Clay, Clouds And Curiosity

Clay, Clouds and Curiosity

image

Our Curiosity Mars rover recently drilled into the Martian bedrock on Mount Sharp and uncovered the highest amounts of clay minerals ever seen during the mission. The two pieces of rock that the rover targeted are nicknamed "Aberlady" and "Kilmarie" and they appear in a new selfie taken by the rover on May 12, 2019, the 2,405th Martian day, or sol, of the mission.

image

On April 6, 2019, Curiosity drilled the first piece of bedrock called Aberlady, revealing the clay cache. So, what’s so interesting about clay? Clay minerals usually form in water, an ingredient essential to life. All along its 7-year journey, Curiosity has discovered clay minerals in mudstones that formed as river sediment settled within ancient lakes nearly 3.5 billion years ago. As with all water on Mars, the lakes eventually dried up.

image

But Curiosity does more than just look at the ground. Even with all the drilling and analyzing, Curiosity took time on May 7, 2019 and May 12, 2019 to gaze at the clouds drifting over the Martian surface. Observing clouds can help scientists calculate wind speeds on the Red Planet.

For more on Curiosity and our other Mars missions like InSight, visit: https://mars.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

9 years ago

What are CubeSats?

CubeSats are a class of research spacecraft called nanosatellites. They provide low-cost opportunities for small satellite payloads to fly on rockets planned for upcoming launches. Small satellites, including CubeSats, are playing an increasingly larger role in exploration, technology demonstration, scientific research and educational investigations here at NASA. 

image

Fourteen miniature satellites were deployed from the International Space Station earlier this week. Two of the CubeSats were Danish and have communication and ship signal tracking capabilities. The remaining are Dove satellites from Planet Labs and will take images of Earth from space.

On Thursday, Oct. 8, thirteen CubeSats are scheduled to launch aboard a United Launch Alliance Atlas V rocket at 8:49 a.m. EDT. Watch live on NASA TV starting at 8:29 a.m. http://www.nasa.gov/nasatv

To learn more about tomorrow’s launch, watch NASA Television today, Oct. 7 at 1 p.m. and 2 p.m. EDT. The briefings will highlight the growing importance of CubeSats in space exploration.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Solar System 10 Things to Know: Planetary Atmospheres

Every time you take a breath of fresh air, it’s easy to forget you can safely do so because of Earth’s atmosphere. Life on Earth could not exist without that protective cover that keeps us warm, allows us to breathe and protects us from harmful radiation—among other things.

What makes Earth’s atmosphere special, and how do other planets’ atmospheres compare? Here are 10 tidbits:

1. On Earth, we live in the troposphere, the closest atmospheric layer to Earth’s surface. “Tropos” means “change,” and the name reflects our constantly changing weather and mixture of gases. 

Solar System 10 Things To Know: Planetary Atmospheres

It’s 5 to 9 miles (8 to 14 kilometers) thick, depending on where you are on Earth, and it’s the densest layer of atmosphere. When we breathe, we’re taking in an air mixture of about 78 percent nitrogen, 21 percent oxygen and 1 percent argon, water vapor and carbon dioxide. More on Earth’s atmosphere›

Solar System 10 Things To Know: Planetary Atmospheres

2. Mars has a very thin atmosphere, nearly all carbon dioxide. Because of the Red Planet’s low atmospheric pressure, and with little methane or water vapor to reinforce the weak greenhouse effect (warming that results when the atmosphere traps heat radiating from the planet toward space), Mars’ surface remains quite cold, the average surface temperature being about -82 degrees Fahrenheit (minus 63 degrees Celsius). More on the greenhouse effect›

Solar System 10 Things To Know: Planetary Atmospheres

3. Venus’ atmosphere, like Mars’, is nearly all carbon dioxide. However, Venus has about 154,000 times more carbon dioxide in its atmosphere than Earth (and about 19,000 times more than Mars does), producing a runaway greenhouse effect and a surface temperature hot enough to melt lead. A runaway greenhouse effect is when a planet’s atmosphere and surface temperature keep increasing until the surface gets so hot that its oceans boil away. More on the greenhouse effect›

Solar System 10 Things To Know: Planetary Atmospheres

4. Jupiter likely has three distinct cloud layers (composed of ammonia, ammonium hydrosulfide and water) in its "skies" that, taken together, span an altitude range of about 44 miles (71 kilometers). The planet's fast rotation—spinning once every 10 hours—creates strong jet streams, separating its clouds into dark belts and bright zones wrapping around the circumference of the planet. More on Jupiter›

Solar System 10 Things To Know: Planetary Atmospheres

5. Saturn’s atmosphere—where our Cassini spacecraft ended its 13 extraordinary years of exploration of the planet—has a few unusual features. Its winds are among the fastest in the solar system, reaching speeds of 1,118 miles (1,800 kilometers) per hour. Saturn may be the only planet in our solar system with a warm polar vortex (a mass of swirling atmospheric gas around the pole) at both the North and South poles. Also, the vortices have “eye-wall clouds,” making them hurricane-like systems like those on Earth.

Another uniquely striking feature is a hexagon-shaped jet streamencircling the North Pole. In addition, about every 20 to 30 Earth years, Saturn hosts a megastorm (a great storm that can last many months). More on Saturn›

Solar System 10 Things To Know: Planetary Atmospheres

6. Uranus gets its signature blue-green color from the cold methane gas in its atmosphere and a lack of high clouds. The planet’s minimum troposphere temperature is 49 Kelvin (minus 224.2 degrees Celsius), making it even colder than Neptune in some places. Its winds move backward at the equator, blowing against the planet’s rotation. Closer to the poles, winds shift forward and flow with the planet’s rotation. More on Uranus›

Solar System 10 Things To Know: Planetary Atmospheres

7. Neptune is the windiest planet in our solar system. Despite its great distance and low energy input from the Sun, wind speeds at Neptune surpass 1,200 miles per hour (2,000 kilometers per hour), making them three times stronger than Jupiter’s and nine times stronger than Earth’s. Even Earth's most powerful winds hit only about 250 miles per hour (400 kilometers per hour). Also, Neptune’s atmosphere is blue for the very same reasons as Uranus’ atmosphere. More on Neptune›

Solar System 10 Things To Know: Planetary Atmospheres

8. WASP-39b, a hot, bloated, Saturn-like exoplanet (planet outside of our solar system) some 700 light-years away, apparently has a lot of water in its atmosphere. In fact, scientists estimate that it has about three times as much water as Saturn does. More on this exoplanet›

Solar System 10 Things To Know: Planetary Atmospheres

9. A weather forecast on “hot Jupiters”—blistering, Jupiter-like exoplanets that orbit very close to their stars—might mention cloudy nights and sunny days, with highs of 2,400 degrees Fahrenheit (about 1,300 degrees Celsius, or 1,600 Kelvin). Their cloud composition depends on their temperature, and studies suggest that the clouds are unevenly distributed. More on these exoplanets›

Solar System 10 Things To Know: Planetary Atmospheres

10. 55 Cancri e, a “super Earth” exoplanet (a planet outside of our solar system with a diameter between Earth’s and Neptune’s) that may be covered in lava, likely has an atmosphere containing nitrogen, water and even oxygen–molecules found in our atmosphere–but with much higher temperatures throughout. Orbiting so close to its host star, the planet could not maintain liquid water and likely would not be able to support life. More on this exoplanet›

Read the full version of this week’s Solar System 10 Things to Know HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
3 years ago
Spread Your Cosmic Wings 🦋

Spread your cosmic wings 🦋

The Butterfly Nebula, created by a dying star, was captured by the Hubble Space Telescope in this spectacular image. Observations were taken over a more complete spectrum of light, helping researchers better understand the “wings'' of gas bursting out from its center. The nebula’s dying central star has become exceptionally hot, shining ultraviolet light brightly over the butterfly’s wings and causing the gas to glow.

Learn more about Hubble’s celebration of Nebula November and see new nebula images, here.

You can also keep up with Hubble on Twitter, Instagram, Facebook, and Flickr!

Image credits: NASA, ESA, and J. Kastner (RIT)


Tags
6 years ago

Small Businesses Help Us Explore Space!

Earlier this month, Congress introduced a resolution officially recognizing Nov. 24, 2018 as Small Business Saturday “to increase awareness of the value of locally owned small businesses and the impact of locally owned small businesses on the economy of the United States.”

This annual American Express campaign began on the Saturday after Thanksgiving in 2010 to support “local places that make our communities strong.”

image

For 60 years, we have supported and partnered with small businesses across the country to pioneer the future of space exploration, scientific discovery and aeronautics research.

Our Small Business Innovative Research (SBIR) and Small Business Technology Transfer (STTR) program funds the research, development and demonstration of innovative technologies that help address space exploration challenges and have significant potential for commercialization. In 2018, our program awarded 555 contracts to small businesses for a total of $180.1 million.

image

NASA works with small business Nanocomp Technologies Inc. of Merrimack, New Hampshire, to advance manufacturing of carbon nanotube composite materials.

Our investments in small businesses help equip future missions to the Moon, Mars and beyond by advancing our science and technology capabilities. They also benefit the U.S. economy. The SBIR/STTR program’s 2017 Economic Impact Report indicated a $2.74 return for every dollar spent on awards—money well spent!

Small businesses also contribute to scientific advances for the International Space Station as well as here on Earth. Pancopia, Inc. in Hampton, Virginia, developed an innovative, high-performance water recycling system to remove high levels of organic carbon and nitrogen in wastewater. Recycling water in space saves money on resupply and enables more Earth-independence and self-reliance. With the help of an SBIR award, Pancopia is also working on a similar system for public wastewater that has the potential to cut treatment expenses to less than half the current costs.

image

Small businesses also contribute to scientific advances for the International Space Station as well as here on Earth. Pancopia, Inc. in Hampton, Virginia, developed an innovative, high-performance water recycling system to remove high levels of organic carbon and nitrogen in wastewater. Recycling water in space saves money on resupply and enables more Earth-independence and self-reliance. With the help of an SBIR award, Pancopia is also working on a similar system for public wastewater that has the potential to cut treatment expenses to less than half the current costs.

image

When NASA went to the private sector to develop deformable mirror technology—a key component of starlight-blocking instruments—a small business in Berkeley, California, applied for research and development funding through SBIR to design extra-precision, segmented mirrors. This innovative approach for a small deformable mirror made up of many tiny hexagonal segments enables advanced control when paired with other optics.

image

Data collected by a telescope using the Iris AO deformable mirror can be used to determine if the target investigated in space is an exoplanet based on its orbit, and if the exoplanet has atmosphere using color spectrum imaging analysis. The Iris AO technology is currently being refined and prepared for inclusion in a future exoplanet mission.

Does your small business have a big idea? Your next opportunity to join our SBIR/STTR program starts on Jan. 7, 2019, when our next solicitation opens. We’ll be seeking new innovative ideas from small businesses and research institutions for research, development and demonstration of innovative technologies. Go to https://www.nasa.sbir.gov/ to learn more.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Discover NASA Technology in Your Life

Have you ever wondered how space exploration impacts you? “Spinoffs” are products and services developed from NASA technology or improved through NASA partnerships. These innovations—first created to help explore space and study Earth—are responsible for billions of dollars in both revenue and saved costs, tens of thousands of jobs created, and for changing the world around us.

Our NASA Home & City interactive web platform allows you to explore some of the spinoff technologies you can find in your everyday life, demonstrating the wider benefits of America’s investments in its space program.

image

Here are the seven most unexpected items you can find in your homes and cities which were “spun off” from technologies to enable the study and exploration of space.

1. Wireless Headsets

“That’s one small step for man, one giant leap for mankind.” On July 20, 1969, millions were glued to their television sets when NASA astronaut Neil Armstrong offered these famous words via live broadcast, upon becoming the first man to ever step foot on the Moon. This historic transmission was delivered from Armstrong’s headset to the headsets of Mission Control personnel at NASA, and then on to the world.

Improved by the technology that carried Neil Armstrong’s words, more compact and comfortable headsets were developed for airline pilots in the 1960s and '70s. Today those advancements continue to evolve in all forms of communications and telephone equipment. Mobile headsets provide greater efficiency and flexibility for everyone from professionals to video gamers.

image

2. Water Quality Monitoring

On the International Space Station very little goes to waste. This includes water, which is recovered from every possible source, cleaned and recycled.

Following our development of a simplified bacteria test for water quality on the space station, one engineer created a foundation to distribute test kits suitable for use in rural communities around the world. Water contamination is still a major problem in many places, and the test helps local communities and governments obtain and share water quality data using a smartphone app.

3. Skin Cream

We know that on Earth, gravity is a constant. For astronauts in orbit, however, it’s a different story—and according to a scientist at NASA's Johnson Space Center, studying what happens to bodies in microgravity “can lead to significant new discoveries in human biology for the benefit of humankind.”

As our researchers experimented with replicating microgravity conditions in the lab, they invented a bioreactor that could help simulate conditions that human cells experience in a space-like environment. This allowed them to perform tissue-growth experiments on the ground and in space, and eventually, to consider the question of how to protect human cells from the toxic effects of long-duration space missions.

Now, thanks to this NASA-patented bioreactor, one company uses agents from human cells that produce collagen to enrich its skin cream products. Lab tests have shown the rejuvenating cream to increase skin moisture content by 76 percent and reduce darkness and wrinkles by more than 50 percent.

image

4. Acoustic Guitars

From its start, NASA has innovated in all branches of aeronautics, which has led to numerous advances in helicopters, including ways to limit vibrations as they fly and advanced composites to build tougher, safer vehicles. 

An industrious helicopter manufacturer that built up its expertise with NASA contracts later used the same special vibration analysis equipment to enhance the sound of acoustic guitars. The company also built the body out of a fiberglass composite used for rotor blades. The resulting instruments are stronger and less expensive to produce than those of traditional rosewood and produce a rich, full sound.

image

5. Tiny [Mobile] Homes

While the International Space Station is the largest spacecraft ever flown—it's about the size of a football field—living and working space for astronauts is still at a premium. NASA created a studio called the Habitability Design Center to experiment with the interior design of spacecraft to maximize usable space and make scientific research as efficient and effective as possible.

An architect who helped NASA design the interior of the International Space Station launched a company specializing in compact trailers for camping and exploration. Suitable for a full hookup campsite or going completely off-grid, the company's flagship trailer can accommodate two adults and two children for sleeping and can be customized with a range of features including a shower, refrigerator, toilet, and more. And it all fits into a unit light enough to be towed by a four-cylinder car.

image

6. Blue Light Blocking Ski Goggles

Skiers and snowboarders face extremely bright sunlight, especially when it's reflected off the white snow. That can make it hard to see, and not just because of glare. The blue in sunlight makes it more difficult to discern colors at the edge of the visible light spectrum, like reds. A NASA-designed filter used in snow goggles helps block up to 95 percent of blue light, making it easier for people on the slopes to see the terrain clearly.

image

7. Implants for the Hearing Impaired

Hearing aids, which make sound louder, can only do so much for those who were born or have become deaf. Cochlear implants work in a completely different way, converting sound into digital signals that can be processed by the brain.  And the technology traces back in part to a NASA space shuttle engineer who used skills in electronics instrumentation and his own experiences with hearing loss to develop an early version of the life-changing device.

image

These are just a few examples of thousands of NASA Spinoff and dual-purpose technologies benefiting the world around us. 

Trace space back to you and visit NASA Home and City today!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
4 years ago

Stars, Sea, and Smoke from the ISS: Tournament Earth 2021

We started Tournament Earth with 32 photos taken by astronauts from the Interantional Space Station and now we are down to 8. All of the #1 seeds are gone. Two #8 seeds are dominating their groups. Who will win? Let's take a closer look at the competitors still in the game. Then remember to vote for your favorites. The champion will be announced on April 13, 2021.

Stars in Motion vs. Cleveland Volcano

This matchup pits smoke against stars, but both have interesting stories.

Stars, Sea, And Smoke From The ISS: Tournament Earth 2021

The International Space Station (ISS) is constantly in motion. For astronaut photographers on board, that motion has consequences. For one, it makes it challenging to take photos. The same motion makes it possible to shoot spectacular photos like the one above. The image is compiled from a series of photographs taken by astronaut Don Pettit while he was onboard the ISS in April 2012. This composite was made from more than 72 individual long-exposure photographs taken over several minutes as the ISS traveled over the Caribbean Sea, across South America, and over the South Atlantic Ocean.

Stars, Sea, And Smoke From The ISS: Tournament Earth 2021

Astronaut Jeff Williams was the first to witness activity at the Cleveland Volcano on May 3, 2006. The Cleveland Volcano is one of the most active in the Aleutian Islands, which extend west-southwest from the Alaska mainland. It is a stratovolcano composed of alternating layers of hardened lava, compacted volcanic ash, and volcanic rocks. The event proved to be short-lived; two hours later, the plume had completely detached from the volcano. The ash cloud height could have been as high as 6,000 meters (20,000 feet) above sea level.

Stargazing from the ISS vs. Cruising Past the Aurora Borealis

This is the most stellar matchup of the tournament, literally. Two beloved star pictures face off in what will be one of the most difficult choices of the tournament.

Stars, Sea, And Smoke From The ISS: Tournament Earth 2021

An astronaut took this broad, short-lens photograph of Earth’s night lights while looking out over the remote reaches of the central equatorial Pacific Ocean. The ISS was passing over the island nation of Kiribati at the time, about 2600 kilometers (1,600 miles) south of Hawaii. Scientists identified the pattern of stars in the photo as our Milky Way galaxy (looking toward its center). The dark patches are dense dust clouds in an inner spiral arm of our galaxy; such clouds can block our view of stars toward the center. The curvature of the Earth crosses the center of the image and is illuminated by a variety of airglow layers in orange, green, and red.

Stars, Sea, And Smoke From The ISS: Tournament Earth 2021

Commonly known as the northern lights, these colorful ribbons of light appear to dance in the sky over the planet’s high latitudes, attracting sky chasers and photographers. Astronaut Randy “Komrade” Bresnik shot this photograph on September 15, 2017, as the space station passed over Ontario, Canada. Curtains of green—the most familiar color of auroras—dominate the light show, with hints of purple and red.

Rolling Through the Appalachians vs. Castellanus Cloud Tower

Stars, Sea, And Smoke From The ISS: Tournament Earth 2021

The Susquehanna River cuts through the folds of the Valley-and-Ridge province of the Appalachian Mountains in this photograph taken from the International Space Station by astronaut Christina Koch. The Valley-and-Ridge province is a section of the larger Appalachian Mountain Belt between the Appalachian Plateau and the Blue Ridge physiographic provinces. The northeast-southwest trending ridges are composed of Early Paleozoic sedimentary rocks. The valleys between them were made of softer rocks (limestone and shales) that were more susceptible to erosion; they are now occupied by farms.

Stars, Sea, And Smoke From The ISS: Tournament Earth 2021

An astronaut aboard the International Space Station took this photograph of a massive vertical cloud formation—known to meteorologists as cumulus castellanus—above Andros Island. The cloud name castellanus comes from the similarity to the crenellated towers or turrets of medieval castles. These clouds develop due to strong vertical air movement typically associated with thunderstorms.

Lake Van, Turkey vs. Typhoon Maysak from the Space Station

Stars, Sea, And Smoke From The ISS: Tournament Earth 2021

While orbiting on the International Space Station, astronaut Kate Rubins shot this photograph of part of Lake Van in Turkey, the largest soda or alkaline lake on Earth. Generally, soda lakes are distinguished by high concentrations of carbonate species. Lake Van is an endorheic lake—it has no outlet, so its water disappears by evaporation—with a pH of 10 and high salinity levels.

Stars, Sea, And Smoke From The ISS: Tournament Earth 2021

This photograph of super typhoon Maysak was taken by European Space Agency astronaut Samantha Cristoforetti as the International Space Station passed near the storm on March 31, 2015. The category 4 typhoon was headed for a possible landfall in the Philippines by the end of the week. It was unusual for the western Pacific to see such a strong storm so early in the year.

See all of the images and vote HERE. Follow @NASAEarth on social media for updates.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Solar System: Things to Know This Week

Our Juno mission has been exploring Jupiter since July 2016 with a special passenger on board: JunoCam, an instrument designed to take spectacular close-up color images of the largest planet in our solar system. From the raw images, citizen scientists have processed a range of beautiful photographs that highlight Jupiter's features, even turning them into works of art. Below, 10 stunning images JunoCam has given us over the past year.

1. Jovian tempest. 

Solar System: Things To Know This Week

This color-enhanced image of a massive, raging storm in Jupiter's northern hemisphere was captured by our Juno spacecraft during its ninth close flyby on Oct. 24, 2017. The storm is rotating counter-clockwise with a wide range of cloud altitudes, and the darker clouds are expected to be deeper in the atmosphere than the brightest clouds.

2. A southern stunner. 

Solar System: Things To Know This Week

Jupiter's southern hemisphere shows off in beautiful detail in this image taken on Oct. 24, 2017. The color-enhanced view captures one of the white ovals in the "String of Pearls," one of eight massive rotating storms at 40 degrees south latitude on the gas giant planet.

3. Dreaming in color. 

Solar System: Things To Know This Week

Artist Mik Petter created this unique digital piece using data from the JunoCam. The art form, known as fractals, uses mathematical formulas to create an infinite variety of form, detail, color and light. The original JunoCam image was taken on July 10, 2017.

4. Jovian moon shadow. 

Solar System: Things To Know This Week

Jupiter's moon Amalthea casts a shadow on the gas giant planet in this image taken on Sept. 1, 2017. The elongated shape of the shadow is a result of both the location of the moon with relation to Jupiter in this image as well as the irregular shape of the moon itself.

5. 95 minutes over Jupiter. 

Solar System: Things To Know This Week

Once every 53 days, Juno swings close to Jupiter, speeding over its clouds. In about two hours, the spacecraft travels from a perch over Jupiter's north pole through its closest approach (perijove), then passes over the south pole on its way back out. This sequence shows 11 color-enhanced images from Perijove 8 (Sept. 1, 2017) with the south pole on the left (11th image in the sequence) and the north pole on the right (first image in the sequence).

6. Soaring high. 

Solar System: Things To Know This Week

This striking image of Jupiter was taken on Sept. 1, 2017 as Juno performed its eighth flyby. The spacecraft was 4,707 miles (7,576 kilometers) from the tops of the clouds of the planet at a latitude of about -17.4 degrees. Noteworthy: "Whale's Tail" and "Dan's Spot."

7. In true color. 

Solar System: Things To Know This Week

This true-color image offers a natural color rendition of what the Great Red Spot and surrounding areas would look like to human eyes from Juno's position. The image was taken on July 10, 2017 as the Juno spacecraft performed its seventh close flyby of Jupiter.

8. The 'face' of Jupiter. 

Solar System: Things To Know This Week

JunoCam images aren't just for art and science—sometimes they're created for a good chuckle. This image, processed by citizen scientist Jason Major, is titled "Jovey McJupiterface." By rotating the image 180 degrees and orienting it from south up, two white oval storms turn into eyeballs, and the "face" of Jupiter is revealed. The original image was taken by the Juno spacecraft on May 19, 2017.

9. Bands of clouds. 

Solar System: Things To Know This Week

This enhanced-color image of Jupiter's bands of light and dark clouds was created by citizen scientists Gerald Eichstädt and Seán Doran. Three of the white oval storms known as the "String of Pearls" are visible near the top of the image. Each of the alternating light and dark atmospheric bands in this image is wider than Earth, and each rages around Jupiter at hundreds of miles (kilometers) per hour. The lighter areas are regions where gas is rising, and the darker bands are regions where gas is sinking. Juno captured the image on May 19, 2017.

10. The edge. 

Solar System: Things To Know This Week

This enhanced-color image of a mysterious dark spot on Jupiter seems to reveal a Jovian "galaxy" of swirling storms. Juno captured this image on Feb. 2, 2017 and citizen scientist Roman Tkachenko enhanced the color to bring out the rich detail in the storm and surrounding clouds. Just south of the dark storm is a bright, oval-shaped storm with high, bright, white clouds, reminiscent of a swirling galaxy. As a final touch, he rotated the image 90 degrees, turning the picture into a work of art.

To learn more about the Juno mission at Jupiter, visit: www.nasa.gov/juno. 

Follow the Juno mission on Facebook, Instagram and Twitter. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.   


Tags
8 years ago

Under Pressure

Structural Tests Underway for Top of World's Most Powerful Rocket

image

Testing is underway at NASA’s Marshall Space Flight Center in Huntsville, Alabama, on the agency’s new Space Launch System, the world’s most powerful rocket. SLS and NASA’s Orion spacecraft will enable deep-space missions, beginning a new era of exploration beyond Earth’s orbit.

image

Engineers at Marshall have stacked four qualification articles of the upper part of SLS into a 65-foot-tall test stand using more than 3,000 bolts to hold the hardware together. Tests are currently underway to ensure the rocket hardware can withstand the pressures of launch and flight. 

The integrated tests consists of:

1. Launch Vehicle Adapter

2. Frangible Joint Assembly

3. Interim Cryogenic Propulsion Stage

4. Orion Stage Adapter

image

Engineers are using 28 load pistons to push, pull and twist the rocket hardware, subjecting it to loads up to 40 percent greater than that expected during flight. More than 100 miles of cables are transmitting measurements across 1,900 data channels.

image

The Launch Vehicle Stage Adapter, LVSA, connects the SLS core stage and the Interim Cryogenic Propulsion Stage, ICPS. The LVSA test hardware is 26.5 feet tall, with a bottom diameter of 27.5 feet and a top diameter of 16.8 feet. The frangible joint, located between the LVSA and ICPS, is used to separate the two pieces of hardware during flight, allowing the ICPS to provide the thrust to send Orion onto its mission.

image

The ICPS is a liquid oxygen/liquid hydrogen-based system that will give Orion the big, in-space push needed to fly beyond the moon before it returns to Earth on the first flight of SLS in 2018. For this test series, the fuel tanks are filled with nonflammable liquid nitrogen and pressurized with gaseous nitrogen to simulate flight conditions. The nitrogen is chilled to the same temperature as the oxygen and hydrogen under launch conditions.

image

The Orion Stage Adapter connects the Orion spacecraft to the ICPS. It is 4.8 feet tall, with a 16.8-foot bottom diameter and 18-foot top diameter.

image

The first integrated flight for SLS and Orion will allow NASA to use the lunar vicinity as a proving ground to test systems farther from Earth, and demonstrate Orion can get to a stable orbit in the area of space near the moon in order to support sending humans to deep space, including the Journey to Mars. 

For more information about the powerful SLS rocket, check out: http://nasa.gov/SLS. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com/.


Tags
4 years ago

Tracking the Sun’s Cycles

Scientists just announced that our Sun is in a new cycle.

Solar activity has been relatively low over the past few years, and now that scientists have confirmed solar minimum was in December 2019, a new solar cycle is underway — meaning that we expect to see solar activity start to ramp up over the next several years.

image

The Sun goes through natural cycles, in which the star swings from relatively calm to stormy. At its most active — called solar maximum — the Sun is freckled with sunspots, and its magnetic poles reverse. At solar maximum, the Sun’s magnetic field, which drives solar activity, is taut and tangled. During solar minimum, sunspots are few and far between, and the Sun’s magnetic field is ordered and relaxed.

image

Understanding the Sun’s behavior is an important part of life in our solar system. The Sun's violent outbursts can disturb the satellites and communications signals traveling around Earth, or one day, Artemis astronauts exploring distant worlds. Scientists study the solar cycle so we can better predict solar activity.

image

Measuring the solar cycle

Surveying sunspots is the most basic of ways we study how solar activity rises and falls over time, and it’s the basis of many efforts to track the solar cycle. Around the world, observers conduct daily sunspot censuses. They draw the Sun at the same time each day, using the same tools for consistency. Together, their observations make up the international sunspot number, a complex task run by the World Data Center for the Sunspot Index and Long-term Solar Observations, at the Royal Observatory of Belgium in Brussels, which tracks sunspots and pinpoints the highs and lows of the solar cycle. Some 80 stations around the world contribute their data.

image

Credit: USET data/image, Royal Observatory of Belgium, Brussels

Other indicators besides sunspots can signal when the Sun is reaching its low. In previous cycles, scientists have noticed the strength of the Sun’s magnetic field near the poles at solar minimum hints at the intensity of the next maximum. When the poles are weak, the next peak is weak, and vice versa.

Another signal comes from outside the solar system. Cosmic rays are high-energy particle fragments, the rubble from exploded stars in distant galaxies that shoot into our solar system with astounding energy. During solar maximum, the Sun’s strong magnetic field envelops our solar system in a magnetic cocoon that is difficult for cosmic rays to infiltrate. In off-peak years, the number of cosmic rays in the solar system climbs as more and more make it past the quiet Sun. By tracking cosmic rays both in space and on the ground, scientists have yet another measure of the Sun’s cycle.

image

Since 1989, an international panel of experts—sponsored by NASA and NOAA—meets each decade to make their prediction for the next solar cycle. The prediction includes the sunspot number, a measure of how strong a cycle will be, and the cycle’s expected start and peak. This new solar cycle is forecast to be about the same strength as the solar cycle that just ended — both fairly weak. The new solar cycle is expected to peak in July 2025.

Learn more about the Sun’s cycle and how it affects our solar system at nasa.gov/sunearth.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
4 years ago

Next stop: Mars! Watch NASA's Perseverance Rover Attempt the Most Dangerous Landing to Date on Feb. 18

Tomorrow, Feb. 18, 2021, our most advanced rover named Perseverance will attempt a precision landing in Mars' Jezero Crater. Her mission is to search for signs of ancient life in the planet's geology and test technology that will pave the way for future human missions to the Moon and Mars. Excited yet? Get this:

Perseverance is ferrying 25 cameras to the Red Planet — the most ever flown in the history of deep-space exploration — so get ready to see Mars like never before! For more mission quick facts, click here.

When to watch:

Date: Feb. 18

Time: Live coverage starts at 2:15 p.m. EST (19:15 UTC)

SET A REMINDER & WATCH LIVE HERE

Want to join the #CountdownToMars? We created a virtual Mars photo booth, have sounds of Mars to listen to and more for all you Earthlings to channel your inner Martian. Check out ways to participate HERE.

If you want to follow Perseverance's journey on the Red Planet, be sure to follow her on Facebook and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • ophis969
    ophis969 liked this · 3 years ago
  • davy-crocket
    davy-crocket liked this · 4 years ago
  • sakurazero10
    sakurazero10 reblogged this · 4 years ago
  • sakurazero10
    sakurazero10 liked this · 4 years ago
  • tommyvlogs
    tommyvlogs liked this · 4 years ago
  • trinns
    trinns liked this · 4 years ago
  • annapolisrose
    annapolisrose liked this · 4 years ago
  • fabien-euskadi
    fabien-euskadi reblogged this · 4 years ago
  • fabien-euskadi
    fabien-euskadi liked this · 4 years ago
  • prime-headassery
    prime-headassery liked this · 4 years ago
  • abhor1244
    abhor1244 reblogged this · 4 years ago
  • abhor1244
    abhor1244 liked this · 4 years ago
  • memory-diagnostic
    memory-diagnostic liked this · 5 years ago
  • coolmountainwolf55
    coolmountainwolf55 liked this · 5 years ago
  • crab73
    crab73 liked this · 5 years ago
  • sleepkingk
    sleepkingk liked this · 5 years ago
  • supermassivespacebabe
    supermassivespacebabe reblogged this · 5 years ago
  • usethenoose
    usethenoose liked this · 5 years ago
  • mmidl
    mmidl reblogged this · 5 years ago
  • tnw14
    tnw14 liked this · 5 years ago
  • goodolterrafirma
    goodolterrafirma liked this · 5 years ago
  • grahambutcher
    grahambutcher liked this · 5 years ago
  • redglobalpress
    redglobalpress liked this · 5 years ago
  • manawoc
    manawoc liked this · 5 years ago
  • mppcmanual
    mppcmanual liked this · 5 years ago
  • maxxdollars
    maxxdollars liked this · 5 years ago
  • ragdollphys
    ragdollphys liked this · 5 years ago
  • frank-o-meter
    frank-o-meter reblogged this · 5 years ago
  • melspissa-blog
    melspissa-blog liked this · 5 years ago
  • class42warship
    class42warship liked this · 5 years ago
  • gentianablue
    gentianablue reblogged this · 5 years ago
  • morimyth
    morimyth liked this · 5 years ago
  • morimyth
    morimyth reblogged this · 5 years ago
  • random-beanie
    random-beanie liked this · 5 years ago
  • veesci
    veesci reblogged this · 5 years ago
  • veesci
    veesci liked this · 5 years ago
  • constancelight
    constancelight reblogged this · 5 years ago
  • constancelight
    constancelight liked this · 5 years ago
  • ahellishhound
    ahellishhound reblogged this · 5 years ago
  • silentsnowflakemika
    silentsnowflakemika liked this · 5 years ago
  • illusiax
    illusiax reblogged this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags