To The Moon And Beyond: Why Our SLS Rocket Is Designed For Deep Space

To the Moon and Beyond: Why Our SLS Rocket Is Designed for Deep Space

It will take incredible power to send the first woman and the next man to the Moon’s South Pole by 2024.  That’s where America’s Space Launch System (SLS) rocket comes in to play.

To The Moon And Beyond: Why Our SLS Rocket Is Designed For Deep Space

Providing more payload mass, volume capability and energy to speed missions through deep space than any other rocket, our SLS rocket, along with our lunar Gateway and Orion spacecraft, creates the backbone for our deep space exploration and Artemis lunar mission goals.

Here’s why our SLS rocket is a deep space rocket like no other:

It’s a heavy lifter

To The Moon And Beyond: Why Our SLS Rocket Is Designed For Deep Space

The Artemis missions will send humans 280,000 miles away from Earth. That’s 1,000 times farther into space than the International Space Station. To accomplish that mega feat, you need a rocket that’s designed to lift — and lift heavy. With help from a dynamic core stage — the largest stage we have ever built — the 5.75-million-pound SLS rocket can propel itself off the Earth. This includes the 57,000 pounds of cargo that will go to the Moon. To accomplish this, SLS will produce 15% more thrust at launch and during ascent than the Saturn V did for the Apollo Program.

We have the power 

To The Moon And Beyond: Why Our SLS Rocket Is Designed For Deep Space

Where do our rocket’s lift and thrust capabilities come from? If you take a peek under our powerful rocket’s hood, so to speak, you’ll find a core stage with four RS-25 engines that produce more than 2 million pounds of thrust alongside two solid rocket boosters that each provide another 3.6 million pounds of thrust power. It’s a bold design. Together, they provide an incredible 8.8 million pounds of thrust to power the Artemis missions off the Earth. The engines and boosters are modified heritage hardware from the Space Shuttle Program, ensuring high performance and reliability to drive our deep space missions.

A rocket with style

To The Moon And Beyond: Why Our SLS Rocket Is Designed For Deep Space

While our rocket’s core stage design will remain basically the same for each of the Artemis missions, the SLS rocket’s upper stage evolves to open new possibilities for payloads and even robotic scientific missions to worlds farther away than the Moon like Mars, Saturn and Jupiter. For the first three Artemis missions, our SLS rocket uses an interim cryogenic propulsion stage with one RL10 engine to send Orion to the lunar south pole. For Artemis missions following the initial 2024 Moon landing, our SLS rocket will have an exploration upper stage with bigger fuel tanks and four RL10 engines so that Orion, up to four astronauts and larger cargoes can be sent to the Moon, too. Additional core stages and upper stages will support either crewed Artemis missions, science missions or cargo missions for a sustained presence in deep space.

It’s just the beginning

To The Moon And Beyond: Why Our SLS Rocket Is Designed For Deep Space

Crews at our Michoud Assembly Facility in New Orleans are in the final phases of assembling the core stage for Artemis I— and are already working on assembly for Artemis II.

Through the Artemis program, we aim not just to return humans to the Moon, but to create a sustainable presence there as well. While there, astronauts will learn to use the Moon’s natural resources and harness our newfound knowledge to prepare for the horizon goal: humans on Mars.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

4 years ago

What You Need to Know About Our Space Launch System (SLS) Rocket’s Green Run Test

image

The comprehensive test series called Green Run for our Space Launch System (SLS) rocket is underway at Stennis Space Center in Mississippi. 

During Green Run, the rocket’s massive, 212-foot-tall core stage — the same flight hardware that will help launch Artemis I to the Moon – will operate together for the first time. 

Here’s what you need to know about this top-to-bottom test series of our megarocket’s huge core:

The Meaning Behind the Name 

image

Why is it called Green Run? “Green” refers to the new, untested hardware (AKA the core stage), and “run” represents the succession of tests the core stage paces through. One by one, this series will bring together several “firsts” for the rocket stage as the flight hardware undergoes eight different tests. Each test is designed to gradually bring our rocket’s core stage and all its systems to life for the first time. 

So far, engineers have completed three of the series: the modal test, the avionics power-on, and the safety systems checkout. The safety systems are designed to end the test and shutdown systems automatically under undesirable conditions.

You can follow the progress of Green Run with this Green Run checklist infographic. Our team will be updating in real time as each Green Run test is completed.

Setting the Stage

image

The world’s tallest rocket stage is tested in an equally giant test stand.  We upgraded the B-2 Test Stand used for the Saturn V rocket stages during the Apollo Program and, later, for the Space Shuttle Program. Now, the B-2 Test Stand is customized for testing our SLS core stage. When all four core stage engines fire up, they can generate some serious heat. So, the B-2 Test Stand will use roughly 100,000 gallons of water every 18 seconds to protect the stand and the hardware.

Hot fire in 3, 2, 1…

image

Speaking of engines firing up, the core stage will really show what it is capable of during the grand finale of Green Run. The goal is for the entire core stage to operate as one for up to 8.5 minutes — and that includes an impressive firing of all four RS-25 engines simultaneously. Just like at launch, more than 733,000 gallons of liquid propellant will flow from the two propellant tanks through the fuel lines to feed the RS-25 engines.  When operating at sea level on the test stand, the cluster of four RS-25 engines will produce just over 1.6 million pounds of thrust – the same amount it will produce during the early phase of launch. During ascent, the core stage will produce a maximum thrust of over 2 million pounds.

Data, data, data

image

All the Green Run tests, check outs and the 100 terabytes of collected data certify the core stage design and help verify the stage is ready for launch. To put the sheer amount of data collected during Green Run into perspective, just one terabyte is the equivalent of roughly 500 hours of movies. Even the Library of Congress’s collection only amounts to a total of 15 terabytes!

Next stop: Kennedy

image

The next time our SLS rocket’s core stage fires up will be on the launch pad at Kennedy Space Center for the debut of the Artemis program. This inaugural SLS flight will be just the beginning of increasingly complex missions that will enable human exploration to the Moon and, ultimately, Mars.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Did you have a favorite astronaut as a kid? If not, who were your inspirations? :)

Of course Mae Jemison was an inspiration, but I didn’t have a favorite. Because how do you pick out of such a great group?


Tags
5 years ago

Earth’s Hot and It’s Cold 🎶(and We Can Tell from Space)

From people and pets to pens and pencils, everything gives off energy in the form of heat. We’ve got special instruments that measure thermal wavelengths, so we can tell whether something is hot, cold or in between. Hotter things emit more thermal energy; colder ones emit less.

image

We have special instruments in space, zipping around Earth and measuring the hottest and coldest places on our planet.

image

We can also measure much subtler changes in heat – like when plants cool down as they take up water from the soil and ‘sweat’ it out into the air, in a process called evapotranspiration.

image

This lets us identify healthy, growing crops around the world.

image

The instrument that can do all this is called the Thermal Infrared Sensor 2 (TIRS-2). It just passed a series of rigorous tests at our Goddard Space Flight Center in Greenbelt, Md., proving it’s ready to survive in space.

image

TIRS-2 is bound for the Landsat 9 satellite, which will continue decades of work studying our planet from space.

image

 Learn more about TIRS-2 and how we see heat from space: https://www.nasa.gov/feature/goddard/2019/new-landsat-infrared-instrument-ships-from-nasa/.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Five Ways NASA’s Internships Rock(et)

Sending humans to space, returning to the Moon, transforming aircraft, exploring the extraordinary every day: just a few things you are a part of as a NASA intern. Whether you have dreamed of working at the agency your whole life, or discovered a new interest, students at NASA have the opportunity to make real contributions to space exploration and flight. Want to know more? Here are five ways these internships can be rocket fuel for your career:

5. NASA gives you a navigation system. 

Five Ways NASA’s Internships Rock(et)

Imagine walking into a lab to work side-by-side with NASA scientists, engineers and researchers. As a NASA intern, that’s a daily reality. Mentors are full-time employees who guide and work with students throughout their internship. Space communications intern Nick Sia believes working with a mentor is what makes NASA’s internships different. “Working one-on-one has given me more opportunities to work on different projects,” he says. “It’s the best motivation to do great work.”

4. It’s more than training for launch day. 

image

As a NASA intern, your work matters. Students are treated as employees, and their ideas are valued. Hands-on assignments allow interns to make real contributions to NASA research and gain experience. For example, Erin Rezich is working in our mobility lab to help design excavation hardware for planetary surfaces such as the Moon. “It’s an incredibly exciting project because these are problems that have to be solved to move planetary exploration forward,” she says.

3. Students develop an array of skills.

image

Not only do interns improve their technical skills, but they are also building communication and leadership skills. This summer, students are taking part in a two-week immersive design challenge. Participants will design a Ram Air Turbine for NASA Glenn’s 1x1 Supersonic Wind Tunnel. “This design challenge is a unique opportunity to create a design from scratch, which could actually be implemented,” says Woodrow Funk, an electrical testing engineer intern. Projects such as this allow students to work independently, plan, organize and improve time management skills. 

2. Non-technical degrees shoot for the stars. 

image

NASA also offers many opportunities for students pursuing a career outside of STEM fields. Departments such as human resources, administration, education and communications engage students with hands-on projects. These organizations provide support essential to NASA’s programs and missions. “I was excited that NASA offered opportunities that match my skill set,” says Molly Kearns, a digital media student working with Space Communications and Navigation. Kearns’ first summer at NASA confirmed her passion for graphic design. “What makes the experience so rewarding is seeing content that I created published on social media sites,” she says.

1. Students are surrounded by extraordinary peers. 

image

Students come to NASA from all over the nation to develop important skills matched to their career goals and expand the way they think about their work. Being surrounded by the best scientists, developers, engineers, mathematicians and communicators is inspiring. NASA’s network is one of graduate fellow Jamesa Stokes’ main motivations. “There are tons of smart and awesome people who work here,” says Stokes, “At the end of the day, they are willing to help anyone who comes and asks for it.”

Are you ready to liftoff your career? Learn more about opportunities for students at NASA here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

We See Seashores Shifting with Satellites

If you’re like us, as soon as the summer Sun is out, you start feeling – well, just beachy, sand you very much. 

Lots of our favorite beaches are inside protected marine areas, which are regulated by governments to keep their ecosystems or cultural heritage intact. If you beachcomb at Cape Cod, swim in the Florida Keys or learn about Hawaiian culture at Papahānaumokuākea Marine National Monument, congrats! You’ve visited a protected marine area.

image

But time and tide haven’t been kind to some protected beaches.

Beaches are constantly changing, and science teams are using our 30-year record of Earth images from the NASA/USGS Landsat program to study what’s happening.

Overall, the sum total of sandy beaches has increased a bit over the last 30 years. But time and tide haven’t been as kind to our protected beaches – the team found that more than 1/3 of sandy beaches in protected marine areas have been eroding away.

image

Some of these areas were designated to protect vulnerable plant and animal species or connect delicate ecosystems. They are home to humpback whales and sea turtles, reefs and mangroves that protect the land from erosion and natural disasters, and species which are found in only one habitat in the world. Losing land area could upset the balance of these areas and endanger their future.

image

Next step: Looking for pearls of wisdom to save the beaches!

Right now, we aren’t sure which beaches are eroding due to natural processes, and which are due to humans – that’s the next step for science teams to investigate. Once we know the causes, we can start working on solutions to save the beaches.

Those 30 years of Landsat data will help scientists find answers to these questions much faster – instead of using airplanes or measuring the beaches by hand, they can use computer programs to rapidly investigate millions of satellite photos spanning many years of change.

image

By tracking beaches from space, scientists can help keep our summers sandy for years to come.

And that makes us as happy as clams.

Read the full story HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
7 years ago

Solar System: Things to Know This Week

Jupiter, our solar system's largest planet, is making a good showing in night skies this month. Look for it in the southeast in each evening. With binoculars, you may be able to see the planet's four largest moons. Here are some need-to-know facts about the King of the Planets.

image

1. The Biggest Planet:

With a radius of 43,440.7 miles (69,911 kilometers), Jupiter is 11 times wider than Earth. If Earth were the size of a nickel, Jupiter would be about as big as a basketball.

image

2. Fifth in Line

Jupiter orbits our sun, and is the fifth planet from the sun at a distance of about 484 million miles (778 million km) or 5.2 Astronomical Units (AU). Earth is one AU from the sun.

image

3. Short Day / Long Year

One day on Jupiter takes about 10 hours (the time it takes for Jupiter to rotate or spin once). Jupiter makes a complete orbit around the sun (a year in Jovian time) in about 12 Earth years (4,333 Earth days).

image

4. What's Inside?

Jupiter is a gas-giant planet without a solid surface. However, the planet may have a solid, inner core about the size of Earth.

image

5. Atmosphere

Jupiter's atmosphere is made up mostly of hydrogen (H2) and helium (He).

image

6. Many Moons

Jupiter has 53 known moons, with an additional 14 moons awaiting confirmation of their discovery — a total of 67 moons.

image

7. Ringed World

All four giant planets in our solar system have ring systems and Jupiter is no exception. Its faint ring system was discovered in 1979 by the Voyager 1 mission. 

image

8. Exploring Jupiter:

Many missions have visited Jupiter and its system of moons. The Juno spacecraft is currently orbiting Jupiter.

image

9. Ingredients for Life?

Jupiter cannot support life as we know it. However, some of Jupiter's moons have oceans underneath their crusts that might support life.

image

10. Did You Know?

Jupiter's Great Red Spot is a gigantic storm (about the size of Earth) that has been raging for hundreds of years.

Discover more lists of 10 things to know about our solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Dear Dr. Serena M. Aunon Chancellor, There are numerous questions and queries related to space and its endless impacts on human mind, but among all of them, I want to know, if any how, there is some emergency or casualty in space so that we need to operate a surgery, in that situation, are we still able to perform any surgery in microgravity? Is it possible or not? Thanking you. Parmesh Kumar India


Tags
2 years ago

Celebrate Earth Day with NASA

In the lower portion of the photo, the gray uneven cratered surface of the Moon runs diagonally descending from right to left. In the center-right of the photo, the half-illuminated Earth shines bright blue, and partially visible land hides behind swirling white clouds. Credit: NASA

"We came all this way to explore the Moon, and the most important thing is that we discovered the Earth." - Apollo 8 astronaut Bill Anders

On Dec. 24, 1968, Anders snapped this iconic photo of "Earthrise" during the historic Apollo 8 mission. As he and fellow astronauts Frank Borman and Jim Lovell became the first humans to orbit the Moon, they witnessed Earth rising over the Moon's horizon. The image helped spark the first #EarthDay on April 22, 1970.

Anders sat down with Dr. Kate Calvin, our chief scientist and senior climate advisor, to chat about the photo, and NASA’s role in studying our home.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago

Do you guys (everyone at mission control) have inside jokes?

What is the best about being mission control?

As someone who's about to go to college to hopefully be astronaut if everything goes to plan. What is some good advice you wish someone told you?


Tags
9 years ago

Exercising in Space

Are you hoping to get to the gym more often in 2016? While you work out on Earth, here are a few ways that astronauts stay fit on the International Space Station.

image

Exercise is an important part of the daily routine for astronauts aboard the International Space Station to prevent bone and muscle loss, and to maintain cardiovascular health. On average, astronauts exercise two hours per day. The equipment they use in space is different than what we use on Earth.

Lifting 200 pounds on Earth may be a lot of work, but in microgravity a 200 pound dumbbell would not weigh anything. Therefore, free weights do not serve as a good strength training tool for the astronauts in space.  That means exercise equipment needs to be specifically designed for use in space so astronauts will receive the workout needed.

What Equipment Do They Use in Space?

Advanced Resistive Exercise Device (ARED)

image

The ARED hardware uses adjustable resistance piston-driven vacuum cylinders along with a flywheel system to simulate free-weight exercises in normal gravity. It’s primary goal is to maintain muscle strength and bone mass in astronauts during long periods in space.

Cycle Ergometer with Vibration Isolation System (CEVIS)

image

CEVIS is very similar to a mechanical bicycle. It’s bolted to the floor, and astronauts snap their shoes on to the pedals. A seat belt can be used to hold them in position, and they can change the resistance for varying levels of difficulty.

Russian Treadmill (BD-2)

image

BD-2 is the treadmill that is found in the Russian segment of the space station. It allows crew members to walk and run with a speed from 2.4 to 20 km/hr. 

Combined Operational Load Bearing External Resistance Treadmill (COLBERT)

image

COLBERT is the second generation U.S. treadmill on the space station. It features data collection devices that will allow scientists and doctors to evaluate how effective the exercise is in reducing the amount of bone and muscle density loss due to microgravity exposure. It allows crew members to walk and run with a speed from 4.8 to 20 km/hr. 

Why is it called COLBERT? 

image

The treadmill’s name was selected after comedian Stephen Colbert took interest in our online naming poll for Node 3 of space station. He urged his viewers to submit the name “Colbert.” Although we ended up choosing the suggested name “Tranquillity” for the node, we designated its new treadmill “COLBERT” in honor of the name that received the most entries.

VELO Ergomoeter Bike (VB-3)

image

VB-3 is used for aerobic training, medical tests and pedaling regimes. It is located in the Russian segment of the space station. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • nothingbutsunglasses
    nothingbutsunglasses liked this · 10 months ago
  • turbiea
    turbiea liked this · 1 year ago
  • th1rdofseptember
    th1rdofseptember liked this · 2 years ago
  • enchantingwizardpersona
    enchantingwizardpersona liked this · 2 years ago
  • been-here-since-76
    been-here-since-76 liked this · 2 years ago
  • roboticowboy
    roboticowboy liked this · 3 years ago
  • artemis2021-blog
    artemis2021-blog liked this · 3 years ago
  • highclassassmel
    highclassassmel liked this · 4 years ago
  • lolagonnamakeit
    lolagonnamakeit liked this · 4 years ago
  • walth69
    walth69 liked this · 4 years ago
  • gnx003
    gnx003 liked this · 4 years ago
  • sindercrid
    sindercrid liked this · 4 years ago
  • anxvu
    anxvu liked this · 4 years ago
  • number1prime
    number1prime liked this · 4 years ago
  • meticulous-terrors
    meticulous-terrors reblogged this · 5 years ago
  • seraphic-serenade
    seraphic-serenade liked this · 5 years ago
  • pinkiepieaddict
    pinkiepieaddict reblogged this · 5 years ago
  • 2015theyearofthefuture
    2015theyearofthefuture reblogged this · 5 years ago
  • bexhudson-blog
    bexhudson-blog reblogged this · 5 years ago
  • snailswithwings
    snailswithwings liked this · 5 years ago
  • fiftyshadesofhodor
    fiftyshadesofhodor reblogged this · 5 years ago
  • fiftyshadesofhodor
    fiftyshadesofhodor liked this · 5 years ago
  • pebblejrock
    pebblejrock reblogged this · 5 years ago
  • rougeaubebeaute
    rougeaubebeaute reblogged this · 5 years ago
  • thomasbrisenio
    thomasbrisenio reblogged this · 5 years ago
  • theonewiththe-whales
    theonewiththe-whales liked this · 5 years ago
  • authenticaimportaturvirtutibus
    authenticaimportaturvirtutibus reblogged this · 5 years ago
  • unknown-uwoit
    unknown-uwoit liked this · 5 years ago
  • attonitusnaturae
    attonitusnaturae reblogged this · 5 years ago
  • ioannae-d-arc
    ioannae-d-arc liked this · 5 years ago
  • rougeaubebeaute
    rougeaubebeaute liked this · 5 years ago
  • theknightsystem
    theknightsystem liked this · 5 years ago
  • aestesianobilis
    aestesianobilis reblogged this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags