in astronomical units…one Astronomical Unit is approximately equal to the distance between the sun and the Earth: ~93 million miles.

Why Bennu?

For a mission like OSIRIS-REx, the most accessible asteroids are somewhere between 0.08 – 1.6 AU. But we also needed to make sure that those asteroids have a similar orbit to Earth. Bennu fit this criteria! Check!

Size: We need an asteroid the right size to perform two critical portions of the mission: operations close to the asteroid and the actual sample collection from the surface of the asteroid. Bennu is roughly spherical and has a rotation period of 4.3 hours, which is in our size criteria. Check!

image

Composition: Asteroids are categorized by their spectral properties. In the visible and infrared light minerals have unique signatures or colors, much like fingerprints. Scientists use these fingerprints to identify molecules, like organics. For primitive, carbon-rich asteroids like Bennu, materials are preserved from over 4.5 billion years ago! We’re talking about the start of the formation of our solar system here! These primitive materials could contain organic molecules that may be the precursors to life here on Earth, or elsewhere in our solar system.

Why Bennu?

Thanks to telescopic observations in the visible and the infrared, as well as in radar, Bennu is currently the best understood asteroid not yet visited by a spacecraft.

All of these things make Bennu a fascinating and accessible asteroid for the OSIRIS-REx mission.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

What exactly is a sun eclipse? Will I be able to see it and if so when from the Netherlands?

The solar eclipse is when the moon is directly in front of the Sun and creates a shadow on the Earth. They happen about once every 18 months. I don’t believe that you’ll be able to see this eclipse from the Netherlands. I think the next one to be in Europe is in 2026. There’s one in Chillie and Argentia in 2019 and another in Antartica in 2021. 


Tags
6 years ago

6 Ways NASA Technology Makes You Healthier

An important part of our mission is keeping astronauts strong and healthy during stays in space, but did you know that our technology also helps keep you healthy? And the origins of these space innovations aren’t always what you’d expect.

As we release the latest edition of NASA Spinoff, our yearly publication that celebrates all the ways NASA technology benefits us here on Earth, let’s look at some ways NASA is improving wellness for astronauts—and everyone else.

1.      Weightless weight-lifting

image

Without gravity to work against, astronauts lose bone and muscle mass in space. To fight it, they work out regularly. But to get them a good burn, we had to get creative. After all, pumping iron doesn’t do much good when the weights float.

The solution? Elastic resistance. Inventor Paul Francis was already working on a portable home gym that relied on spiral-shaped springs made of an elastic material. He thought the same idea would work on the space station and after additional development and extensive testing, we agreed.

Our Interim Resistive Exercise Device launched in 2000 to help keep astronauts fit. And Francis’ original plan took off too. The technology perfected for NASA is at the heart of the Bowflex Revolution as well as a new line of handheld devices called OYO DoubleFlex, both of which enable an intensive—and extensive—workout, right at home.

2.      Polymer coating keeps hearts beating

image

A key ingredient in a lifesaving treatment for many patients with congestive heart failure is made from a material a NASA researcher stumbled upon while working on a supersonic jet in the 1990s.

Today, a special kind of pacemaker that helps synchronize the left and right sides of the heart utilizes the unique substance known as LaRC-SI. The strong material can be cast extremely thin, which makes it easier to insert in the tightly twisted veins of the heart, and because it insulates so well, the pacemaker’s electric pulses go exactly where they should.

Since it was approved by the FDA in 2009, the device has been implanted hundreds of thousands of times.

 3.  Sutures strong enough for interplanetary transport

image

Many people mistakenly think we created Teflon. Not true: DuPont invented the unique polymer in 1938. But an innovative new way to use the material was developed to help us transport samples back from Mars and now aids in stitching up surgery patients.

Our scientists would love to get pristine Martian samples into our labs for more advanced testing. One complicating factor? The red dust makes it hard to get a clean seal on the sample container. That means the sample could get contaminated on its way back to Earth.

The team building the cannister had an idea, but they needed a material with very specific properties to make it work. They decided to use Polytetrafluoroethylene (that’s the scientific name for Teflon), which works really well in space.

The material we commonly recognize as Teflon starts as a powder, and to transform it into a nonstick coating, the powder gets processed a certain way. But process it differently, and you can get all kinds of different results.

For our Mars sample return cannister prototype, the powder was compressed at high pressures into a block, which was then forced through an extruder. (Imagine pressing playdough through a mold). It had never been done before, but the end result was durable, flexible and extremely thin: exactly what we needed.

And since the material can be implanted safely in the human body—it was also perfect as super strong sutures for after surgery.

4.      Plant pots that clean the air

image

It may surprise you, but the most polluted air you breathe is likely the air inside your home and office. That’s especially true these days with energy-efficient insulation: the hot air gets sealed in, but so do any toxins coming off the paint, furniture, cooking gas, etc.

This was a problem NASA began worrying about decades ago, when we started planning for long duration space missions. After all, there’s no environment more insulated than a spaceship flying through the vacuum of space.

On Earth, plants are a big part of the “life support” system cleaning our air, so we wondered if they could do the same indoors or in space.

The results from extensive research surprised us: we learned the most important air scrubbing happens not through a plant’s leaves, but around its roots. And now you can get the cleanest air out of your houseplants by using a special plant pot, available online, developed with that finding in mind: it maximizes air flow through the soil, multiplying the plant’s ability to clean your air.

5.      Gas sensor detects pollution from overhead

image

Although this next innovation wasn’t created with pollution in mind, it’s now helping keep an eye on one of the biggest greenhouse gasses: methane.

We created this tiny methane “sniffer” to help us look for signs of life on Mars. On Earth, the biggest source of methane is actually bacteria, so when one of our telescopes on the ground caught a glimpse of the gas on Mars, we knew we needed to take a closer look.

We sent this new, extremely sensitive sensor on the Curiosity Rover, but we knew it could also be put to good use here on our home planet.  We adapted it, and today it gets mounted on drones and cars to quickly and accurately detect gas leaks and methane emissions from pipelines, oil wells and more.

The sensor can also be used to better study emissions from swamps and other natural sources, to better understand and perhaps mitigate their effects on climate change.

6.      DNA “paint” highlights cellular damage

image

There’s been a lot of news lately about DNA editing: can genes be changed safely to make people healthier? Should they be?

As scientists and ethicists tackle these big questions, they need to be sure they know exactly what’s changing in the genome when they use the editing tools that already exist.

Well, thanks to a tool NASA helped create, we can actually highlight any abnormalities in the genetic code with special fluorescent “paint.”

But that’s not all the “paint” can do. We actually created it to better understand any genetic damage our astronauts incurred during their time in space, where radiation levels are far higher than on Earth. Down here, it could help do the same. For example, it can help doctors select the right cancer treatment by identifying the exact mutation in cancer cells.

You can learn more about all these innovations, and dozens more, in the 2019 edition of NASA Spinoff. Read it online or request a limited quantity print copy and we’ll mail it to you!


Tags
7 years ago

Spooky Sounds from Across the Solar System

Soaring to the depths of our universe, gallant spacecraft roam the cosmos, snapping images of celestial wonders. Some spacecraft have instruments capable of capturing radio emissions. When scientists convert these to sound waves, the results are eerie to hear.

In time for Halloween, we've put together a compilation of elusive "sounds" of howling planets and whistling helium that is sure to make your skin crawl.

Listen to a few here and visit our Soundcloud for more spooky sounds. 

Cassini Ring Crossing

This eerie audio represents data collected by our Cassini spacecraft, as it crossed through the gap between Saturn and its rings on April 26, 2017, during the first dive of the mission's Grand Finale. The instrument is able to record ring particles striking the spacecraft in its data. In the data from this dive, there is virtually no detectable peak in pops and cracks that represent ring particles striking the spacecraft. The lack of discernible pops and cracks indicates the region is largely free of small particles. 

Voyager Tsunami Waves in Interstellar Space 

Listen to this howling audio from our Voyager 1 spacecraft. Voyager 1 has experienced three "tsunami waves" in interstellar space. This kind of wave occurs as a result of a coronal mass ejection erupting from the Sun. The most recent tsunami wave that Voyager experienced began in February 2014, and may still be going. Listen to how these waves cause surrounding ionized matter to ring like a bell.

Voyager Sounds of Interstellar Space

Our Voyager 1 spacecraft captured these high-pitched, spooky sounds of interstellar space from October to November 2012 and April to May 2013.

The soundtrack reproduces the amplitude and frequency of the plasma waves as "heard" by Voyager 1. The waves detected by the instrument antennas can be simply amplified and played through a speaker. These frequencies are within the range heard by human ears.

When scientists extrapolated this line even further back in time (not shown), they deduced that Voyager 1 first encountered interstellar plasma in August 2012.

Plasma Sounds at Jupiter

Ominous sounds of plasma! Our Juno spacecraft has observed plasma wave signals from Jupiter’s ionosphere. The results in this video show an increasing plasma density as Juno descended into Jupiter’s ionosphere during its close pass by Jupiter on February 2, 2017.  

Roar of Jupiter

Juno's Waves instrument recorded this supernatural sounding encounter with the bow shock over the course of about two hours on June 24, 2016. "Bow shock" is where the supersonic solar wind is heated and slowed by Jupiter's magnetosphere. It is analogous to a sonic boom on Earth. The next day, June 25, 2016, the Waves instrument witnessed the crossing of the magnetopause. "Trapped continuum radiation" refers to waves trapped in a low-density cavity in Jupiter's magnetosphere.

Visit the NASA Soundcloud for more spooky space sounds: https://soundcloud.com/nasa/sets/spookyspacesounds

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Hi Serena, what made you think, yes, I want to be an astronaut? And what's your favourite aquatic animal?


Tags
9 years ago

Top 10 Ways the Space Station is Helping Get Us to Mars

Believe it or not, the International Space Station is paving our way to Mars. Being the only microgravity laboratory in which long-duration investigations can take place, it provides deeper understanding of how the human body reacts to long-term spaceflight. Here are the top 10 ways the space station is helping us on our journey to the Red Planet:

10: Communication Delays

image

Have you ever sent a text and got frustrated when it took longer than 3 seconds to send? Imaging communicating from Mars where round-trip delays could take up to 31 minutes! Our Comm Delay Assessment studies the effects of delayed communications for interplanetary crews that have to handle medical and other emergencies in deep space.

9. Astronaut Functional Performance

image

After a long nights sleep, do you ever feel a bit clumsy when you first get out of bed? Imagine how crew members might feel after spending six months to a year in microgravity! Our Field Test investigation is working to understand the extend of physical changes in astronauts who live in space for long periods of time, with an aim toward improving recovery time and developing injury prevention methods for future missions.

8. Psychological Impacts of Isolation and Confinement

image

In order to study the behavioral issues associated with isolation and confinement, researchers evaluate the personal journals of space station crew members. These study results provide information to help prepare us for longer duration spaceflight.

7. Impacts on Vision

image

Did you know that long duration spaceflight can often cause changes to crew members’ vision? It can, and our Ocular Health study monitors microgravity-induced visual impairment, as well as changes believed to arise from elevated intracranial pressure. All of this work hopes to characterize how living in microgravity can affect the visual, vascular and central nervous systems.

6. Immune Responses

image

An important aspect of our journey to Mars is the need to understand how long-duration spaceflight affects they way crew members’ bodies defend agains pathogens. Our Integrated Immune investigation collects and analyzes blood, urine and saliva samples from crew members before, during and after spaceflight to monitor changes in the immune system.

5. Food for Long-Duration Crews

image

Just like a hiker preparing for a long trek, packing the foods that will give you the most energy for the longest amount of time is key to your success. This is also true for astronauts on long-duration missions. Our Energy investigation measures a crew members’ energy requirements, which is a crucial factor needed for sending the correct amount of the right types of food to space.

4. Exercise for Long-Term Missions

image

Rigorous exercise is already a regular part of astronauts’ routines, and continuing that focus will be critical to keeping crew members’ bodies strong and ready for a mission to Mars and a healthy return to Earth. Our Sprint investigation is studying the best combination of intensity and duration for exercise in space.

3. Determine Best Habitat/Environment for Crews

image

Have you ever complained about your room being too small? Imagine living in cramped quarters with an entire crew for months on a Mars mission! Our Habitability investigation collects observations that will help spacecraft designers understand how much habitable volume is required, and whether a mission’s duration impacts how much space crew members need.

2. Growing Food in Space

image

There’s nothing like fresh food. Not only does it provide valuable nutrition for astronauts, but can also offer psychological benefits from tending and harvesting the crops. Our Veggie investigation studies how to best utilize a facility aboard the space station for growing fresh produce in microgravity.

1. Manufacturing Items in Space

image

When crews head to Mars, there may be items that are unanticipated or that break during the mission. Our 3-D Printing in Zero-G Technology Demonstration would give crews the ability to manufacture new objects on demand while in space.

Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com


Tags
5 years ago

What’s the best piece of advice you have ever received?


Tags
9 years ago

Space Launch System

image

Our Space Launch System (SLS) is an advanced launch vehicle for exploration beyond Earth’s orbit into deep space. SLS, the world’s most powerful rocket, will launch astronauts in our Orion spacecraft on missions to an asteroid and eventually to Mars!

image

A launch system required to carry humans faster and farther than ever before will need a powerful engine, aka the RS-25 engine. This engine makes a modern race car or jet engine look like a wind-up toy. With the ability to produce 512,000 pounds of trust, the RS-25 engine will produce 10% more thrust than the Saturn V rockets that launched astronauts on journeys to the moon!

image

Another consideration for using these engines for future spaceflight was that 16 of them already existed from the shuttle program. Using a high-performance engine that already existed gave us a considerable boost in developing its next rocket for space exploration.

Once ready, four RS-25 engines will power the core stage of our SLS into deep space and Mars.


Tags
Loading...
End of content
No more pages to load
  • confused-robot-cat
    confused-robot-cat liked this · 1 month ago
  • shattered-perception
    shattered-perception reblogged this · 1 month ago
  • shattered-perception
    shattered-perception liked this · 1 month ago
  • venkino
    venkino reblogged this · 1 month ago
  • fizzimus
    fizzimus reblogged this · 1 month ago
  • fizzimus
    fizzimus liked this · 1 month ago
  • irridreamz
    irridreamz liked this · 5 months ago
  • thefirsthoras
    thefirsthoras reblogged this · 5 months ago
  • florencemachina
    florencemachina liked this · 5 months ago
  • vicshush
    vicshush liked this · 5 months ago
  • spaaaceman
    spaaaceman liked this · 5 months ago
  • arcanelibrarian
    arcanelibrarian liked this · 5 months ago
  • toku-fangirl-2015
    toku-fangirl-2015 reblogged this · 5 months ago
  • toku-fangirl-2015
    toku-fangirl-2015 liked this · 5 months ago
  • megoosa
    megoosa reblogged this · 5 months ago
  • insanelogically
    insanelogically liked this · 5 months ago
  • useless-immortal
    useless-immortal reblogged this · 5 months ago
  • useless-immortal
    useless-immortal liked this · 5 months ago
  • amethystsoda
    amethystsoda reblogged this · 5 months ago
  • amethystsoda
    amethystsoda liked this · 5 months ago
  • golcochantreat
    golcochantreat liked this · 1 year ago
  • bokkiewokkie
    bokkiewokkie liked this · 2 years ago
  • whatifsandspheres
    whatifsandspheres reblogged this · 2 years ago
  • deadlysunlight
    deadlysunlight liked this · 2 years ago
  • friend-of-bots
    friend-of-bots reblogged this · 3 years ago
  • the-corvid-conundrum
    the-corvid-conundrum liked this · 3 years ago
  • nadjaofantipaxos8
    nadjaofantipaxos8 liked this · 3 years ago
  • whatifsandspheres
    whatifsandspheres reblogged this · 3 years ago
  • critical-eror
    critical-eror liked this · 3 years ago
  • huntertag
    huntertag liked this · 3 years ago
  • angery-budgie
    angery-budgie liked this · 3 years ago
  • licos-accidental-main-lol
    licos-accidental-main-lol liked this · 3 years ago
  • calicoboy
    calicoboy liked this · 3 years ago
  • babyhamburglar
    babyhamburglar reblogged this · 3 years ago
  • monobius
    monobius reblogged this · 3 years ago
  • monobius
    monobius liked this · 3 years ago
  • chocolatemysticmiss
    chocolatemysticmiss liked this · 4 years ago
  • mhmorrigan
    mhmorrigan reblogged this · 4 years ago
  • mhmorrigan
    mhmorrigan liked this · 4 years ago
  • patpatput
    patpatput liked this · 4 years ago
  • lightningwicket
    lightningwicket liked this · 4 years ago
  • broken-machine
    broken-machine reblogged this · 4 years ago
  • francisforeverr
    francisforeverr liked this · 4 years ago
  • mintycompass
    mintycompass reblogged this · 4 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags