As An Astronaut Who Has Been On A Spacewalk Before, What Does The All-woman Spacewalk Mean To You?

As an astronaut who has been on a spacewalk before, what does the all-woman spacewalk mean to you?

More Posts from Nasa and Others

9 years ago
Jupiter In Infrared Light, As Seen By NASA’s InfraRed Telescope Facility (IRTF). The Observations Were

Jupiter in infrared light, as seen by NASA’s InfraRed Telescope Facility (IRTF). The observations were obtained in support of NASA’s Juno mission by a team headed by Juno scientist Glenn Orton.

9 years ago

The Martian Movie and Our Real Journey to Mars

The Martian movie is set 20 years in the future, but here at NASA we are already developing many of the technologies that appear in the film. The movie takes the work we’re doing and extends it into fiction set in the 2030s, when NASA astronauts are regularly traveling to Mars and living on the surface. Here are a few ways The Martian movie compares to what we’re really doing on our journey to Mars:

Analog Missions

image

MOVIE: In the film, Astronaut Mark Watney is stranded on the Red Planet.

REALITY: In preparation for sending humans to Mars, we have completed one of the most extensive isolation missions in Hawaii, known as HI-SEAS. The goal of this study was to see how isolation and the lack of privacy in a small group affects social aspects of would-be explorers. The most recent simulation was eight months long, and the next mission is planned to last a year.

Spaceport

image

MOVIE: The Martian movie launches astronauts on the Aries missions from a refurbished and state of the art space center.

REALITY: Currently, the Ground Systems Development and Operations’ primary objective is to prepare the center to process and launch the next-generation vehicles and spacecraft designed to achieve our goals for space exploration. We are not only working to develop new systems, but also refurbishing and upgrading infrastructure to meet future demands.

Deep Space Propulsion

image

MOVIE: In the film, the astronauts depart the Red Planet using a propulsion system know as the Mars Ascent Vehicle (MAV).

REALITY: We are currently developing the most powerful rocket we’ve ever built, our Space Launch System (SLS). Once complete, this system will enable astronauts to travel deeper into the solar system than ever before! The RS-25 engines that will be used on the SLS, were previously utilized as the main engine on our space shuttles. These engines have proven their reliability and are currently being refurbished with updated and improved technology for our journey to Mars.

Mission Control

image

MOVIE: In the movie, Mission Control operations support the Aries 3 crew.

REALITY: On our real journey to Mars, Mission Control in Houston will support our Orion spacecraft and the crew onboard as they travel into deep space.

Habitat

image

MOVIE: The artificial living habitat on Mars in The Martian movie is constructed of industrial canvas and contains an array of life support systems.

REALITY: The Human Exploration Research Analog (HERA), formerly known as the Deep Space Habitat, is a three-story module that was designed and created through a series of university competitions. Studies conducted in habitat mockups will allow us to evolve this technology to create a reliable structures for use on Mars.

Rover

The Martian Movie And Our Real Journey To Mars

MOVIE: The characters in the film are able to cruise around the Red Planet inside the Mars Decent Vehicle (MDV).

REALITY: We are currently developing a next generation vehicle for space exploration. Our Mars Exploration Vehicle (MEV) is designed to be flexible depending on the destination. It will have a pressurized cabin, ability to house two astronauts for up to 14 days and will be about the size of a pickup truck.

Harvest

image

MOVIE: Astronaut Mark Watney grows potatoes on Mars in The Martian movie.

REALITY: We’re already growing and harvesting lettuce on the International Space Station in preparation for deep space exploration. Growing fresh food in space will provide future pioneers with a sustainable food supplement, and could also be used for recreational gardening during deep space missions.

Spacesuit

image

MOVIE: The spacesuit worn by astronauts in the film allows them to work and function on the surface of Mars, while protecting them from the harsh environment.

REALITY: Prototypes of our Z-2 Exploration Suit are helping to develop the technologies astronauts will use to live and work on the the Martian surface. Technology advances in this next generation spacesuit would shorten preparation time, improve safety and boost astronaut capabilities during spacewalks and surface activities.  


Tags
7 years ago
A Patchwork Of Bright, Criss-crossing Cloud Trails Was Created By Ships Churning Through The Atlantic

A patchwork of bright, criss-crossing cloud trails was created by ships churning through the Atlantic Ocean off the coast of Portugal and Spain in this image captured by one of our Earth observing satellites. The narrow clouds known as ship tracks, form when water vapor condenses around tiny particles of pollution that ships emit.

Some of the pollution particles generated by ships (especially sulfates) are soluble in water and serve as the seeds around which cloud droplets form. Clouds infused with ship exhaust have more and smaller droplets than unpolluted clouds. Because of this, the light hitting the polluted clouds scatters in many directions, making them appear brighter and thicker than unpolluted marine clouds, which are typically seeded by larger, naturally occurring particles such as sea salt.

Learn more about this image HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Will normal uv protection sunglasses work?

Unfortunately no. They do not block out enough of the sunlight so you could still burn your eyes if you were to use them to look at the Sun. The ISO 12312-2 compliant eclipse glasses are so dark you literally can’t see anything out of them unless you are looking at the Sun. You can find trusted vendors through the links at https://eclipse2017.nasa.gov/safety If you can’t get them in time, you can also make a pinhole projector  https://eclipse.aas.org/eye-safety/projection and watch the eclipse with that. 


Tags
8 years ago

Getting to Mars: 4 Things We’re Doing Now

We’re working hard to send humans to Mars in the 2030s. Here are just a few of the things we’re doing now that are helping us prepare for the journey:

1. Research on the International Space Station

image

The International Space Station is the only microgravity platform for the long-term testing of new life support and crew health systems, advanced habitat modules and other technologies needed to decrease reliance on Earth.

image

When future explorers travel to the Red Planet, they will need to be able to grow plants for food, atmosphere recycling and physiological benefits. The Veggie experiment on space station is validating this technology right now! Astronauts have grown lettuce and Zinnia flowers in space so far.

image

The space station is also a perfect place to study the impacts of microgravity on the human body. One of the biggest hurdles of getting to Mars in ensuring that humans are “go” for a long-duration mission. Making sure that crew members will maintain their health and full capabilities for the duration of a Mars mission and after their return to Earth is extremely important. 

image

Scientists have solid data about how bodies respond to living in microgravity for six months, but significant data beyond that timeframe had not been collected…until now! Former astronaut Scott Kelly recently completed his Year in Space mission, where he spent a year aboard the space station to learn the impacts of microgravity on the human body.

A mission to Mars will likely last about three years, about half the time coming and going to Mars and about half the time on the Red Planet. We need to understand how human systems like vision and bone health are affected and what countermeasures can be taken to reduce or mitigate risks to crew members.

2. Utilizing Rovers & Tech to Gather Data

image

Through our robotic missions, we have already been on and around Mars for 40 years! Before we send humans to the Red Planet, it’s important that we have a thorough understanding of the Martian environment. Our landers and rovers are paving the way for human exploration. For example, the Mars Reconnaissance Orbiter has helped us map the surface of Mars, which will be critical in selecting a future human landing site on the planet.

image

Our Mars 2020 rover will look for signs of past life, collect samples for possible future return to Earth and demonstrate technology for future human exploration of the Red Planet. These include testing a method for producing oxygen from the Martian atmosphere, identifying other resources (such as subsurface water), improving landing techniques and characterizing weather, dust and other potential environmental conditions that could affect future astronauts living and working on Mars.

image

We’re also developing a first-ever robotic mission to visit a large near-Earth asteroid, collect a multi-ton boulder from its surface and redirect it into a stable orbit around the moon. Once it’s there, astronauts will explore it and return with samples in the 2020s. This Asteroid Redirect Mission (ARM) is part of our plan to advance new technologies and spaceflight experience needed for a human mission to the Martian system in the 2030s.

3. Building the Ride

Okay, so we’ve talked about how we’re preparing for a journey to Mars…but what about the ride? Our Space Launch System, or SLS, is an advanced launch vehicle that will help us explore beyond Earth’s orbit into deep space. SLS will be the world’s most powerful rocket and will launch astronauts in our Orion spacecraft on missions to an asteroid and eventually to Mars.

image

In the rocket's initial configuration it will be able to take 154,000 pounds of payload to space, which is equivalent to 12 fully grown elephants! It will be taller than the Statue of Liberty and it’s liftoff weight will be comparable to 8 fully-loaded 747 jets. At liftoff, it will have 8.8 million pounds of thrust, which is more than 31 times the total thrust of a 747 jet. One more fun fact for you…it will produce horsepower equivalent to 160,000 Corvette engines!

image

Sitting atop the SLS rocket will be our Orion spacecraft. Orion will be the safest most advanced spacecraft ever built, and will be flexible and capable enough to carry humans to a variety of destinations. Orion will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities.

4. Making it Sustainable

When humans get to Mars, where will they live? Where will they work? These are questions we’ve already thought about and are working toward solving. Six partners were recently selected to develop ground prototypes and/or conduct concept studies for deep space habitats.

image

These NextSTEP habitats will focus on creating prototypes of deep space habitats where humans can live and work independently for months or years at a time, without cargo supply deliveries from Earth.

image

Another way that we are studying habitats for space is on the space station. In June, the first human-rated expandable module deployed in space was used. The Bigelow Expandable Activity Module (BEAM) is a technology demonstration to investigate the potential challenges and benefits of expandable habitats for deep space exploration and commercial low-Earth orbit applications.

Our journey to Mars requires preparation and research in many areas. The powerful new Space Launch System rocket and the Orion spacecraft will travel into deep space, building on our decades of robotic Mars explorations, lessons learned on the International Space Station and groundbreaking new technologies.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

10 Things: Journey to the Center of Mars

May the fifth be with you because history is about to be made: As early as May 5, 2018, we’re set to launch Mars InSight, the very first mission to study the deep interior of Mars. We’ve been roaming the surface of Mars for a while now, but when InSight lands on Nov. 26, 2018, we’re going in for a deeper look. Below, 10 things to know as we head to the heart of Mars.

image

Coverage of prelaunch and launch activities begins Thursday, May 3, on NASA Television and our homepage.

1. What’s in a name? 

image

"Insight" is to see the inner nature of something, and the InSight lander—a.k.a. Interior Exploration using Seismic Investigations, Geodesy and Heat Transport—will do just that. InSight will take the "vital signs" of Mars: its pulse (seismology), temperature (heat flow) and reflexes (radio science). It will be the first thorough check-up since the planet formed 4.5 billion years ago.

2. Marsquakes. 

You read that right: earthquakes, except on Mars. Scientists have seen a lot of evidence suggesting Mars has quakes, and InSight will try to detect marsquakes for the first time. By studying how seismic waves pass through the different layers of the planet (the crust, mantle and core), scientists can deduce the depths of these layers and what they're made of. In this way, seismology is like taking an X-ray of the interior of Mars.

Want to know more? Check out this one-minute video.

3. More than Mars. 

image

InSight is a Mars mission, but it’s also so much more than that. By studying the deep interior of Mars, we hope to learn how other rocky planets form. Earth and Mars were molded from the same primordial stuff more than 4.5 billion years ago, but then became quite different. Why didn’t they share the same fate? When it comes to rocky planets, we’ve only studied one in great detail: Earth. By comparing Earth's interior to that of Mars, InSight's team hopes to better understand our solar system. What they learn might even aid the search for Earth-like planets outside our solar system, narrowing down which ones might be able to support life.

4. Robot testing. 

InSight looks a bit like an oversized crane game: When it lands on Mars this November, its robotic arm will be used to grasp and move objects on another planet for the first time. And like any crane game, practice makes it easier to capture the prize.

Want to see what a Mars robot test lab is like? Take a 360 tour.

5. The gang’s all here. 

image

InSight will be traveling with a number of instruments, from cameras and antennas to the heat flow probe. Get up close and personal with each one in our instrument profiles.

6. Trifecta. 

image

InSight has three major parts that make up the spacecraft: Cruise Stage; Entry, Descent, and Landing System; and the Lander. Find out what each one does here.

7. Solar wings. 

Mars has weak sunlight because of its long distance from the Sun and a dusty, thin atmosphere. So InSight’s fan-like solar panels were specially designed to power InSight in this environment for at least one Martian year, or two Earth years.

8. Clues in the crust. 

image

Our scientists have found evidence that Mars’ crust is not as dense as previously thought, a clue that could help researchers better understand the Red Planet’s interior structure and evolution. “The crust is the end-result of everything that happened during a planet’s history, so a lower density could have important implications about Mars’ formation and evolution,” said Sander Goossens of our Goddard Space Flight Center in Greenbelt, Maryland.

9. Passengers. 

image

InSight won’t be flying solo—it will have two microchips on board inscribed with more than 2.4 million names submitted by the public. "It's a fun way for the public to feel personally invested in the mission," said Bruce Banerdt of our Jet Propulsion Laboratory, the mission's principal investigator. "We're happy to have them along for the ride."

10. Tiny CubeSats, huge firsts. 

image

The rocket that will loft InSight beyond Earth will also launch a separate NASA technology experiment: two mini-spacecraft called Mars Cube One, or MarCO. These suitcase-sized CubeSats will fly on their own path to Mars behindInSight. Their goal is to test new miniaturized deep space communication equipment and, if the MarCOs make it to Mars, may relay back InSight data as it enters the Martian atmosphere and lands. This will be a first test of miniaturized CubeSat technology at another planet, which researchers hope can offer new capabilities to future missions.

Check out the full version of ‘Solar System: 10 Thing to Know This Week’ HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
6 years ago

Meet Parker Solar Probe, Our Mission to Touch the Sun

In just a few weeks, we're launching a spacecraft to get closer to the Sun than any human-made object has ever gone.

The mission, called Parker Solar Probe, is outfitted with a lineup of instruments to measure the Sun's particles, magnetic and electric fields, solar wind and more – all to help us better understand our star, and, by extension, stars everywhere in the universe.

image

Parker Solar Probe is about the size of a small car, and after launch – scheduled for no earlier than Aug. 6, 2018 – it will swing by Venus on its way to the Sun, using a maneuver called a gravity assist to draw its orbit closer to our star. Just three months after launch, Parker Solar Probe will make its first close approach to the Sun – the first of 24 throughout its seven-year mission.

image

Though Parker Solar Probe will get closer and closer to the Sun with each orbit, the first approach will already place the spacecraft as the closest-ever human-made object to the Sun, swinging by at 15 million miles from its surface. This distance places it well within the corona, a region of the Sun's outer atmosphere that scientists think holds clues to some of the Sun's fundamental physics.

For comparison, Mercury orbits at about 36 million miles from the Sun, and the previous record holder – Helios 2, in 1976 – came within 27 million miles of the solar surface. 

image

Humanity has studied the Sun for thousands of years, and our modern understanding of the Sun was revolutionized some 60 years ago with the start of the Space Age. We've come to understand that the Sun affects Earth in more ways than just providing heat and light – it's an active and dynamic star that releases solar storms that influence Earth and other worlds throughout the solar system. The Sun's activity can trigger the aurora, cause satellite and communications disruptions, and even – in extreme cases – lead to power outages.

Much of the Sun's influence on us is embedded in the solar wind, the Sun's constant outflow of magnetized material that can interact with Earth's magnetic field. One of the earliest papers theorizing the solar wind was written by Dr. Gene Parker, after whom the mission is named.

image

Though we understand the Sun better than we ever have before, there are still big questions left to be answered, and that's where scientists hope Parker Solar Probe will help.  

First, there's the coronal heating problem. This refers to the counterintuitive truth that the Sun's atmosphere – the corona – is much, much hotter than its surface, even though the surface is millions of miles closer to the Sun's energy source at its core. Scientists hope Parker Solar Probe's in situ and remote measurements will help uncover the mechanism that carries so much energy up into the upper atmosphere.

image

Second, scientists hope to better understand the solar wind. At some point on its journey from the Sun out into space, the solar wind is accelerated to supersonic speeds and heated to extraordinary temperatures. Right now, we measure solar wind primarily with a group of satellites clustered around Lagrange point 1, a spot in space between the Sun and Earth some 1 million miles from us. 

By the time the solar wind reaches these satellites, it has traveled about 92 million miles already, blending together the signatures that could shed light on the acceleration process. Parker Solar Probe, on the other hand, will make similar measurements less than 4 million miles from the solar surface – much closer to the solar wind's origin point and the regions of interest.

image

Scientists also hope that Parker Solar Probe will uncover the mechanisms at work behind the acceleration of solar energetic particles, which can reach speeds more than half as fast as the speed of light as they rocket away from the Sun! Such particles can interfere with satellite electronics, especially for satellites outside of Earth's magnetic field.

Parker Solar Probe will launch from Space Launch Complex 37 at Cape Canaveral Air Force Station, adjacent to NASA’s Kennedy Space Center in Florida. Because of the enormous speed required to achieve its solar orbit, the spacecraft will launch on a United Launch Alliance Delta IV Heavy, one of the most powerful rockets in the world.

image

Stay tuned over the next few weeks to learn more about Parker Solar Probe's science and follow along with its journey to launch. We'll be posting updates here on Tumblr, on Twitter and Facebook, and at nasa.gov/solarprobe.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

A Total Solar Eclipse Over South America

On Dec. 14, 2020, a total solar eclipse will pass over Chile and Argentina.

image

Solar eclipses happen when the Moon lines up just right between the Sun and Earth, allowing it to cast its shadow on Earth’s surface. People within the outer part of the Moon’s shadow will see the Sun partially blocked by the Moon, and those in the inner part of the shadow will see a total solar eclipse.

image

The Moon’s orbit around Earth is slightly tilted, meaning this alignment doesn’t happen on every orbit. Total solar eclipses happen somewhere on Earth about once every 18 months.

image

During a total solar eclipse, the Moon blocks out the Sun’s bright face, revealing its comparatively faint outer atmosphere, the corona. This provides Sun-watchers and scientists alike with a rare chance to see the solar corona closer to the Sun’s surface than is usually possible.

image

Scientists can take advantage of this unparalleled view — and solar eclipses’ unique effects on Earth’s atmosphere — to perform unique scientific studies on the Sun and its effects on Earth. Several NASA-funded science teams performed such studies during the total solar eclipse in the United States on Aug. 21, 2017. Read about what they’ve learned so far.

Watching the eclipse

We’ll be carrying images of December’s eclipse — courtesy of Pontificia Universidad Católica de Chile — on NASA TV and on the agency’s website starting at 9:40 a.m. EST on Dec. 14.

We’ll also have a live show in Spanish from 10:30 – 11:30 a.m. EST featuring views of the eclipse and NASA scientists.

If you’re observing the eclipse in person, remember that it’s never safe to look directly at the uneclipsed or partially eclipsed Sun. You can use special solar viewing glasses (NOT sunglasses) or an indirect method like pinhole projection to watch the eclipse in person.

image

For people in the path of totality, there will be a few brief moments when it is safe to look directly at the eclipse. Only once the Moon has completely covered the Sun and there is no sunlight shining is it safe to look at the eclipse. Make sure you put your eclipse glasses back on or return to indirect viewing before the first flash of sunlight appears around the Moon’s edge.

Mira el eclipse en vivo comentado por científicas de la NASA de 10:30 a 11:30 a.m. EST el 14 de diciembre en NASA TV y la página web de la agencia. Lee más sobre el eclipse y cómo observarlo de forma segura aquí: https://ciencia.nasa.gov/eclipse-de-2020-en-america-del-sur Y sigue a NASA en español en Instagram, Twitter, YouTube y Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

10 Things to Know: Massive Dust Storm on Mars

Massive Martian dust storms have been challenging—and enticing—scientists for decades. Here’s the scoop on Martian dust:

image

1: Challenging Opportunity

Our Opportunity rover is facing one of the greatest challenges of its 14 ½ year mission on the surface of Mars--a massive dust storm that has turned day to night. Opportunity is currently hunkered down on Mars near the center of a storm bigger than North America and Russia combined. The dust-induced darkness means the solar-powered rover can’t recharge its batteries.

image

2: One Tough Robot

This isn’t the first time Opportunity has had to wait out a massive storm. In 2007, a monthlong series of severe storms filled the Martian skies with dust. Power levels reached critical lows, but engineers nursed the rover back to health when sunlight returned.

image

3: Windswept

Martian breezes proved a saving grace for the solar-powered Mars rovers in the past, sweeping away accumulated dust and enabling rovers to recharge and get back to science. This is Opportunity in 2014. The image on the left is from January 2014. The image on the right in March 2014.

image

4: Dusty Disappointment

Back in 1971, scientists were eager for their first orbital views of Mars. But when Mariner 9 arrived in orbit, the Red Planet was engulfed by a global dust storm that hid most of the surface for a month. When the dust settled, geologists got detailed views of the Martian surface, including the first glimpses of ancient riverbeds carved into the dry and dusty landscape.

image

5: Dramatic License

As bad as the massive storm sounds, Mars isn’t capable of generating the strong winds that stranded actor Matt Damon’s character on the Red Planet in the movie The Martian. Mars’ atmosphere is too thin and winds are more breezy than brutal. The chore of cleaning dusty solar panels to maintain power levels, however, could be a very real job for future human explorers.

image

6: Semi-Regular Visitors

Scientists know to expect big dust storms on Mars, but the rapid development of the current one is surprising. Decades of Mars observations show a pattern of regional dust storms arising in northern spring and summer. In most Martian years, nearly twice as long as Earth years, the storms dissipate. But we’ve seen global dust storms in 1971, 1977, 1982, 1994, 2001 and 2007. The current storm season could last into 2019.

image

7: Science in the Dust

Dust is hard on machines, but can be a boon to science. A study of the 2007 storm published earlier this year suggests such storms play a role in the ongoing process of gas escaping from the top of Mars' atmosphere. That process long ago transformed wetter, warmer ancient Mars into today's arid, frozen planet. Three of our orbiters, the Curiosity rover and international partners are already in position to study the 2018 storm.

image

8: Adjusting InSight

Mission controllers for Mars InSight lander--due to land on Mars in November--will be closely monitoring the storm in case the spacecraft’s landing parameters need to be adjusted for safety. 

Once on the Red Planet, InSight will use sophisticated geophysical instruments to delve deep beneath the surface of Mars, detecting the fingerprints of the processes of terrestrial planet formation, as well as measuring the planet's "vital signs": Its "pulse" (seismology), "temperature" (heat flow probe), and "reflexes" (precision tracking).

image

9: Martian Weather Report

One saving grace of dust storms is that they can actually limit the extreme temperature swings experienced on the Martian surface. The same swirling dust that blocks out sunlight also absorbs heat, raising the ambient temperature surrounding Opportunity.

Track the storm and check the weather on Mars anytime.

image

10: Dust: Not Just a Martian Thing

A dust storm in the Sahara can change the skies in Miami and temperatures in the North Atlantic. Earth scientists keep close watch on our home planet’s dust storms, which can darken skies and alter Earth’s climate patterns.

Read the full web version of this article HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago
Say Hello To The Antennae Galaxies 👋

Say hello to the Antennae galaxies 👋

Two galaxies are locked in a deadly embrace in this Hubble Space Telescope image. Once normal, sedate spiral galaxies like the Milky Way, this galactic pair has spent the past few hundred million years sparring. The clash is so violent that stars have been ripped from their host galaxies to form a streaming arc between the two. 

The far-flung stars and streamers of gas stretch out into space, creating long tidal tails reminiscent of antennae (not visible in this close-up Hubble view). Clouds of gas blossom out in bright pink and red, surrounding the bright flashes of blue star-forming regions — some of which are partially obscured by dark patches of dust. 

Hubble’s observations have uncovered over 1,000 bright, young star clusters bursting to life as a result of the head-on wreck. The sweeping spiral-like patterns, traced by bright blue star clusters, shows the result of a firestorm of star-birth activity, which was triggered by the collision. The rate of star formation is so high that the Antennae galaxies are said to be in a state of starburst, a period in which all of the gas within the galaxies is being used to form stars. This cannot last forever, and neither can the separate galaxies; eventually the nuclei will coalesce and the galaxies will begin their retirement together as one large elliptical galaxy. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
  • watch
    watch reblogged this · 1 year ago
  • unknown-uwoit
    unknown-uwoit liked this · 5 years ago
  • legacycode
    legacycode liked this · 5 years ago
  • call-me-schmidt
    call-me-schmidt reblogged this · 5 years ago
  • santoshkumardwivedi
    santoshkumardwivedi liked this · 5 years ago
  • adt-space
    adt-space reblogged this · 5 years ago
  • smol-bean-dragon-hoard
    smol-bean-dragon-hoard liked this · 5 years ago
  • saturnspaceshark
    saturnspaceshark liked this · 5 years ago
  • bjshbhsd
    bjshbhsd liked this · 5 years ago
  • liliumnnavona
    liliumnnavona liked this · 5 years ago
  • eirstohter
    eirstohter liked this · 5 years ago
  • nasatranscription
    nasatranscription reblogged this · 5 years ago
  • immano
    immano liked this · 5 years ago
  • omlette87
    omlette87 reblogged this · 5 years ago
  • whitecatnatalie
    whitecatnatalie liked this · 5 years ago
  • natscapegalore
    natscapegalore liked this · 5 years ago
  • littlemissrand
    littlemissrand liked this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags