... and we’re ‘GO’ for launch! 🚀
NASA Flight Integration Chief and past Mission Control Flight Director, Ginger Kerrick, is here answering your questions during this Tumblr Answer Time. Tune in and join the fun!
In between the planets, stars and other bits of rock and dust, space seems pretty much empty. But the super-spread out matter that is there follows a different set of rules than what we know here on Earth.
For the most part, what we think of as empty space is filled with plasma. Plasma is ionized gas, where electrons have split off from positive ions, creating a sea of charged particles. In most of space, this plasma is so thin and spread out that space is still about a thousand times emptier than the vacuums we can create on Earth. Even still, plasma is often the only thing out there in vast swaths of space — and its unique characteristics mean that it interacts with electric and magnetic fields in complicated ways that we are just beginning to understand.
Five years ago, we launched a quartet of satellites to study one of the most important yet most elusive behaviors of that material in space — a kind of magnetic explosion that had never before been adequately studied up close, called magnetic reconnection. Here are five of the ways the Magnetospheric Multiscale mission (MMS) has helped us study this intriguing magnetic phenomenon.
Magnetic reconnection is the explosive snapping and forging of magnetic fields, a process that can only happen in plasmas — and it's at the heart of space weather storms that manifest around Earth.
When the Sun launches clouds of solar material — which is also made of plasma — toward Earth, the magnetic field embedded within the material collides with Earth's huge global magnetic field. This sets off magnetic reconnection that injects energy into near-Earth space, triggering a host of effects — induced electric currents that can harm power grids, to changes in the upper atmosphere that can affect satellites, to rains of particles into the atmosphere that can cause the glow of the aurora.
Though scientists had theorized about magnetic reconnection for decades, we'd never had a chance to study it on the small scales at which it occurs. Determining how magnetic reconnection works was one of the key jobs MMS was tasked with — and the mission quickly delivered. Using instruments that measured 100 times faster than previous missions, the MMS observations quickly determined which of several 50-year-old theories about magnetic reconnection were correct. It also showed how the physics of electrons dominates the process — a subject of debate before the launch.
In the five years after launch, MMS made over a thousand trips around Earth, passing through countless magnetic reconnection events. It saw magnetic reconnection where scientists first expected it: at the nose of Earth's magnetic field, and far behind Earth, away from the Sun. But it also found this process in some unexpected places — including a region thought to be too tumultuous for magnetic reconnection to happen.
As solar material speeds away from the Sun in a flow called the solar wind, it piles up as it encounters Earth's magnetic field, creating a turbulent region called the magnetosheath. Scientists had only seen magnetic reconnection happening in relatively calm regions of space, and they weren't sure if this process could even happen in such a chaotic place. But MMS' precise measurements revealed that magnetic reconnection happens even in the magnetosheath.
MMS also spotted magnetic reconnection happening in giant magnetic tubes, leftover from earlier magnetic explosions, and in plasma vortices shaped like ocean waves — based on the mission's observations, it seems magnetic reconnection is virtually ubiquitous in any place where opposing magnetic fields in a plasma meet.
Magnetic reconnection is one of the major ways that energy is transferred in plasma throughout the universe — and the MMS mission discovered that tiny electrons hold the key to this process.
Electrons in a strong magnetic field usually exhibit a simple behavior: They spin tight spirals along the magnetic field. In a weaker field region, where the direction of the magnetic field reverses, the electrons go freestyle — bouncing and wagging back and forth in a type of movement called Speiser motion.
Flying just 4.5 miles apart, the MMS spacecraft measured what happens in a magnetic field with intermediate strength: These electrons dance a hybrid, meandering motion — spiraling and bouncing about before being ejected from the region. This takes away some of the magnetic field’s energy.
Before we had direct measurements from the MMS mission, computer simulations were the best tool scientists had to study plasma's unusual magnetic behavior in space. But MMS' data has revealed that these processes are even more surprising than we thought — showing us new electron-scale physics that computer simulations are still trying to catch up with. Having such detailed data has spurred theoretical physicists to rethink their models and understand the specific mechanisms behind magnetic reconnection in unexpected ways.
Although MMS studies plasma near Earth, what we learn helps us understand plasma everywhere. In space, magnetic reconnection happens in explosions on the Sun, in supernovas, and near black holes.
These magnetic explosions also happen on Earth, but only under the most extreme circumstances: for example, in nuclear fusion experiments. MMS' measurements of plasma's behavior are helping scientists better understand and potentially control magnetic reconnection, which may lead to improved nuclear fusion techniques to generate energy more efficiently.
This quartet of spacecraft was originally designed for a two-year mission, and they still have plenty of fuel left — meaning we have the chance to keep uncovering new facets of plasma's intriguing behavior for years to come. Keep up with the latest on the mission at nasa.gov/mms.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Galaxies are like cities made of oodles of stars, gas, and dust bound together by gravity. These beautiful cosmic structures come in many shapes and sizes. Though there are a slew of galaxies in the universe, there are only a few we can see with the unaided eye or backyard telescope.
How many types are out there, how’d so many of them wind up with weird names, and how many stars live inside them? Hold tight while we explore these cosmic metropolises.
Galaxies come in lots of different shapes, sizes, and colors. But astronomers have noticed that there are mainly three types: spiral, elliptical, and irregular.
Spiral galaxies, like our very own Milky Way, look similar to pinwheels! These galaxies tend to have a bulging center heavily populated by stars, with elongated, sparser arms of dust and stars that wrap around it. Usually, there’s a huge black hole hiding at the center, like the Milky Way’s Sagittarius A* (pronounced A-star). Our galactic neighbor, Andromeda (also known as Messier 31 or M31), is also a spiral galaxy!
Elliptical galaxies tend to be smooth spheres of gas, dust, and stars. Like spiral galaxies, their centers are typically bulges surrounded by a halo of stars (but minus the epic spiral arms). The stars in these galaxies tend to be spread out neatly throughout the galaxies and are some of the oldest stars in the universe! Messier 87 (M87) is one example of an elliptical galaxy. The supermassive black hole at its center was recently imaged by the Event Horizon Telescope.
Irregular galaxies are, well … a bit strange. They have one-of-a-kind shapes, and many just look like messy blobs. Astronomers think that irregular galaxies' uniqueness is a result of interactions with other galaxies, like collisions! Galaxies are so big, with so much distance between their stars, that even when they collide, their stars usually do not. Galaxy collisions have been important to the formation of our Milky Way and others. When two galaxies collide, clouds of gas, dust, and stars are violently thrown around, forming an entirely new, larger one! This could be the cause of some irregular galaxies seen today.
Now that we know the different types of galaxies, what about how many stars they contain? Galaxies can come in lots of different sizes, even among each type. Dwarf galaxies, the smallest version of spiral, elliptical, and irregular galaxies, are usually made up of 1,000 to billions of stars. Compared to our Milky Way’s 200 to 400 billion stars, the dwarf galaxy known as the Small Magellanic Cloud is tiny, with just a few hundred million stars! IC 1101, on the other hand, is one of the largest elliptical galaxies found so far, containing almost 100 trillion stars.
Ever wondered how galaxies get their names? Astronomers have a number of ways to name galaxies, like the constellations we see them in or what we think they resemble. Some even have multiple names!
A more formal way astronomers name galaxies is with two-part designations based on astronomical catalogs, published collections of astronomical objects observed by specific astronomers, observatories, or spacecraft. These give us cryptic names like M51 or Swift J0241.3-0816. Catalog names usually have two parts:
A letter, word, or short acronym that identifies a specific astronomical catalog.
A sequence of numbers and/or letters that uniquely identify the galaxy within that catalog.
For M51, the “M” comes from the Messier catalog, which Charles Messier started compiling in 1771, and the "51" is because it’s the 51st entry in that catalog. Swift J0241.3-0816 is a galaxy observed by the Swift satellite, and the numbers refer to its location in the sky, similar to latitude and longitude on Earth.
There’s your quick intro to galaxies, but there’s much more to learn about them. Keep up with NASA Universe on Facebook and Twitter where we post regularly about galaxies.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Our Perseverance mission is set to launch on Thursday, July 30 and could help answer many longstanding astrobiology questions about Mars. The mission will deliver our Perseverance rover to the Martian surface, and this powerful rover is equipped with a multitude of tools to study the planet's environment and to answer questions about whether or not the Red Planet could have had life in the past.
In preparation for launch, our Astrobiology Program is releasing a new update to Issue #2 of the graphic history series, Astrobiology: The Story of our Search for Life in the Universe. This new, fourth edition tells the tale of our exploration of Mars in relation to astrobiology.
The history of our exploration of Mars is full of struggle and triumph. Mars is a dangerous and difficult planet to visit, with frigid temperatures, damaging dust storms, low gravity, and a thin atmosphere. Despite the challenges, NASA missions have opened our eyes to a world that was much more Earth-like in its past, with environments that contained all the necessary conditions for life as we know it.
Issue #2 tells the complete history of our endeavours on Mars, from the Mariner missions to Viking and Pathfinder to Curiosity. In this fourth edition, you’ll find details on the Perseverance rover and its journey to search for ancient signs and signatures of life that could once and for all tell us whether or not life gained a foothold on the ancient Red Planet.
Perseverance will also drill into Martian rocks and collect samples that will one day be returned to Earth by a future Mars Sample Return mission. The samples will be stored in special containers and carefully 'cached' in a location on Mars where they will be easily accessible for retrieval. These samples will allow astrobiologists to perform detailed experiments that robots are not yet able to undertake remotely.
Visit astrobiology.nasa.gov/graphic-histories/ to download the new edition of Astrobiology: The Story of our Search for Life in the Universe, and read the entire series to explore NASA’s astrobiology journey to understand the origin and evolution of life on Earth, and the potential for life elsewhere in the Universe!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Because space is vast and full of mysteries, NASA is developing a new rocket, a new spacecraft for astronauts and new facilities to launch them from. Our Space Launch System will be unlike any other rocket when it takes flight. It will be bigger, bolder and take astronauts and cargo farther than humankind has ever been -- to deep space destinations like the moon, a deep space gateway or even Mars.
When you plan to get to space, you use ice and fire. NASA’s Space Launch System uses four rocket engines in the center of the rocket and a pair of solid rocket boosters on opposite sides. All this power will propel the Space Launch System to gravity-slaying speeds of more than 17,000 miles per hour! These are the things we do for space exploration, the greatest adventure that ever was or will be.
It is known that according to Newton’s third law, for every action there is an equal and opposite reaction. That’s how rocket propulsion works. Fuel burned in combustion chambers causes hot gases to shoot out the bottom of the engine nozzles. This propels the rocket upward.
It is also known that when you combine hydrogen and oxygen you get: water. To help SLS get to space, the rocket’s four RS-25 engines shoot hydrogen and oxygen together at high speeds, making billowing clouds of steaming hot water vapor. The steam, funneled through the engine nozzles, expands with tremendous force and helps lift the rocket from the launchpad.
It takes a lot of fuel (hydrogen) and a lot of oxygen to make a chemical reaction powerful enough to propel a rocket the size of a skyscraper off the launch pad. To fit more hydrogen and oxygen into the tanks in the center of the rocket where they’re stored, the hydrogen and oxygen are chilled to as low as -400 degrees Fahrenheit. At those temperatures, the gases become icy liquids.
The hydrogen-oxygen reaction inside the nozzles can reach temperatures up to 6,000 degrees Fahrenheit (alas, only Valyrian steel could withstand those temperatures)! To protect the nozzle from this heat, the icy hydrogen is pumped through more than a thousand small pipes on the outside of the nozzle to cool it. After the icy liquid protects the metal nozzles, it becomes fuel for the engines.
The Space Launch System solid rocket boosters are the fire and the breakers of gravity’s chains. The solid rocket boosters’ fiery flight lasts for two minutes. They burn solid fuel that’s a potent mixture of chemicals the consistency of a rubber eraser. When the boosters light, hot gases and fire are unleashed at speeds up to three times the speed of sound, propelling the vehicle to gravity-slaying speed in seconds.
To make sure everything works on a rocket this big, it takes a lot of testing before the first flight. Rocket hardware is rolling off production lines all over the United States and being shipped to testing locations nationwide. Some of that test hardware includes replicas of the giant tanks that will hold the icy hydrogen and oxygen.
Other tests include firing the motor for the solid rocket boosters. The five-segment motor is the largest ever made for spaceflight and the part that contains the propellant that burns for two fiery, spectacular minutes. It’s common during ground test firings for the fiery exhaust to turn the sand in the Utah desert to glass.
When all the hardware, software and avionics for SLS are ready, they will be shipped to Kennedy Space Center where the parts will be assembled to make the biggest rocket since the Saturn V. Then, technicians will stack Orion, NASA’s new spacecraft for taking astronauts to deep space, on top of SLS. All this work to assemble America’s new heavy-lift rocket and spacecraft will be done in the Vehicle Assembly Building -- one of the largest buildings in the world. Hold the door to the Vehicle Assembly Building open, because SLS and Orion are coming!
Learn more about our Journey to Mars here: https://www.nasa.gov/topics/journeytomars/index.html
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The ocean is one of the largest ecosystems on our planet. From eye-catching waves to the darkness of the twilight zone, it’s a place filled with mystery and rapid change.
For a scientist studying ocean color at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, there was one more question–what does it sound like?
Before long, a “symphonic ocean experience” was born, combining satellite imagery, ocean color data and programming expertise. Learn more about how data gets converted to music and sound here:
This World Oceans Day, enjoy a tour of the ocean set to sound. Here we go:
This melody explores the phytoplankton blooms in the western Bering Sea along the coast of the Kamchatka Peninsula collected by Aqua/MODIS on May 15, 2021. The melody created for this image was aimed at capturing the movement of the eddies or the circular movements of water. Data came from the image’s red, green, and blue channels.
This melody explores a spring bloom in the South Atlantic Ocean off the coast of Argentina, Uruguay, and Brazil, lending the water many different shades of green, blue, and brown. The Rio de la Plata estuary in the northwest corner of the above image gets most of its tan coloration from sediments suspended in the water. The melody paired with the data evokes the sediment plumes and swirls happening off the coast.
Data for the sounds of the Coral Sea were collected over the course of one year from the Aqua/Modis satellite. The information was extracted from a series of 32-day rolling averages for the year 2020, displaying the movement of chlorophyll a data.
Chlorophyll a is a specific form of chlorophyll used in photosynthesis. It absorbs most energy from wavelengths of violet-blue and orange-red light. It is a poor absorber of green and near-green portions of the spectrum, and that’s why it appears green.
Off the coast of western Australia is the appearance of swirls in the ocean. To catch the movement of the Indian Ocean, data was collected from 31 days of imagery examining blue wavelengths of light. The information was gathered from the Suomi-NPP/VIIRS instrument aboard the Joint Polar Satellite System (JPSS) series of spacecraft.
Looking for more moments of zen? Explore them with NASA’s Soundcloud page, where many are out of this world. Curious on how we get these breathtaking ocean images? Take time to read about Goddard Oceanographer Norman Kuring and how he helped create them.
We’re working hard to send humans to Mars in the 2030s. Here are just a few of the things we’re doing now that are helping us prepare for the journey:
The International Space Station is the only microgravity platform for the long-term testing of new life support and crew health systems, advanced habitat modules and other technologies needed to decrease reliance on Earth.
When future explorers travel to the Red Planet, they will need to be able to grow plants for food, atmosphere recycling and physiological benefits. The Veggie experiment on space station is validating this technology right now! Astronauts have grown lettuce and Zinnia flowers in space so far.
The space station is also a perfect place to study the impacts of microgravity on the human body. One of the biggest hurdles of getting to Mars in ensuring that humans are “go” for a long-duration mission. Making sure that crew members will maintain their health and full capabilities for the duration of a Mars mission and after their return to Earth is extremely important.
Scientists have solid data about how bodies respond to living in microgravity for six months, but significant data beyond that timeframe had not been collected…until now! Former astronaut Scott Kelly recently completed his Year in Space mission, where he spent a year aboard the space station to learn the impacts of microgravity on the human body.
A mission to Mars will likely last about three years, about half the time coming and going to Mars and about half the time on the Red Planet. We need to understand how human systems like vision and bone health are affected and what countermeasures can be taken to reduce or mitigate risks to crew members.
Through our robotic missions, we have already been on and around Mars for 40 years! Before we send humans to the Red Planet, it’s important that we have a thorough understanding of the Martian environment. Our landers and rovers are paving the way for human exploration. For example, the Mars Reconnaissance Orbiter has helped us map the surface of Mars, which will be critical in selecting a future human landing site on the planet.
Our Mars 2020 rover will look for signs of past life, collect samples for possible future return to Earth and demonstrate technology for future human exploration of the Red Planet. These include testing a method for producing oxygen from the Martian atmosphere, identifying other resources (such as subsurface water), improving landing techniques and characterizing weather, dust and other potential environmental conditions that could affect future astronauts living and working on Mars.
We’re also developing a first-ever robotic mission to visit a large near-Earth asteroid, collect a multi-ton boulder from its surface and redirect it into a stable orbit around the moon. Once it’s there, astronauts will explore it and return with samples in the 2020s. This Asteroid Redirect Mission (ARM) is part of our plan to advance new technologies and spaceflight experience needed for a human mission to the Martian system in the 2030s.
Okay, so we’ve talked about how we’re preparing for a journey to Mars…but what about the ride? Our Space Launch System, or SLS, is an advanced launch vehicle that will help us explore beyond Earth’s orbit into deep space. SLS will be the world’s most powerful rocket and will launch astronauts in our Orion spacecraft on missions to an asteroid and eventually to Mars.
In the rocket's initial configuration it will be able to take 154,000 pounds of payload to space, which is equivalent to 12 fully grown elephants! It will be taller than the Statue of Liberty and it’s liftoff weight will be comparable to 8 fully-loaded 747 jets. At liftoff, it will have 8.8 million pounds of thrust, which is more than 31 times the total thrust of a 747 jet. One more fun fact for you…it will produce horsepower equivalent to 160,000 Corvette engines!
Sitting atop the SLS rocket will be our Orion spacecraft. Orion will be the safest most advanced spacecraft ever built, and will be flexible and capable enough to carry humans to a variety of destinations. Orion will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities.
When humans get to Mars, where will they live? Where will they work? These are questions we’ve already thought about and are working toward solving. Six partners were recently selected to develop ground prototypes and/or conduct concept studies for deep space habitats.
These NextSTEP habitats will focus on creating prototypes of deep space habitats where humans can live and work independently for months or years at a time, without cargo supply deliveries from Earth.
Another way that we are studying habitats for space is on the space station. In June, the first human-rated expandable module deployed in space was used. The Bigelow Expandable Activity Module (BEAM) is a technology demonstration to investigate the potential challenges and benefits of expandable habitats for deep space exploration and commercial low-Earth orbit applications.
Our journey to Mars requires preparation and research in many areas. The powerful new Space Launch System rocket and the Orion spacecraft will travel into deep space, building on our decades of robotic Mars explorations, lessons learned on the International Space Station and groundbreaking new technologies.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Space Launch System (SLS) rocket is coming together at the agency’s Kennedy Space Center in Florida this summer. Our mighty SLS rocket is set to power the Artemis I mission to send our Orion spacecraft around the Moon. But, before it heads to the Moon, NASA puts it together right here on Earth.
Read on for more on how our Moon rocket for Artemis I will come together this summer:
How do crews assemble a rocket and spacecraft as tall as a skyscraper? The process all starts inside the iconic Vehicle Assembly Building at Kennedy with the mobile launcher. Recognized as a Florida Space Coast landmark, the Vehicle Assembly Building, or VAB, houses special cranes, lifts, and equipment to move and connect the spaceflight hardware together. Orion and all five of the major parts of the Artemis I rocket are already at Kennedy in preparation for launch. Inside the VAB, teams carefully stack and connect the elements to the mobile launcher, which serves as a platform for assembly and, later, for fueling and launching the rocket.
Because they carry the entire weight of the rocket and spacecraft, the twin solid rocket boosters for our SLS rocket are the first elements to be stacked on the mobile launcher inside the VAB. Crews with NASA’s Exploration Ground Systems and contractor Jacobs team completed stacking the boosters in March. Each taller than the Statue of Liberty and adorned with the iconic NASA “worm” logo, the five-segment boosters flank either side of the rocket’s core stage and upper stage. At launch, each booster produces more than 3.6 million pounds of thrust in just two minutes to quickly lift the rocket and spacecraft off the pad and to space.
In between the twin solid rocket boosters is the core stage. The stage has two huge liquid propellant tanks, computers that control the rocket’s flight, and four RS-25 engines. Weighing more than 188,000 pounds without fuel and standing 212 feet, the core stage is the largest element of the SLS rocket. To place the core stage in between the two boosters, teams will use a heavy-lift crane to raise and lower the stage into place on the mobile launcher.
On launch day, the core stage’s RS-25 engines produce more than 2 million pounds of thrust and ignite just before the boosters. Together, the boosters and engines produce 8.8 million pounds of thrust to send the SLS and Orion into orbit.
Once the boosters and core stage are secured, teams add the launch vehicle stage adapter, or LVSA, to the stack. The LVSA is a cone-shaped element that connects the rocket’s core stage and Interim Cryogenic Propulsion Stage (ICPS), or upper stage. The roughly 30-foot LVSA houses and protects the RL10 engine that powers the ICPS. Once teams bolt the LVSA into place on top of the rocket, the diameter of SLS will officially change from a wide base to a more narrow point — much like a change in the shape of a pencil from eraser to point.
Next in the stacking line-up is the Interim Cryogenic Propulsion Stage or ICPS. Like the LVSA, crews will lift and bolt the ICPS into place. To help power our deep space missions and goals, our SLS rocket delivers propulsion in phases. At liftoff, the core stage and solid rocket boosters will propel Artemis I off the launch pad. Once in orbit, the ICPS and its single RL10 engine will provide nearly 25,000 pounds of thrust to send our Orion spacecraft on a precise trajectory to the Moon.
When the Orion stage adapter crowns the top of the ICPS, you’ll know we’re nearly complete with stacking SLS rocket for Artemis I. The Orion Stage Adapter is more than just a connection point. At five feet in height, the Orion stage adapter may be small, but it holds and carries several small satellites called CubeSats. After Orion separates from the SLS rocket and heads to the Moon, these shoebox-sized payloads are released into space for their own missions to conduct science and technology research vital to deep space exploration. Compared to the rest of the rocket and spacecraft, the Orion stage adapter is the smallest SLS component that’s stacked for Artemis I.
Finally, our Orion spacecraft will be placed on top of our Moon rocket inside the VAB. The final piece will be easy to spot as teams recently added the bright red NASA “worm” logotype to the outside of the spacecraft. The Orion spacecraft is much more than just a capsule built to carry crew. It has a launch abort system, which will carry the crew to safety in case of an emergency, and a service module developed by the European Space Agency that will power and propel the spacecraft during its three-week mission. On the uncrewed Artemis I mission, Orion will check out the spacecraft’s critical systems, including navigation, communications systems, and the heat shield needed to support astronauts who will fly on Artemis II and beyond.
The path to the pad requires many steps and check lists. Before Artemis I rolls to the launch pad, teams will finalize outfitting and other important assembly work inside the VAB. Once assembled, the integrated SLS rocket and Orion will undergo several final tests and checkouts in the VAB and on the launch pad before it’s readied for launch.
The Artemis I mission is the first in a series of increasingly complex missions that will pave the way for landing the first woman and the first person of color on the Moon. The Space Launch System is the only rocket that can send NASA astronauts aboard NASA’s Orion spacecraft and supplies to the Moon in a single mission.
Make sure to follow us on Tumblr for your regular dose of space!
On July 7, three crew members launched from Earth; headed to their new home on the International Space Station.
Crewmembers Kate Rubins of NASA, Anatoly Ivanishin of Roscosmos and Takuya Onishi of the Japan Aerospace Exploration Agency (JAXA) will spend approximately four months on the orbital complex, returning to Earth in October.
Photo Credit: (NASA/Bill Ingalls)
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
When NASA astronauts return to the Moon through Artemis, they will benefit from decades of innovation, research, and technological advancements. We’ll establish long-term lunar science and exploration capabilities at the Moon and inspire a new generation of explorers—the Artemis Generation.
Meet the Space Launch System rocket, or SLS. This next-generation super heavy-lift rocket was designed to send astronauts and their cargo farther into deep space than any rocket we’ve ever built. During liftoff, SLS will produce 8.8 million pounds (4 million kg) of maximum thrust, 15 percent more than the Saturn V rocket.
SLS will launch the Orion spacecraft into deep space. Orion is the only spacecraft capable of human deep space flight and high-speed return to Earth from the vicinity of the Moon. More than just a crew module, Orion has a launch abort system to keep astronauts safe if an emergency happens during launch, and a European-built service module, which is the powerhouse that fuels and propels Orion and keeps astronauts alive with water, oxygen, power, and temperature control.
Orion and SLS will launch from NASA’s Kennedy Space Center in Florida with help from Exploration Ground Systems (EGS) teams. EGS operates the systems and facilities necessary to process and launch rockets and spacecraft during assembly, transport, launch, and recovery.
The knowledge we've gained while operating the International Space Station has opened new opportunities for long-term exploration of the Moon's surface. Gateway, a vital component of our Artemis plans, is a Moon-orbiting space station that will serve as a staging post for human expeditions to the lunar surface. Crewed and uncrewed landers that dock to Gateway will be able to transport crew, cargo, and scientific equipment to the surface.
Our astronauts will need a place to live and work on the lunar surface. Artemis Base Camp, our first-ever lunar science base, will include a habitat that can house multiple astronauts and a camper van-style vehicle to support long-distance missions across the Moon’s surface. Apollo astronauts could only stay on the lunar surface for a short while. But as the Artemis base camp evolves, the goal is to allow crew to stay at the lunar surface for up to two months at a time.
The Apollo Program gave humanity its first experience traveling to a foreign world. Now, America and the world are ready for the next era of space exploration. NASA plans to send the first woman and first person of color to the lunar surface and inspire the next generation of explorers.
Our next adventure starts when SLS and Orion roar off the launch pad with Artemis I. Together with commercial and international partners, NASA will establish a long-term presence on the Moon to prepare for missions to Mars. Everything we’ve learned, and everything we will discover, will prepare us to take the next giant leap: sending the first astronauts to Mars.
Make sure to follow us on Tumblr for your regular dose of space!
Study smarter this school year! We asked scientists, engineers, astronauts, and experts from across NASA about their favorite study tips – and they delivered. Here are a few of our favorites:
Find friends that are like-minded and work together to understand the material better. Trading ideas with a friend on how to tackle a problem can help you both strengthen your understanding.
Find a quiet space or put on headphones so you can focus. You might not be able to get to the International Space Station yet, but a library, a study room, or a spot outside can be a good place to study. If it’s noisy around you, try using headphones to block out distractions.
Don’t burn yourself out! Take a break, go for a walk, get some water, and come back to it.
Looking for more study tips? Check out this video for all ten tips to start your school year off on the right foot!
Make sure to follow us on Tumblr for your regular dose of space!
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts