Questions Coming Up From….

Questions coming up from….

@monicagellar: Is it open for international students?

@Anonymous: How should high school students get involved?

@Anonymous: Can I apply if my subjects are physics and chemistry in college

@unsuspicious-nobody: Do you have plans to repeat this/do something similar for students in the future?

More Posts from Nasa and Others

9 years ago

Record-Shattering Global Warm Temperatures in 2015

Earth’s 2015 surface temperatures were the warmest since modern record keeping began in 1880, according to independent analyses by NASA and the National Oceanic and Atmospheric Administration (NOAA).

image

Globally-averaged temperatures in 2015 shattered the previous mark set in 2014 by 0.23 degrees Fahrenheit (0.13 Celsius). Only once before, in 1998, has the new record been greater than the old record by this much.

The 2015 temperatures continue a long-term warming trend, according to analyses by scientists at NASA’s Goddard Institute for Space Studies (GISS) in New York. NOAA scientists concur with the finding that 2015 was the warmest year on record based on separate, independent analyses of the data.

image

Since the late-19th century, the planet’s average surface temperature has risen about 1.8 degrees Fahrenheit. This change is largely driven by increased carbon dioxide and other human-made emissions into the atmosphere.

An important thing to remember when reading this information is that it reflects global temperature average. That means that specific regions or areas could have experienced colder weather than usual, but overall the global temperature has risen.

Record-Shattering Global Warm Temperatures In 2015

How do we know? Our analyses incorporate surface temperature measurements from 6,300 weather stations, ship-and buoy-based observations of sea surface temperatures, and temperature measurements from Antarctic research stations.

What about El Niño? Phenomena such as El Niño or La Niña, which warm or cool the tropical Pacific Ocean, can contribute to short-term variations in global average temperature. Last year’s temperatures had an assist from a warming El Niño, but it is the cumulative effect of the long-term trend that has resulted in the record warming that we’re seeing.

The full 2015 surface temperature data set and the complete methodology used to make the temperature calculation are available HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
3 years ago
Spread Your Cosmic Wings 🦋

Spread your cosmic wings 🦋

The Butterfly Nebula, created by a dying star, was captured by the Hubble Space Telescope in this spectacular image. Observations were taken over a more complete spectrum of light, helping researchers better understand the “wings'' of gas bursting out from its center. The nebula’s dying central star has become exceptionally hot, shining ultraviolet light brightly over the butterfly’s wings and causing the gas to glow.

Learn more about Hubble’s celebration of Nebula November and see new nebula images, here.

You can also keep up with Hubble on Twitter, Instagram, Facebook, and Flickr!

Image credits: NASA, ESA, and J. Kastner (RIT)


Tags
8 years ago

Solar System: Things to Know This Week

Get the latest on women making history at NASA, our Juno mission, the Curiosity rover and move!

image

1. Women at NASA Making History, Creating the Future

Throughout Women's History Month, we've been presenting profiles of the women who are leading the way in deep space exploration.

+ Meet some of them

image

2. Juno and the Giant

Our Juno spacecraft made its fifth close flyby over giant Jupiter's mysterious cloud tops.

+ See the latest from the King of Planets

image

3. When the Road Gets Rough, the Tough Keep Rolling

A routine check of the aluminum wheels on our Curiosity Mars rover has found two small breaks on the rover's left middle wheel tread--the latest sign of wear and tear as the rover continues its journey, now approaching the 10-mile (16 kilometer) mark. But there's no sign the robotic geologist won't keep roving right through its ongoing mission.

+ Get the full report

image

4. What Do Mars and Dinosaurs Have in Common?

Our research reveals that volcanic activity at the giant Martian volcano Arsia Mons ceased about 50 million years ago, around the time of Earth's Cretaceous-Paleogene extinction, when large numbers of plant and animal species (including dinosaurs) went extinct. However, there's no reason to think the two events were more than a cosmic coincidence.

+ Learn how scientists pieced together the past

image

5. A Comet in Commotion

Images returned from the European Space Agency's Rosetta mission indicate that during its most recent trip through the inner solar system, the surface of comet 67P/Churyumov-Gerasimenko was a very active place -- full of growing fractures, collapsing cliffs and massive rolling boulders.

+ See the many faces of Comet #67P

image

6. Next Generation Space Robot is Ingenious, Versatile--and Cute

The next rovers to explore another planet might bring along a scout. The Pop-Up Flat Folding Explorer Robot (PUFFER) in development at the Jet Propulsion Laboratory was inspired by origami. Its lightweight design is capable of flattening itself, tucking in its wheels and crawling into places rovers can't fit.

+ Meet PUFFER

image

7. Shadowy Dawn

According to data from our Dawn mission to Ceres, shadowed craters on the dwarf planet may be linked to the history of how the small world has been tilted over time by the gravity of planets like Jupiter.

+ Find out how understanding "cycles of obliquity" might solve solar system mysteries

image

8. On Orbit and Online

We’re developing a  long-term technology demonstration project of what could become the high-speed internet of the sky. The Laser Communications Relay Demonstration (LCRD) will help engineers understand the best ways to operate laser communications systems, which could enable much higher data rates for connections between spacecraft and Earth, such as scientific data downlink and astronaut communications.

+ See how it will work

image

9. A Big Role for Small Sats in Deep Space Exploration

We selected 10 studies to develop mission concepts using CubeSats and other kinds of very small satellites to investigate Venus, Earth's moon, asteroids, Mars and the outer planets. "These small but mighty satellites have the potential to enable transformational science," said Jim Green, director of NASA's Planetary Science Division.

+ Get the small details

image

10. Rings Around the Red Planet?

It's possible that one of our closest neighbors had rings at one point -- and may have them again someday. At least, that's the theory put forth by NASA-funded scientists at Purdue University.

+ See more details about the once and future rings of Mars

Discover more lists of 10 things to know about our solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

4 years ago

What will scientists do if Perseverance does find signs of life on Mars?


Tags
8 years ago

Jeff Williams: Record Breaker

Astronaut becomes U.S. record holder for most cumulative time in space!

The Olympics are over, but Americans are STILL breaking records. NASA astronaut Jeff Williams just broke Scott Kelly’s record of 520 cumulative days spent in space. When Williams returns to Earth on Sept. 5, he will have racked up 534 days in space. To celebrate this amazing achievement, here are some of the best images taken during his four spaceflights.

image

STS-101 Atlantis:

During May 2000, Williams made his first spacewalk during space shuttle Atlantis’ STS-101 mission. On this 10-day mission, Williams’ first spacewalk lasted nearly seven hours. He is pictured here outside the space station.

image

Expedition 13:

Williams experienced his first long-duration mission in 2006, when he served as flight engineer for Expedition 13 space station mission. During his time in orbit, he performed two spacewalks, saw the arrival of two space shuttle missions and resumed construction of the orbiting laboratory during his six-month tour. While on one of those spacewalks, Williams took this selfie.

image

Expedition 21/22:

Williams returned to space for another six-month mission in 2009 as a flight engineer on Expedition 21 and commander of Expedition 22. During that time, he hosted the crews of two space shuttle missions. The U.S.-built Tranquility module and cupola were installed on station. Here is an image of the then newly installed cupola.

image

Expedition 47/48:

This time around, Williams has been onboard the space station since March 2016, where he served as flight engineer for Expedition 47 and now commands Expedition 48. With over 7,000 retweets on Williams’ photo of an aurora from space, his Twitter followers were clearly impressed with his photography skills.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
7 years ago

Book Lovers Day - Free Aeronautics e-Books from NASA

image

Quieting the Boom

image

The Shaped Sonic Boom Demonstrator and the Quest for Quiet Supersonic Flight.

Download it HERE

Elegance in Flight

image

A comprehensive History of the F-16XL Experimental Prototype and its Role in our Flight Research. 

Download it HERE

Probing the Sky

image

Selected National Advisory Committee for Aeronautics (NACA) Research Airplanes and Their Contributions to Flight.

Download it HERE

Cave of the Winds

image

The huge Langley Full-Scale Tunnel building dominated the skyline of Langley Air Force Base for 81 years (1930–2011). Explore how the results of critical tests conducted within its massive test section contributed to many of the Nation's most important aeronautics and space programs.

Download it HERE

A New Twist in Flight Research

image

A New Twist in Flight Research describes the origins and design development of aeroelastic wing technology, its application to research aircraft, the flight-test program, and follow-on research and future applications.

Download it HERE

Sweeping Forward

image

Developing & Flight Testing the Grumman X-29A Forward Swept Wing Research Aircraft.

Download it HERE

Thinking Obliquely

image

Robert T. Jones, the Oblique Wing, our AD-1 Demonstrator, and its Legacy.

Download it HERE

The Apollo of Aeronautics

image

The fuel crisis of the 1970s threatened not only the airline industry but also the future of American prosperity itself. It also served as the genesis of technological ingenuity and innovation from a group of scientists and engineers at NASA, who initiated planning exercises to explore new fuel-saving technologies.

Download it HERE

X-15: Extending the Frontiers of Flight

image

X-15: Extending the Frontiers of Flight describes the genesis of the program, the design and construction of the aircraft, years of research flights and the experiments that flew aboard them.

Download it HERE

Ikhana

image

Delve into the story of the Ikhana, a remotely piloted vehicle used by NASA researchers to conduct Earth science research, which became an unexpected flying and imaging helper to emergency workers battling California wildfires.

Download it HERE

NASA's Contributions to Aeronautics, Volume 1

image

This first volume in a two-volume set includes case studies and essays on NACA-NASA research for contributions such as high-speed wing design, the area rule, rotary-wing aerodynamics research, sonic boom mitigation, hypersonic design, computational fluid dynamics, electronic flight control and environmentally friendly aircraft technology.

Download it HERE

NASA's Contributions to Aeronautics, Volume 2

image

Continue your journey into the world  of NASA's Contributions to Aeronautics with case studies and essays on NACA-NASA research for contributions including wind shear and lightning research, flight operations, human factors, wind tunnels, composite structures, general aviation aircraft safety, supersonic cruise aircraft research and atmospheric icing.

Download it HERE

Interested in other free e-books on topics from space, science, research and more? Discover the other e-books HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

It’s National Composites Week! Wait, what’s a composite?

This week, we’re celebrating National Composites Week, which CompositesWorld says is about shedding some light on how “composite materials and composites manufacturing contributes to the products and structures that shape the American manufacturing landscape today.”

image

What exactly are composites and why are we talking about them?

Composites are building materials that we use to make airplanes, spacecraft and structures or instruments, such as space telescopes. But why are they special?

Composites consist of two or more materials, similar to a sandwich. Each ingredient in a sandwich could be eaten individually, but combining them is when the real magic happens. Sure, you could eat a few slices of cold cheese chased with some floppy bread. But real talk: buttery, toasted bread stuffed with melty, gooey Gouda makes a grilled cheese a much more satisfying nosh.

With composites—like our sandwich—the different constituent parts each have special properties that are enhanced when combined. Take carbon fibers which are strong and rigid. Their advantage compared to other structural materials is that they are much lighter than metals like steel and aluminum. However, in order to build structures with carbon fibers, they have to be held together by another material, which is referred to as a matrix. Carbon Fiber Reinforced Polymer is a composite consisting of carbon fibers set in a plastic matrix, which yields an extremely strong, lightweight, high-performing material for spacecraft.

Composites can also be found on the James Webb Space Telescope. They support the telescope’s beryllium mirrors, science instruments and thermal control systems and must be exquisitely stable to keep the segments aligned.

image

We invest in a variety of composite technology research to advance the use of these innovative materials in things like fuel tanks on spacecraft, trusses or structures and even spacesuits. Here are a few exciting ways our Space Technology Mission Directorate is working with composites:

Deployable structures on small spacecraft

We’re developing deployable composite booms for future deep space small satellite missions. These new structures are being designed to meet the unique requirements of small satellites, things like the ability to be packed into very small volumes and stored for long periods of time without getting distorted.

A new project, led by our Langley Research Center and Ames Research Center, called the Advanced Composite Solar Sail System will test deployment of a composite boom solar sail system in low-Earth orbit. This mission will demonstrate the first use of composite booms for a solar sail in orbit as well as new sail packing and deployment systems.

image

Nano (teeny tiny) composites

We are working alongside 11 universities, two companies and the Air Force Research Laboratory through the Space Technology Research Institute for Ultra-Strong Composites by Computational Design (US-COMP). The institute is receiving $15 million over five years to accelerate carbon nanotube technologies for ultra-high strength, lightweight aerospace structural materials. This institute engages 22 professors from universities across the country to conduct modeling and experimental studies of carbon nanotube materials on an atomistic molecular level, macro-scale and in between. Through collaboration with industry partners, it is anticipated that advances in laboratories could quickly translate to advances in manufacturing facilities that will yield sufficient amounts of advanced materials for use in NASA missions.

Through Small Business Innovative Research contracts, we’ve also invested in Nanocomp Technologies, Inc., a company with expertise in carbon nanotubes that can be used to replace heavier materials for spacecraft, defense platforms, and other commercial applications.

image

Nanocomp’s Miralon™ YM yarn is made up of pure carbon nanotube fibers that can be used in a variety of applications to decrease weight and provide enhanced mechanical and electrical performance. Potential commercial use for Miralon yarn includes antennas, high frequency digital/signal and radio frequency cable applications and embedded electronics. Nanocomp worked with Lockheed Martin to integrate Miralon sheets into our Juno spacecraft.

image

Composites for habitats

At last spring’s 3D-Printed Habitat Challenge the top two teams used composite materials in their winning habitat submissions. The multi-phase competition challenged teams to 3D print one-third scale shelters out of recyclables and materials that could be found on deep space destinations, like the Moon and Mars.

After 30 hours of 3D-printing over four days of head-to-head competition, the structures were subjected to several tests and evaluated for material mix, leakage, durability and strength. New York-based AI. SpaceFactory won first place using a polylactic acid plastic, similar to materials available for Earth-based, high-temperature 3D printers.

image

This material was infused with micro basalt fibers as well, and the team was awarded points during judging because major constituents of the polylactic acid material could be extracted from the Martian atmosphere.

image

Second place was awarded to Pennsylvania State University who utilized a mix of Ordinary Portland Cement, a small amount of rapid-set concrete, and basalt fibers, with water.

image

These innovative habitat concepts will not only further our deep space exploration goals, but could also provide viable housing solutions right here on Earth.

Student research in composites

We are also supporting the next generation of engineers, scientists and technologists working on composites through our Space Technology Research Grants. Some recently awarded NASA Space Technology Fellows—graduate students performing groundbreaking, space technology research on campus, in labs and at NASA centers—are studying the thermal conductivity of composites and an optimized process for producing carbon nanotubes and clean energy.

It’s National Composites Week! Wait, What’s A Composite?

We work with composites in many different ways in pursuit of our exploration goals and to improve materials and manufacturing for American industry. If you are a company looking to participate in National Composites Week, visit: https://www.nationalcompositesweek.com.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Sample Return Robot Challenge

It’s been a long, technical journey for the seven teams competing this week in Level 2 of our Sample Return Robot Challenge. Over the past five years, more than 50 teams have attempted the $1.5 million competition, which is looking to develop autonomous capabilities in robotics. Basically, we want robots that can think and act on their own, so they can travel to far off places – like Mars – and we can rely on them to work on their own when a time delay or unknown conditions could be factors.

This challenge has two levels, both requiring robots to navigate without human control and Earth-based tools (like GPS or magnetic compassing). The robot has to find samples, pick them up and deliver them to home base. Each of the final seven teams succeeded at Level 1, where they had to find one sample, during previous competition years. Now, they have a shot at the much more difficult Level 2, where they have a two-hour window to locate up to 10 samples of varying point values, but they don’t know where to look or what exactly they’re looking for.

Get to know the final seven, and be sure to cheer them on as we live-stream the competition all day Sept. 4 and 5.

image

West Virginia University Mountaineers Hailing from: Morgantown, West Virginia # of Team Members:  12

Behind the Name: In West Virginia, we call ourselves mountaineers. We like to explore unknown places and be inspired by nature.

Motivation: To challenge ourselves. Through this venture, we are also hoping to create research and career opportunities for everyone on the team.

Strategy: Keeping things simple. Through participating in SRR challenge during the last three years, we have gone a long way in streamlining our system.

Obstacles: One of the biggest challenges was finding and nurturing the talent of individual team members and coordinating the team in making real progress on time.

Prize Plans: We donated 50 percent of our 2015 Level 2 prize money to create an undergraduate “Robotics Achievement Fellowship” at WVU. The rest of the funding was allocated to support team member professional development, such as traveling to conferences. A similar model will be used if we win in 2016.

Extra Credit:  We did an Easter egg hunt with our robot, Cataglyphis (named after a desert ant with extraordinary navigation capabilities), last year.

image

Survey Hailing from: Los Angeles, California # of Team Members: Jascha Little

Behind the Name: It's short, simple, and what the robot spends a lot of its time doing.

Team History: We work together, and we all thought the challenge sounded like an excellent way to solve the problem of what to do with all our free time.

Motivation: We are all engineers and software developers that already work on robotics projects. Reading too much sci-fi when we were kids probably got us to this point.

Strategy: We are trying to solve the search-and-return problem primarily with computer vision. This is mostly to reduce cost. Our budget can't handle high quality IMUs or LIDAR.

Prize Plans: Probably build more robots.

Extra Credit: Favorite pop culture robot is Bender (Futurama). Alcoholic robots are the best.

image

Alabama Astrobotics (The University of Alabama) Hailing from: Tuscaloosa, Alabama # of Team Members: 33

Behind the Name: “Alabama Astrobotics” was chosen to reflect our school affiliation and our mission to design robotics for various space applications.

Team History: Alabama Astrobotics has been involved with other NASA robotics competitions in the past.  So, the team is accustomed to the competition environment.  

Motivation: We are pleased to have advanced to Level 2 in our first year in the competition (the first team to do so), but we are also not satisfied with just advancing.  Our goal is to try to solve Level 2.

Strategy: Our strategy is similar to that used in Level 1.  Our Level 1 approach was chosen so that it would translate to Level 2 as well, thus requiring fewer customizations from Level 1 to Level 2.

Obstacles: As a university team, the biggest challenge was not having all our team members available to work on the robot during the time since Level 1 completed in June. Most of my team members have either graduated or have summer internships, which took them away from campus after Level 1.  Thus, we didn’t have the manpower to address the additional Level 2 technical challenges.

Prize Plans: Any prize money would be donated to the University of Alabama College of Engineering.

Extra Credit: Alabama Astrobotics also competes in the annual NASA Robotic Mining Competition held at the Kennedy Space Center each May.  We have been fortunate enough to win that competition three times in its seven year history, and we are the only team to win it more than once.

image

MAXed-Out Hailing From: Santa Clara, California # of Team Members: 4

Behind the Name: Several reasons: Team leader is Greg Maxwell, and his school nick name was Max. Our robot’s name is Max, which is one of the most common name for a dog, and it is a retriever. Our efforts on this has been too the max…. i.e. MAXed-Out. Our technology requirements have been pushed to their limits - Maxed-Out.

Team History: Greg Maxwell started a Meet-up “Silicon-Valley Robot Operating System” SV-ROS that was to help teach hobbyists how to use ROS on their robots. We needed a project to help implement and make real what we were teaching. This is the third contest we have participated in.

Motivation: There is still such a long way to go to make robots practical. Every little bit we can contribute makes them a little bit better and smarter. Strategy: Level 1 was a test, as a minimum viable product to prove the tech worked. For Level 2, we had to test and add obstacle avoidance to be able to cover the larger area with trees and slopes, plus add internal guidance to allow for Max to be out of the home base camera tracking system.

Obstacles: Lack of a cost effective robot platform that met all the requirements; we had to build our own. Also time and money. The two months (between Level 1 and 2) went really fast, and we had to abandon lots of cool ideas and focus on the basics.

Prize Plans: Not sure, but pay off the credit cards comes to mind. We might open-source the platform since it works pretty well. Or we will see if it works as expected. We may also take a break / vacation away from robots for a while.

Extra Credit: My nephew, Max Hieges, did our logo, based on the 1960-era Rat Fink sticker.

image

Mind & Iron Hailing From: Seattle, Washington # of Team Members: 5

Behind the Name: It was the original title for Isaac Asimov’s “I Robot,” and we thought it was a good combination of what a robot actually is – mechanical and brains.

Team History: Three of us were WPI undergrads and met at school; two of us did our master’s degrees at the University of Washington, where we met another member, and then another of us brought on a family member.

Motivation: We saw that there was an opportunity to compete in a challenge that seemed like there was a reasonable solution that we could tackle with a limited budget. We saw three years of competition and thought that we had some better ideas and a pretty good shot at it. Strategy: The samples and the terrain are much more complex in Level 2, and we have to be more careful about our navigation. We are using the same tools, just expanding their capability and scope.

Obstacles: The team being spread over three different time zones has been the biggest challenge. We are all doing this in our free time after work. The internet has been really handy to get things done.

Prize Plans: Probably invest in more robot stuff! And look for other cool projects we can work on, whether it’s another NASA challenge or other projects.

Extra Credit: We are hoping to collaborate with NASA on the professional side with surgical robots to exoskeletons. Challenge-related, our robot is mostly made of plywood – it is a composite fiber material that works well for fast development using cheap materials.

image

Sirius Hailing From: South Hadley, Massachusetts # of Team Members: 4

Team History: We are a family. Our kids are both robot builders who work for Boston Dynamics, and they have a lot of robot expertise. Both of our kids are robotics engineers, and my wife is intrinsically brilliant, so the combination of that makes for a good team.

Motivation: Because it’s a really hard challenge. It’s one thing to drive a robot with a remote control; it’s another to do the whole thing autonomously. If you make a single change in a robot, it could throw everything off. You have to think through every step for the robot. On a basic level, to learn more about robotics and to win the prize. Strategy: Very similar to Level 1. We approached Level 1 knowing Level 2 was there, so our strategy was no different.

Obstacles: It is very difficult to do object recognition under unpredictable conditions – sun, clouds, weather, sample location. The biggest challenge was trying to recognize known and unknown objects under such a wide variety of environmental possibilities. And the terrain is very different – you don’t know what you’re going to find out there.

Prize Plans: We haven’t really thought about it, but we will give some away, and we’ll invest the rest in our robotics company.

Extra Credit: The first robot we had was called Robo-Dad. Dan was training to be an astronaut in the 1990s, so we built a toy remote-controlled truck that Dan - in Texas - could control via the internet in the house. Robo-Dad had a camera that Dan could see the house with. It had two-way communication; it was a little before it’s time – the internet was very slow.

image

Team AL Hailing From: Ontario, Canada # of Team Members: 1

Team History: I was looking for competitions that were open, and my dad had followed the Centennial Challenges for a while, so he alerted me to this one. I was already doing rover projects, and it was appropriate and awesome and interesting. I felt like I could do it as a team of one.

Motivation: Difficult challenges. I’m definitely inspired seeing really cool robots that other people are building. New emerging tech really motives me to create new things.

Strategy: I showed up with another robot to Level 2. I built three, but ran with only two. It did make it more complicated, but the strategy was to send them to different areas and have them be able to communicate with each other. Everything physically was the same from Level 1.  The idea is that they would all go out with different missions and I would maximize field coverage.

Obstacles: Time. More time would always be nice. Being able to make something like this happen under a timeline is really difficult. I feel like I accomplished a lot for a year. Also, manpower – being a team of 1, I have to do all of the paperwork and other related stuff, but also carry the hardware and do the programming. You have to multitask a lot.

Prize Plans: I’d like to start a robotics company, and be able to expand some of the things I’ve been working on associated with technology and maker education.

Extra Credit: My story is not linear. A lot of people are surprised to hear that my background is in molecular biology and  research. I once lived in a tent in Madagascar for a few months to do a biodiversity study, and I have multiple publications from that side of my life. I am in a whole different place now.

The competition is one of many run by our Centennial Challenges program, which looks to the public – citizen inventors, academics, makers, artists, YOU – to help us advance technology and bring a different perspective to obstacles that gets us outside of our traditional solving community. See what else we’re working on here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
5 years ago
Say Hello To Spiral Galaxy NGC 1097 👋

Say hello to spiral galaxy NGC 1097 👋

About 45 million light-years away, in another corner of the cosmos, lies spiral galaxy NGC 1097. Though this Hubble Space Telescope image zooms in toward the core, the galaxy’s vast spiral arms span over 100,000 light-years as they silently sweep through space. At the heart of this galaxy lurks a black hole that is about 100 million times as massive as the Sun.

The supermassive black hole is voraciously eating up surrounding matter, which forms a doughnut-shaped ring around it. Matter that's pulled into the black hole releases powerful radiation, making the star-filled center of the galaxy even brighter. Hubble’s observations have led to the discovery that while the material that is drawn toward NGC 1097’s black hole may be doomed to die, new stars are bursting into life in the ring around it.

This sparkling spiral galaxy is especially interesting to both professional scientists and amateur astronomers. It is a popular target for supernova hunters ever since the galaxy experienced three supernovas in relatively rapid succession — just over a decade, between 1992 and 2003. Scientists are intrigued by the galaxy’s satellites — smaller “dwarf” galaxies that orbit NGC 1097 like moons. Studying this set of galaxies could reveal new information about how galaxies interact with each other and co-evolve.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

The Artemis Story: Where We Are Now and Where We’re Going

image

Using a sustainable architecture and sophisticated hardware unlike any other, the first woman and the next man will set foot on the surface of the Moon by 2024. Artemis I, the first mission of our powerful Space Launch System (SLS) rocket and Orion spacecraft, is an important step in reaching that goal.

As we close out 2019 and look forward to 2020, here’s where we stand in the Artemis story — and what to expect in 2020. 

Cranking Up The Heat on Orion

The Artemis I Orion spacecraft arrived at our Plum Brook Station in Sandusky, Ohio, on Tuesday, Nov. 26 for in-space environmental testing in preparation for Artemis I.

This four-month test campaign will subject the spacecraft, consisting of its crew module and European-built service module, to the vacuum, extreme temperatures (ranging from -250° to 300° F) and electromagnetic environment it will experience during the three-week journey around the Moon and back. The goal of testing is to confirm the spacecraft’s components and systems work properly under in-space conditions, while gathering data to ensure the spacecraft is fit for all subsequent Artemis missions to the Moon and beyond. This is the final critical step before the spacecraft is ready to be joined with the Space Launch System rocket for this first test flight in 2020!

Bringing Everyone Together

image

On Dec. 9, we welcomed members of the public to our Michoud Assembly Facility in New Orleans for #Artemis Day and to get an up-close look at the hardware that will help power our Artemis missions. The 43-acre facility has more than enough room for guests and the Artemis I, II, and III rocket hardware! NASA Administrator Jim Bridenstine formally unveiled the fully assembled core stage of our SLS rocket for the first Artemis mission to the Moon, then guests toured of the facility to see flight hardware for Artemis II and III. The full-day event — complete with two panel discussions and an exhibit hall — marked a milestone moment as we prepare for an exciting next phase in 2020.

Rolling On and Moving Out

image

Once engineers and technicians at Michoud complete functional testing on the Artemis I core stage, it will be rolled out of the Michoud factory and loaded onto our Pegasus barge for a very special delivery indeed. About this time last year, our Pegasus barge crew was delivering a test version of the liquid hydrogen tank from Michoud to NASA’s Marshall Space Flight Center in Huntsville for structural testing. This season, the Pegasus team will be transporting a much larger piece of hardware — the entire core stage — on a slightly shorter journey to the agency’s nearby Stennis Space Center near Bay St. Louis, Mississippi.

Special Delivery

image

Why Stennis, you ask? The giant core stage will be locked and loaded into the B2 Test Stand there for the landmark Green Run test series. During the test series, the entire stage, including its extensive avionics and flight software systems, will be tested in full. The series will culminate with a hot fire of all four RS-25 engines and will certify the complex stage “go for launch.” The next time the core stage and its four engines fire as one will be on the launchpad at NASA’s Kennedy Space Center in Florida.

Already Working on Artemis II

The Artemis Story: Where We Are Now And Where We’re Going

As Orion and SLS make progress toward the pad for Artemis I, employees at NASA centers and large and small companies across America are hard at work assembling and manufacturing flight hardware for Artemis II and beyond.  The second mission of SLS and Orion will be a test flight with astronauts aboard that will go around the Moon before returning home. Our work today will pave the way for a new generation of moonwalkers and Artemis explorers.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
  • oscar2022
    oscar2022 reblogged this · 1 year ago
  • catyuy
    catyuy reblogged this · 2 years ago
  • john-erby
    john-erby liked this · 3 years ago
  • quiero-hacer-algo-increible
    quiero-hacer-algo-increible reblogged this · 3 years ago
  • quiero-hacer-algo-increible
    quiero-hacer-algo-increible liked this · 3 years ago
  • winchesterwitch07
    winchesterwitch07 liked this · 3 years ago
  • harebellpudding
    harebellpudding liked this · 3 years ago
  • creakiness-no-noises
    creakiness-no-noises liked this · 3 years ago
  • bigbossbowseragainstyou
    bigbossbowseragainstyou liked this · 3 years ago
  • dibyas-world
    dibyas-world liked this · 3 years ago
  • serendipityandfaith
    serendipityandfaith liked this · 3 years ago
  • hengatoothbahithi
    hengatoothbahithi liked this · 3 years ago
  • morganlafeysblog
    morganlafeysblog liked this · 3 years ago
  • dawgstreetbank20trillion
    dawgstreetbank20trillion liked this · 3 years ago
  • foggyslimesportsperson
    foggyslimesportsperson liked this · 3 years ago
  • foggyslimesportsperson
    foggyslimesportsperson reblogged this · 3 years ago
  • mrclaw61
    mrclaw61 liked this · 3 years ago
  • thinketh-me-do
    thinketh-me-do liked this · 3 years ago
  • bots-and-things
    bots-and-things liked this · 3 years ago
  • nuttytaconightmare
    nuttytaconightmare liked this · 3 years ago
  • belindasvasconcelos
    belindasvasconcelos liked this · 3 years ago
  • littlemissrand
    littlemissrand liked this · 3 years ago
  • yuiko2627
    yuiko2627 liked this · 3 years ago
  • nobeerreviews
    nobeerreviews liked this · 3 years ago
  • silentninjacat2
    silentninjacat2 liked this · 3 years ago
  • dragons-barb
    dragons-barb liked this · 3 years ago
  • ringo6143
    ringo6143 liked this · 3 years ago
  • ehsunassadi
    ehsunassadi liked this · 3 years ago
  • renattomd
    renattomd liked this · 3 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags