How Do Blackholes Form And How Do They Move ?

How do blackholes form and how do they move ?

More Posts from Nasa and Others

9 years ago

A Q&A from the Space Station!

Did you miss it? Astronaut Scott Kelly answered questions over the weekend on People Magazine’s Facebook page! Anything and everything from his favorite food in space to his year aboard the International Space Station. 

Here are a few highlights from the conversation:

image
image
image
image
image
image
image
image
image

Follow Astronaut Scott Kelly during the remainder of his year in space: Facebook, Twitter, Instagram

Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com


Tags
1 year ago

Dangling in a previously unexplored lava tunnel on the Moon...

...with a massive solar flare passing overhead...

...causing unsafe radiation levels.

All communications have been interrupted.

Status of Commander Callie Rodriguez: unknown.

In our first issue of "First Woman," we followed Callie on her trailblazing journey to the Moon. Find out what’s next for our fictional first woman in a story inspired by real NASA astronauts and our upcoming Artemis missions to land the first female astronaut and person of color on the lunar surface.

See what discoveries – and challenges – lay ahead for Callie and her fellow human and robotic explorers as they forge a path to expand humanity's understanding of the universe.

Coming soon in English and Spanish at nasa.gov/calliefirst!

Make sure to follow us on Tumblr for your regular dose of space!


Tags
5 years ago

Astronaut out! Thank you for all the amazing questions.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Space Telescope Gets to Work

Our latest space telescope, Transiting Exoplanet Survey Satellite (TESS), launched in April. This week, planet hunters worldwide received all the data from the first two months of its planet search. This view, from four cameras on TESS, shows just one region of Earth’s southern sky.

image

The Transiting Exoplanet Survey Satellite (TESS) captured this strip of stars and galaxies in the southern sky during one 30-minute period in August. Created by combining the view from all four of its cameras, TESS images will be used to discover new exoplanets. Notable features in this swath include the Large and Small Magellanic Clouds and a globular cluster called NGC 104. The brightest stars, Beta Gruis and R Doradus, saturated an entire column of camera detector pixels on the satellite’s second and fourth cameras.

Credit: NASA/MIT/TESS

The data in the images from TESS will soon lead to discoveries of planets beyond our solar system – exoplanets. (We’re at 3,848 so far!)

image

But first, all that data (about 27 gigabytes a day) needs to be processed. And where do space telescopes like TESS get their data cleaned up? At the Star Wash, of course!

image

TESS sends about 10 billion pixels of data to Earth at a time. A supercomputer at NASA Ames in Silicon Valley processes the raw data, turning those pixels into measures of a star’s brightness.

image

And that brightness? THAT’S HOW WE FIND PLANETS! A dip in a star’s brightness can reveal an orbiting exoplanet in transit.

image

TESS will spend a year studying our southern sky, then will turn and survey our northern sky for another year. Eventually, the space telescope will observe 85 percent of Earth’s sky, including 200,000 of the brightest and closest stars to Earth.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago
Mars Pathfinder & Sojourner Rover (360 View) Explained
Mars Pathfinder & Sojourner Rover (360 View) Explained

Mars Pathfinder & Sojourner Rover (360 View) Explained

Thanks to new technology, we can take a 360-degree tour of the 1997 Pathfinder mission landing site, including Sojourner, the first Mars rover. Check out this interactive YouTube panorama, and then…

…keep scrolling to find out more about each point of interest, how the Pathfinder mission compares to “The Martian” and NASA’s real Journey to Mars.

image

Yogi

“Yogi” is a meter-size rock about 5 meters northwest of the Mars Pathfinder lander and the second rock visited by the Sojourner Rover’s alpha proton X-ray spectrometer (APXS) instrument. This mosaic shows super resolution techniques applied to help to address questions about the texture of this rock and what it might tell us about how it came to be.

image

Twin Peaks

The Twin Peaks are modest-size hills to the southwest of the Mars Pathfinder landing site. They were discovered on the first panoramas taken by the IMP camera on the July 4, 1997, and subsequently identified in Viking Orbiter images taken over 20 years ago. They’re about 30-35 meters tall.

image

Barnacle Bill

“Barnacle Bill” is a small rock immediately west-northwest of the Mars Pathfinder lander and was the first rock visited by the Sojourner Rover’s alpha proton X-ray spectrometer (APXS) instrument. If you have some old-school red-cyan glasses, put them on and see this pic in eye-popping 3-D.

image

Rock Garden

The Rock Garden is a cluster of large, angular rocks tilted in a downstream direction from ancient floods on Mars. The rocky surface is comprised of materials washed down from the highlands and deposited in this ancient outflow channel.

image

MOAR INFO

Pathfinder Lander & Sojourner Rover 

Mission Facts [PDF]

Science Results

Rock & Soil Types

image
image

This vista was stitched together from many images taken in 1997 by Pathfinder.

image

Pathfinder and Sojourner figure into Mark Watney’s quest for survival on the Red Planet in the book and movie, “The Martian.” See JPL’s role in making “The Martian” a reality: http://go.nasa.gov/1McRrXw and discover nine real NASA technologies depicted in “The Martian”: http://go.nasa.gov/1QiyUiC.

image

So what about the real-life “Journey to Mars”? NASA is developing the capabilities needed to send humans to Mars in the 2030s. Discover more at http://nasa.gov/journeytomars and don’t forget to visit me when you make it to the Red Planet. Until then, stay curious and I’ll see you online.

1 year ago

Do you guys (everyone at mission control) have inside jokes?

What is the best about being mission control?

As someone who's about to go to college to hopefully be astronaut if everything goes to plan. What is some good advice you wish someone told you?


Tags
6 years ago

@saraxmix: What is it that makes you go back up there once you're home?


Tags
7 years ago
image
image

Because space is vast and full of mysteries, NASA is developing a new rocket, a new spacecraft for astronauts and new facilities to launch them from. Our Space Launch System will be unlike any other rocket when it takes flight. It will be bigger, bolder and take astronauts and cargo farther than humankind has ever been -- to deep space destinations like the moon, a deep space gateway or even Mars. 

The Gravity-Slayer

image

When you plan to get to space, you use ice and fire. NASA’s Space Launch System uses four rocket engines in the center of the rocket and a pair of solid rocket boosters on opposite sides. All this power will propel the Space Launch System to gravity-slaying speeds of more than 17,000 miles per hour! These are the things we do for space exploration, the greatest adventure that ever was or will be.

It is Known

image

It is known that according to Newton’s third law, for every action there is an equal and opposite reaction. That’s how rocket propulsion works. Fuel burned in combustion chambers causes hot gases to shoot out the bottom of the engine nozzles. This propels the rocket upward. 

Steammaker

image

It is also known that when you combine hydrogen and oxygen you get: water. To help SLS get to space, the rocket’s four RS-25 engines shoot hydrogen and oxygen together at high speeds, making billowing clouds of steaming hot water vapor. The steam, funneled through the engine nozzles, expands with tremendous force and helps lift the rocket from the launchpad. 

RS-25: Ice King

image

It takes a lot of fuel (hydrogen) and a lot of oxygen to make a chemical reaction powerful enough to propel a rocket the size of a skyscraper off the launch pad. To fit more hydrogen and oxygen into the tanks in the center of the rocket where they’re stored, the hydrogen and oxygen are chilled to as low as -400 degrees Fahrenheit. At those temperatures, the gases become icy liquids. 

The Fire that Burns Against the Cold

image

The hydrogen-oxygen reaction inside the nozzles can reach temperatures up to 6,000 degrees Fahrenheit (alas, only Valyrian steel could withstand those temperatures)! To protect the nozzle from this heat, the icy hydrogen is pumped through more than a thousand small pipes on the outside of the nozzle to cool it. After the icy liquid protects the metal nozzles, it becomes fuel for the engines. 

Where is my FIRE?

image

The Space Launch System solid rocket boosters are the fire and the breakers of gravity’s chains. The solid rocket boosters’ fiery flight lasts for two minutes. They burn solid fuel that’s a potent mixture of chemicals the consistency of a rubber eraser. When the boosters light, hot gases and fire are unleashed at speeds up to three times the speed of sound, propelling the vehicle to gravity-slaying speed in seconds. 

Testing is Here

image

To make sure everything works on a rocket this big, it takes a lot of testing before the first flight. Rocket hardware is rolling off production lines all over the United States and being shipped to testing locations nationwide. Some of that test hardware includes replicas of the giant tanks that will hold the icy hydrogen and oxygen.

As Rare as Dragonglass

image

Other tests include firing the motor for the solid rocket boosters. The five-segment motor is the largest ever made for spaceflight and the part that contains the propellant that burns for two fiery, spectacular minutes. It’s common during ground test firings for the fiery exhaust to turn the sand in the Utah desert to glass.

Hold the Door

image

When all the hardware, software and avionics for SLS are ready, they will be shipped to Kennedy Space Center where the parts will be assembled to make the biggest rocket since the Saturn V. Then, technicians will stack Orion, NASA’s new spacecraft for taking astronauts to deep space, on top of SLS. All this work to assemble America’s new heavy-lift rocket and spacecraft will be done in the Vehicle Assembly Building -- one of the largest buildings in the world. Hold the door to the Vehicle Assembly Building open, because SLS and Orion are coming!

Learn more about our Journey to Mars here: https://www.nasa.gov/topics/journeytomars/index.html

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Tracking a Warming Arctic – From Underground to High in the Sky

The Arctic is warming much faster than the rest of Earth. This warming is creating big and small changes, some of which could ripple beyond the planet’s frozen regions and affect us world-wide – possibly raising sea levels, increasing greenhouse warming and affecting wildlife.

Our Arctic Boreal Vulnerability Experiment, known as ABoVE, just began a 10-year mission in Alaska and western Canada, studying these changes.

Underground: Permafrost is the layer of frozen soil beneath some Arctic forests and tundra. 

image

Like the name suggests, this icy layer stays solid year-round, so when it does melt, it can create big problems. The soil above the thawing permafrost can collapse, creating this wobbly, unstable surface.

7 feet above sea level: As the permafrost thaws, the soil above it can fall away. 

image

Along the banks of the Itkillik River in Alaska, thawing permafrost has dripped into the water, eroding the cliff side. Known as the “Stinky Bluffs,” this permafrost contains lots of frozen organic matter from dead plants and animals. As the permafrost thaws, this organic matter doesn’t just smell, it also releases carbon dioxide and methane into the atmosphere, adding to the warming effect.

446 feet above sea level: Wildfires aren’t unusual in the forests and shrub lands of Alaska, but as the climate continues to warm, they burn longer and do more damage. 

image

People who live off the land in the region help researchers understand where plant life isn’t growing back after fires.

100-1000 feet above sea level: Researchers set up 100-foot tall towers at strategic locations throughout Alaska to measure carbon dioxide and methane emissions from right above the forest canopy. 

image

This provides an up-close look at what gases are released or absorbed from the trees, or swirl in from neighboring regions. These data are combined with measurements taken from airplanes and satellites to create a clearer picture of how much carbon is entering the atmosphere.

3,369 feet above sea level: Dall sheep live in several Alaskan mountain ranges, where they’re critical to both the tourism and sports hunting economies. 

image

Credit: National Park Service

Changes in temperature and vegetation can profoundly affect their behavior, like grazing habits, and so researchers study how changing plant life and snow cover affect the sheep.

100-30,000 feet above sea level: Carbon emissions in the air come from thawing permafrost, fossil fuel burning, decaying vegetation and wildfires burning across the Arctic-boreal regions. 

image

One experiment in the ABoVE campaign measures these emissions with instruments on a DC-8 plane.

About 30,000 feet about sea level: When wildfires burn through vegetation, the effects extend far beyond what we see on the ground. 

image

Fires release carbon stored in the plants into the atmosphere, where it affects air quality and contributes to the greenhouse effect.

438 miles: Our ABoVE campaign combines research on the ground and from planes with data collected by a fleet of Earth-observing satellites, orbiting Earth hundreds of miles above the surface. 

image

Data from these satellites provides information on vegetation, atmospheric particles and gasses, and how humans are impacting our planet. With all these data sets analyzed by computer programs, the result is a comprehensive picture of our warming planet.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

What do you do on a daily basis?


Tags
Loading...
End of content
No more pages to load
  • mariesrbouipochodian
    mariesrbouipochodian liked this · 1 year ago
  • watch
    watch reblogged this · 1 year ago
  • john-erby
    john-erby liked this · 3 years ago
  • hotelpornography
    hotelpornography liked this · 3 years ago
  • revolutionaryexistence
    revolutionaryexistence liked this · 3 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags