Need Some Space? We’ve Got The Job! 👨‍🚀👩‍🚀⁣

Need Some Space? We’ve Got The Job! 👨‍🚀👩‍🚀⁣
Need Some Space? We’ve Got The Job! 👨‍🚀👩‍🚀⁣
Need Some Space? We’ve Got The Job! 👨‍🚀👩‍🚀⁣
Need Some Space? We’ve Got The Job! 👨‍🚀👩‍🚀⁣
Need Some Space? We’ve Got The Job! 👨‍🚀👩‍🚀⁣
image

Need some space? We’ve got the job! 👨‍🚀👩‍🚀⁣

We’re accepting applications March 2-31 for the next class of #Artemis Generation astronauts who will embark on missions to the Moon and Mars. Join our class of star sailors and find out if you have what it takes to #BeAnAstronaut! 

The basic requirements to apply include United States citizenship and a master’s degree in a STEM field, including engineering, biological science, physical science, computer science, or mathematics, from an accredited institution. The requirement for the master’s degree can also be met by:

Two years (36 semester hours or 54 quarter hours) of work toward a Ph.D. program in a related science, technology, engineering or math field;

A completed doctor of medicine or doctor of osteopathic medicine degree;

Completion (or current enrollment that will result in completion by June 2021) of a nationally recognized test pilot school program.

Candidates also must have at least two years of related, progressively responsible professional experience, or at least 1,000 hours of pilot-in-command time in jet aircraft. Astronaut candidates must pass the NASA long-duration spaceflight physical.

More information here. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

3 years ago

Did you have mentors that helped you?


Tags
7 years ago

13 Reasons to Have an Out-of-This-World Friday (the 13th)

1. Not all of humanity is bound to the ground

image

Since 2000, the International Space Station has been continuously occupied by humans. There, crew members live and work while conducting important research that benefits life on Earth and will even help us eventually travel to deep space destinations, like Mars.

2. We’re working to develop quieter supersonic aircraft that would allow you to travel from New York to Los Angeles in 2 hours

image

We are working hard to make flight greener, safer and quieter – all while developing aircraft that travel faster, and building an aviation system that operates more efficiently. Seventy years after Chuck Yeager broke the sound barrier in the Bell X-1 aircraft, we’re continuing that supersonic X-plane legacy by working to create a quieter supersonic jet with an aim toward passenger flight.

3. The spacecraft, rockets and systems developed to send astronauts to low-Earth orbit as part of our Commercial Crew Program is also helping us get to Mars

Changes to the human body during long-duration spaceflight are significant challenges to solve ahead of a mission to Mars and back. The space station allows us to perform long duration missions without leaving Earth’s orbit.

image

Although they are orbiting Earth, space station astronauts spend months at a time in near-zero gravity, which allows scientists to study several physiological changes and test potential solutions. The more time they spend in space, the more helpful the station crew members can be to those on Earth assembling the plans to go to Mars.

4. We’re launching a spacecraft in 2018 that will go “touch the Sun”

image

In the summer of 2018, we’re launching Parker Solar Probe, a spacecraft that will get closer to the Sun than any other in human history. Parker Solar Probe will fly directly through the Sun’s atmosphere, called the corona. Getting better measurements of this region is key to understanding our Sun. 

For instance, the Sun releases a constant outflow of solar material, called the solar wind. We think the corona is where this solar wind is accelerated out into the solar system, and Parker Solar Probe’s measurements should help us pinpoint how that happens.  

5. You can digitally fly along with spacecraft…that are actually in space…in real-time!

image

NASA’s Eyes are immersive, 3D simulations of real events, spacecraft locations and trajectories. Through this interactive app, you can experience Earth and our solar system, the universe and the spacecraft exploring them. Want to watch as our Juno spacecraft makes its next orbit around Juno? You can! Or relive all of the Voyager mission highlights in real-time? You can do that too! Download the free app HERE to start exploring.

6. When you feel far away from home, you can think of the New Horizons spacecraft as it heads toward the Kuiper Belt, and the Voyager spacecraft are beyond the influence of our sun…billions of miles away

image

Our New Horizons spacecraft completed its Pluto flyby in July 2015 and has continued on its way toward the Kuiper Belt. The spacecraft continues to send back important data as it travels toward deeper space at more than 32,000 miles per hour, and is ~3.2 billion miles from Earth.

image

In addition to New Horizons, our twin Voyager 1 and 2 spacecraft are exploring where nothing from Earth has flown before. Continuing on their more-than-37-year journey since their 1977 launches, they are each much farther away from Earth and the sun than Pluto. In August 2012, Voyager 1 made the historic entry into interstellar space, the region between the stars, filled with material ejected by the death of nearby stars millions of years ago.

7. There are humans brave enough to not only travel in space, but venture outside space station to perform important repairs and updates during spacewalks

image

Just this month (October 2017) we’ve already had two spacewalks on the International Space Station...with another scheduled on Oct. 20. 

Spacewalks are important events where crew members repair, maintain and upgrade parts of the International Space Station. These activities can also be referred to as EVAs – Extravehicular Activities. Not only do spacewalks require an enormous amount of work to prepare for, but they are physically demanding on the astronauts. They are working in the vacuum of space in only their spacewalking suit. 

8. Smart people are up all night working in control rooms all over NASA to ensure that data keeps flowing from our satellites and spacecraft

image

Our satellites and spacecraft help scientists study Earth and space. Missions looking toward Earth provide information about clouds, oceans, land and ice. They also measure gases in the atmosphere, such as ozone and carbon dioxide and the amount of energy that Earth absorbs and emits. And satellites monitor wildfires, volcanoes and their smoke.

9. A lot of NASA-developed tech has been transferred for use to the public

Our Technology Transfer Program highlights technologies that were originally designed for our mission needs, but have since been introduced to the public market. HERE are a few spinoff technologies that you might not know about.

10. We have a spacecraft currently traveling  to an asteroid to collect a sample and bring it back to Earth

image

OSIRIS-REx is our first-ever mission that will travel to an asteroid and bring a sample of it back to Earth. Currently, the spacecraft is on its way to asteroid Bennu where it will survey and map the object before it “high-fives” the asteroid with its robotic arm to collect a sample, which it will send to Earth.

If everything goes according to plan, on Sept. 24, 2023, the capsule containing the asteroid sample will make a soft landing in the Utah desert.

11. There are Earth-sized planets outside our solar system that may be habitable

To date, we have confirmed 3,000+ exoplanets, which are planets outside our solar system that orbit a Sun-like star. Of these 3,000, some are in the habitable zone – where the temperature is just right for liquid water to exist on the surface.  

image

Recently, our Spitzer Space Telescope revealed the first known system of SEVEN Earth-size planets around a single star. Three of these plants are firmly in the habitable zone, and could have liquid water on the surface, which is key to life as we know it.

12. Earth looks like art from space

image

In 1960, the United States put its first Earth-observing environmental satellite into orbit around the planet. Over the decades, these satellites have provided invaluable information, and the vantage point of space has provided new perspectives on Earth.

image

The beauty of Earth is clear, and the artistry ranges from the surreal to the sublime.

13. We’re building a telescope that will be able to see the first stars ever formed in the universe

image

Wouldn’t it be neat to see a period of the universe’s history that we’ve never seen before? That’s exactly what the James Webb Space Telescope (JWST) will be able to do…plus more!

Specifically, Webb will see the first objects that formed as the universe cooled down after the Big Bang. We don’t know exactly when the universe made the first stars and galaxies – or how for that matter. That is what we are building Webb to help answer.

Happy Friday the 13th! We hope it’s out-of-this-world!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

The Opportunity to Rove on Mars! 🔴

Today, we’re expressing gratitude for the opportunity to rove on Mars (#ThanksOppy) as we mark the completion of a successful mission that exceeded our expectations.  

Our Opportunity Rover’s last communication with Earth was received on June 10, 2018, as a planet-wide dust storm blanketed the solar-powered rover's location on the western rim of Perseverance Valley, eventually blocking out so much sunlight that the rover could no longer charge its batteries. Although the skies over Perseverance cleared, the rover did not respond to a final communication attempt on Feb. 12, 2019.

As the rover’s mission comes to an end, here are a few things to know about its opportunity to explore the Red Planet.

90 days turned into 15 years!

Opportunity launched on July 7, 2003 and landed on Mars on Jan. 24, 2004 for a planned mission of 90 Martian days, which is equivalent to 92.4 Earth days. While we did not expect the golf-cart-sized rover to survive through a Martian winter, Opportunity defied all odds as a 90-day mission turned into 15 years!

image

The Opportunity caught its own silhouette in this late-afternoon image taken in March 2014 by the rover's rear hazard avoidance camera. This camera is mounted low on the rover and has a wide-angle lens.

Opportunity Set  Out-Of-This-World Records

Opportunity's achievements, including confirmation water once flowed on Mars. Opportunity was, by far, the longest-lasting lander on Mars. Besides endurance, the six-wheeled rover set a roaming record of 28 miles.

image

This chart illustrates comparisons among the distances driven by various wheeled vehicles on the surface of Earth's moon and Mars. Opportunity holds the off-Earth roving distance record after accruing 28.06 miles (45.16 kilometers) of driving on Mars.

It’s Just Like Having a Geologist on Mars

Opportunity was created to be the mechanical equivalent of a geologist walking from place to place on the Red Planet. Its mast-mounted cameras are 5 feet high and provided 360-degree two-eyed, human-like views of the terrain. The robotic arm moved like a human arm with an elbow and wrist, and can place instruments directly up against rock and soil targets of interest. The mechanical "hand" of the arm holds a microscopic camera that served the same purpose as a geologist's handheld magnifying lens.

image

There’s Lots to See on Mars

After an airbag-protected landing craft settled onto the Red Planet’s surface and opened, Opportunity rolled out to take panoramic images. These images gave scientists the information they need to select promising geological targets that tell part of the story of water in Mars' past. Since landing in 2004, Opportunity has captured more than 200,000 images. Take a look in this photo gallery.

image

From its perch high on a ridge, the Opportunity rover recorded this image on March 31, 2016 of a Martian dust devil twisting through the valley below. The view looks back at the rover's tracks leading up the north-facing slope of "Knudsen Ridge," which forms part of the southern edge of "Marathon Valley

There Was Once Water on Mars?!

Among the mission's scientific goals was to search for and characterize a wide range of rocks and soils for clues to past water activity on Mars. In its time on the Red Planet, Opportunity discovered small spheres of the mineral hematite, which typically forms in water. In addition to these spheres that a scientist nicknamed “blueberries,” the rover also found signs of liquid water flowing across the surface in the past: brightly colored veins of the mineral gypsum in rocks, for instance, which indicated water flowing through underground fractures.

image

The small spheres on the Martian surface in this close-up image are near Fram Crater, visited by the Opportunity rover in April 2004.

For more about Opportunity's adventures and discoveries, see: https://go.nasa.gov/ThanksOppy.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

How will the audio feed from Perseverance make its way back to Earth?


Tags
6 years ago

One Year Into Our Planet-Hunting TESS Mission

image

Our Transiting Exoplanet Survey Satellite (TESS), launched last year on April 18, is completing a year in space, surveying the skies to find the closest, most exciting planets outside our solar system for further study. Worlds that TESS is hunting for include super-Earths, rocky planets, gas giants, and maybe even some Earth-sized planets — and much, much more! TESS is scanning the whole sky one section at a time, monitoring the brightness of stars for periodic dips caused by planets transiting (that is, passing in front of) those stars. So far, TESS has found 548 candidates and 10 confirmed exoplanets.

image

Since its launch, TESS has orbited Earth a total of 28 times. TESS has a unique elliptical orbit that circuits around Earth twice every time the Moon orbits. This allows TESS’s cameras to monitor each patch of sky continuously for nearly a month at a time. To get into this special orbit, TESS made a series of loops culminating in a lunar gravitational assist, which gave it the final push it needed.

image

Did you know that TESS has some serious mileage? The spacecraft has traveled about 20 million miles so far, which works out to an average of about 2,200 miles per hour. That’s faster than any roadrunner we’ve ever seen! This would be four times faster than an average jet. You’d get to your destination in no time!

image

TESS downloads data during its closest approach to Earth about every two weeks. So far, it has returned 12,000 gigabytes of data. That’s as if you streamed about 3,000 movies on Netflix. Get the popcorn ready! If you total all the pixels from every image taken using all four of the TESS cameras — which is about 600 full-frame images per orbit, you’d get about 805 billion pixels. This is like half a million iPhone screens put together!

image

When the Kepler Space Telescope reached the end of its mission, it passed the planet-finding torch to TESS. Where Kepler's view was deep — looking for planets as far away as 3,000 light-years — TESS's view is wide, surveying nearly the entire sky over two years. Each sector TESS views is 20 times larger than Kepler's field of view.

image

TESS will continue to survey the sky and is expected to find about 20,000 exoplanets in the two years it'll take to complete a scan of nearly the entire sky. Before TESS, several thousand candidate exoplanets were found, and more than 3,000 of these were confirmed. Some of these exoplanets are expected to range from small, rocky worlds to giant planets, showcasing the diversity of planets in the galaxy.

The TESS mission is led by MIT and came together with the help of many different partners. You can keep up with the latest from the TESS mission by following mission updates and keep track of the number of candidates and confirmed exoplanets.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

10 Space & Football Facts You Probably Didn’t Know

There are more connections between space and football than you may have originally thought. Here are a few examples of how...

1. The International Space Station and a football field are basically the same size

image

Yes, that’s right! The International Space Station measures 357 feet end-to-end. That’s almost equivalent to the length of a football field including the end zones (360 feet).

2. It would take over 4,000 footballs to fill the Orion spacecraft

image

Our Orion spacecraft is being designed to carry astronauts to deep space destinations, like Mars! It will launch atop the most powerful rocket ever built, the Space Launch System rocket. If you were to fill the Orion spacecraft with footballs instead of crew members, you would fit a total of 4,625!

3. Our new Space Launch System rocket is taller than a football field is long

image

We’re building the most powerful rocket ever, the Space Launch System. At its full height it will stand 384 feet – 24 feet taller than a football field is long.

4. The crew living on space station will see the day begin and end…twice…during the Super Bowl

image

An average NFL game lasts more than three hours. Traveling at 17,500 mph, the crew on the space station will see two sunrises and two sunsets in that time…they see 16 sunrises and sunsets each day!

5. Playing football on Mars would be…lighter

image

On Mars, a football would weigh less than half a pound, while a 200-pund football player would weigh just about 75 pounds.

6. It would take over 3,000 hours for a football to reach the Moon

image

Talk about going long…if you threw a football to the Moon at 60 mph, the average speed of an NFL pass, it would take 3,982 hours, or 166 days, to get there. The quickest trip to the Moon was the New Horizons probe, which zipped pass the Moon in just 8 hours 35 minutes on its way to Pluto 

7. The longest field goal kick in history would’ve been WAY easier to make on Mars

image

The longest field goal kick in NFL history is 64 yards. On Mars, at 1/3 the gravity of Earth, that same field goal, ignoring air resistance, could have been made from almost two football fields away (192 yards).

8. A quarterback would be able to throw even further on Mars

image

Aerodynamic drag doesn’t happen on Mars. With a very thin atmosphere and low gravity to drag the ball down, a quarterback could throw the football three times as far as he could on Earth. A receiver would have to be much further down the field to catch the throw 

9. Football players and astronauts both need to exercise every day

image

Football players must be quick and powerful, honing the physical skills necessary for their unique positions. In space, maintaining physical fitness is a top priority, since astronauts will lose bone and muscle mass if they do not keep up their strength and conditioning.

10. Clear team communication is important on the football field AND in space

image

During football games, calling plays and relaying information from coaches on the sidelines or in the booth to players on the field is essential. Coaches communicate directly with quarterbacks and a defensive player between plays via radio frequencies. They must have a secure and reliable system that keeps their competitors from listening in and also keeps loud fan excitement from drowning out what can be heard. Likewise, reliable communication with astronauts in space and robotic spacecraft exploring far into the solar system is key to our mission success.

A radio and satellite communications network allows space station crew members to talk to the ground-based team at control centers, and for those centers to send commands to the orbital complex.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

A Wrinkle in Space-Time: The Eclipse That “Proved” Einstein Right

One hundred years ago a total solar eclipse turned an obscure scientist into a household name. You might have heard of him — his name is Albert Einstein. But how did a solar eclipse propel him to fame?

First, it would be good to know a couple things about general relativity. (Wait, don’t go! We’ll keep this to the basics!)

image

A decade before he finished general relativity, Einstein published his special theory of relativity, which demonstrates how space and time are interwoven as a single structure he dubbed “space-time.” General relativity extended the foundation of special relativity to include gravity. Einstein realized that gravitational fields can be understood as bends and curves in space-time that affect the motions of objects including stars, planets — and even light.

For everyday situations the centuries-old description of gravity by Isaac Newton does just fine. However, general relativity must be accounted for when we study places with strong gravity, like black holes or neutron stars, or when we need very precise measurements, like pinpointing a position on Earth to within a few feet. That makes it hard to test!

image

A prediction of general relativity is that light passing by an object feels a slight "tug", causing the light's path to bend slightly. The more mass the object has, the more the light will be deflected. This sets up one of the tests that Einstein suggested — measuring how starlight bends around the Sun, the strongest source of gravity in our neighborhood. Starlight that passes near the edge of the Sun on its way to Earth is deflected, altering by a small amount where those stars appear to be. How much? By about the width of a dime if you saw it at a mile and a quarter away! But how can you observe faint stars near the brilliant Sun? During a total solar eclipse!

image

That’s where the May 29, 1919, total solar eclipse comes in. Two teams were dispatched to locations in the path of totality — the places on Earth where the Moon will appear to completely cover the face of the Sun during an eclipse. One team went to South America and another to Africa.

On eclipse day, the sky vexed both teams, with rain in Africa and clouds in South America. The teams had only mere minutes of totality during which to take their photographs, or they would lose the opportunity until the next total solar eclipse in 1921! However, the weather cleared at both sites long enough for the teams to take images of the stars during totality.

image

The teams took two sets of photographs of the same patch of sky – one set during the eclipse and another set a few months before or after, when the Sun was out of the way. By comparing these two sets of photographs, researchers could see if the apparent star positions changed as predicted by Einstein. This is shown with the effect exaggerated in the image above.

A few months after the eclipse, when the teams sorted out their measurements, the results demonstrated that general relativity correctly predicted the positions of the stars. Newspapers across the globe announced that the controversial theory was proven (even though that’s not quite how science works). It was this success that propelled Einstein into the public eye.

image

The solar eclipse wasn’t the first test of general relativity. For more than two centuries, astronomers had known that Mercury’s orbit was a little off. Its perihelion — the point during its orbit when it is closest to the Sun — was changing faster than Newton’s laws predicted. General relativity easily explains it, though, because Mercury is so close to the Sun that its orbit is affected by the Sun’s dent in space-time, causing the discrepancy.  

In fact, we still test general relativity today under different conditions and in different situations to see whether or not it holds up. So far, it has passed every test we’ve thrown at it.

Curious to know where we need general relativity to understand objects in space? Tune into our Tumblr tomorrow to find out!

image

You can also read more about how our understanding of the universe has changed during the past 100 years, from Einstein's formulation of gravity through the discovery of dark energy in our Cosmic Times newspaper series.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Is it safe to look at the eclipse if it isn't fully covered by the sun? Say 75%

Not without proper eye wear. There will still be too much light that could burn your eyes. But you can have a ton of fun viewing the Sun using a https://eclipse.aas.org/eye-safety/projection. In fact, there is a sunspot that is now on the Sun that you should be able to see using this indirect method! 


Tags
9 years ago

How Well Do You Know Venus?

Similar in structure and size to Earth, Venus’ thick, toxic atmosphere traps heat in a runaway greenhouse effect. A permanent layer of clouds traps heat, creating surface temperatures hot enough to melt lead.

How Well Do You Know Venus?

How did Venus get its name? It is named for the ancient Roman goddess of love and beauty. It is believed that Venus was named for the most beautiful of the ancient gods because it shone the brightest of the five planets known to ancient astronomers.

How Well Do You Know Venus?

Here are a few fun facts that you might not know:

One day on Venus lasts as long as 243 Earth days (aka the time it takes for Venus to rotate or spin once)

Venus is a rocky planet, also known as a terrestrial planet

Venus’ thick and toxic atmosphere is made up mostly of carbon dioxide and nitrogen, with clouds of sulfuric acid droplets

Venus has no moons or rings

More than 40 spacecraft have explored the planet

No evidence of life has been found on Venus. The planet’s extreme high temperatures of almost 480 degrees Celsius (900 degrees Fahrenheit) makes it seem an unlikely place for life as we know it

Venus spins backwards when compared to the other planets. This means that the sun rises in the west and sets in the east

Night Light

How Well Do You Know Venus?

Did you know that Venus is the brightest planet in Earth’s dark skies? Only the moon — which is not a planet — is brighter. Venus outshines the other planets because it is closer and its thick cloud cover is excellent at reflecting sunlight.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
2 years ago

Sakura to Supernova

A prominent, eight-pointed star shines in bright white at the center of this image. A clumpy cloud of material surrounds this central star, with more material above and below than on the sides, in some places allowing background stars to peek through. The cloud material is a dark yellow closer to the star and turns a pinkish purple at its outer edges. Combined together, the central star and its cloud resemble the delicate petals of a cherry blossom. The black background features many smaller white stars scattered throughout.

This rare sight is a super-bright, massive Wolf-Rayet star. Calling forth the ephemeral nature of cherry blossoms, the Wolf-Rayet phase is a fleeting stage that only some stars go through soon before they explode.

The star, WR 124, is 15,000 light-years away in the constellation Sagittarius. It is 30 times the mass of the Sun and has shed 10 Suns worth of material – so far. As the ejected gas moves away from the star and cools, cosmic dust forms and glows in the infrared light detectable by NASA's James Webb Space Telescope.

The origin of cosmic dust that can survive a supernova blast is of great interest to astronomers for multiple reasons. Dust shelters forming stars, gathers together to help form planets, and serves as a platform for molecules to form and clump together, including the building blocks of life on Earth.

Stars like WR 124 also help astronomers understand the early history of the universe. Similar dying stars first seeded the young universe with heavy elements forged in their cores – elements that are now common in the current era, including on Earth.

The James Webb Space Telescope opens up new possibilities for studying details in cosmic dust, which is best observed in infrared wavelengths of light. Webb’s Near-Infrared Camera balances the brightness of WR 124’s stellar core and the knotty details in the fainter surrounding gas. The telescope’s Mid-Infrared Instrument reveals the clumpy structure of the gas and dust nebula of the ejected material now surrounding the star.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
Loading...
End of content
No more pages to load
  • dragonriderhobbitinthetardis
    dragonriderhobbitinthetardis reblogged this · 5 months ago
  • dragonriderhobbitinthetardis
    dragonriderhobbitinthetardis liked this · 5 months ago
  • thefandomshithead
    thefandomshithead liked this · 3 years ago
  • carlamotichek
    carlamotichek reblogged this · 3 years ago
  • coin-crow
    coin-crow liked this · 3 years ago
  • kensroy
    kensroy liked this · 3 years ago
  • pickory-blog-blog
    pickory-blog-blog liked this · 3 years ago
  • uniqums
    uniqums reblogged this · 3 years ago
  • uniqums
    uniqums liked this · 3 years ago
  • careeradvisor
    careeradvisor liked this · 4 years ago
  • peppy-android-girl
    peppy-android-girl reblogged this · 4 years ago
  • chickengum
    chickengum reblogged this · 4 years ago
  • greengobsmacked
    greengobsmacked liked this · 4 years ago
  • marx-xiii
    marx-xiii liked this · 4 years ago
  • hanna4cs
    hanna4cs liked this · 4 years ago
  • mykunalsupefan
    mykunalsupefan reblogged this · 4 years ago
  • thoughtofink
    thoughtofink liked this · 4 years ago
  • ikevsv
    ikevsv liked this · 5 years ago
  • saalegria
    saalegria liked this · 5 years ago
  • superfatricia
    superfatricia liked this · 5 years ago
  • itmpjobstv
    itmpjobstv liked this · 5 years ago
  • linyarguilera
    linyarguilera liked this · 5 years ago
  • murciegalito
    murciegalito liked this · 5 years ago
  • 3adpal2
    3adpal2 liked this · 5 years ago
  • glibdesperado61bo
    glibdesperado61bo liked this · 5 years ago
  • tuckerew1
    tuckerew1 liked this · 5 years ago
  • marshallhj
    marshallhj liked this · 5 years ago
  • cnplrsxp
    cnplrsxp liked this · 5 years ago
  • officialandromeda
    officialandromeda reblogged this · 5 years ago
  • requiem-for-the-unforgiven
    requiem-for-the-unforgiven liked this · 5 years ago
  • saving-empress-ac
    saving-empress-ac liked this · 5 years ago
  • invisiblemelonmoose
    invisiblemelonmoose reblogged this · 5 years ago
  • meika-gr
    meika-gr liked this · 5 years ago
  • averyextraordinaryscene
    averyextraordinaryscene liked this · 5 years ago
  • nvynvynvy
    nvynvynvy reblogged this · 5 years ago
  • hrothgargreenrose
    hrothgargreenrose liked this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags