I really want to work for NASA but I do not have a background in science or engineering. Are there any career paths at NASA that I could still achieve?
What, in your opinion, is Perseverance's most groundbreaking experiment/ instrument?
Our Milky Way galaxy is full of hundreds of billions of worlds just waiting to be found. In 2014, scientists using data from our planet-hunting Kepler space telescope discovered seven planets orbiting Kepler-90, a Sun-like star located 2,500 light-years away. Now, an eighth planet has been identified in this planetary system, making it tied with our own solar system in having the highest number of known planets. Here’s what you need to know:
Kepler-90i is a sizzling hot, rocky planet. It’s the smallest of eight planets in the Kepler-90 system. It orbits so close to its star that a “year” passes in just 14 days.
Average surface temperatures on Kepler-90i are estimated to hover around 800 degrees Fahrenheit, making it an unlikely place for life as we know it.
The Kepler-90 system is set up like our solar system, with the small planets located close to their star and the big planets farther away. This pattern is evidence that the system’s outer gas planets—which are about the size of Saturn and Jupiter—formed in a way similar to our own.
But the orbits are much more compact. The orbits of all eight planets could fit within the distance of Earth’s orbit around our Sun! Sounds crowded, but think of it this way: It would make for some great planet-hopping.
Most planets beyond our solar system are too far away to be imaged directly. The Kepler space telescope searches for these exoplanets—those planets orbiting stars beyond our solar system—by measuring how the brightness of a star changes when a planet transits, or crosses in front of its disk. Generally speaking, for a given star, the greater the dip in brightness, the bigger the planet!
Researchers trained a computer to learn how to identify the faint signal of transiting exoplanets in Kepler’s vast archive of deep-space data. A search for new worlds around 670 known multiple-planet systems using this machine-learning technique yielded not one, but two discoveries: Kepler-90i and Kepler-80g. The latter is part of a six-planet star system located 1,000 light-years away.
Kepler-90 is the first known star system besides our own that has eight planets, but scientists say it won’t be the last. Other planets may lurk around stars surveyed by Kepler. Next, researchers are using machine learning with sophisticated computer algorithms to search for more planets around 150,000 stars in the Kepler database.
Kepler is the most successful planet-hunting spacecraft to date, with more than 2,500 confirmed exoplanets and many more awaiting verification. Future space missions, like the Transiting Exoplanet Survey Satellite (TESS), the James Webb Space Telescope and Wide-Field Infrared Survey Telescope (WFIRST) will continue the search for new worlds and even tell us which ones might offer promising homes for extraterrestrial life.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
*All images of exoplanets are artist illustrations.
Do you ever get to work along side people you use to look up to?
I did get a chance to work with some people that I really looked up to, and I was surprised by their generosity and giving me great advice. They’re busy people, and they spent hours giving me great advice.
This year's Scientist for a Day essay contest was announced last week. Write an essay on one of the three images above. Essays are due in Feb. 2017. Students in grades 5-12 in U.S. schools, after-school and home-school programs, scout troops and museum programs are eligible to participate.
+ Learn more
Mars' orbit is much more eccentric than Earth's. The winters in the northern hemisphere are warm and short, as Mars is near perihelion—closer to the sun. This means that the winters in the southern hemisphere are long and cold.
+ Read Mars: The Other Terrestrial Planet
+ Seasons on Mars (Malin Space Science Systems)
We’re celebrating two launch anniversaries. Before Curiosity. Before Spirit and Opportunity, there was Pathfinder and the hardy Sojourner rover, launched on Dec. 4, 1996. Pathfinder was a demonstration of the technology necessary to deliver a lander and a free-ranging robotic rover to the surface of Mars in a cost-effective and efficient manner. The lander, formally named the Carl Sagan Memorial Station following its successful touchdown, and the rover, named Sojourner after American civil rights crusader Sojourner Truth, both outlived their design lives — the lander by nearly three times, and the rover by 12 times! We continued the tradition with Spirit and Opportunity. Now there is the Mars Science Laboratory (with the Curiosity rover in stowage), which was launched on Nov. 26, 2011. It landed successfully in Gale Crater at 1:31 am EDT on Aug. 6, 2012.
+ Go Back in Time
+ Video: Where Were You When Curiosity Landed on Mars?
Water ice makes up half or more of an underground layer in a large region of Mars, about halfway from the equator to the north pole. The amount of water in this deposit—assessed using a radar aboard NASA's Mars Reconnaissance Orbiter—is about as much as in Lake Superior.
+ Read More
Finally, it’s been seven years since Cassini caught one of its most stunning views of the plume on Saturn's moon Enceladus.
+ Read More
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our @NASAJuno spacecraft's JunoCam captured images of the chaotic, stormy northern hemisphere of Jupiter during its 24th close pass of the giant planet on Dec. 26, 2019. Using data from the flyby, citizen scientist Kevin M. Gill created this color-enhanced image. At the time, the spacecraft was about 14,600 miles (23,500 kilometers) from the tops of Jupiter’s clouds, at a latitude of about 69 degrees north.
Image Credit: Image data: NASA/JPL-Caltech/SwRI/MSSS
Image processing by Kevin M. Gill, © CC BY
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Set your sights beyond the solar system and take a late summertime road trip along the Milky Way!
On September 15 the Cassini spacecraft ends its glorious Saturnian science tour by plunging into the atmosphere of Saturn, becoming forever a part of the ringed planet. Learn more about the end of mission activities HERE.
This month Saturn is the only prominent evening planet low in the southwest sky.
Look for it near the constellation Sagittarius. Above and below Saturn--from a dark sky--you can't miss the summer Milky Way spanning the sky from northeast to southwest.
Grab a pair of binoculars and scan the teapot-shaped Sagittarius, where stars and some brighter clumps appear as steam from the teapot. Those bright clumps are near the center of our galaxy, which is full of gas, dust and stars.
Directly overhead is the great Summer Triangle of stars. Vega, Altair and Deneb are in the pretty constellations Lyra, Aquila and Cygnus.
As you gaze toward the northeast you'll see Cassiopeia, the familiar W-shaped constellation...and Perseus. Through your binoculars, look for the Perseus Double Cluster. Both of the clusters are visible with the naked eye, are 7500 light years away, and contain more than 300 blue-white super-giant stars!
Every star and every object you can see with your unaided eye is part of the Milky Way. With one exception: the great Andromeda galaxy, which is faintly visible through binoculars on the opposite side of the night sky from Saturn and the teapot.
You can find out about our missions studying the solar system and universe at: https://www.nasa.gov/topics/solarsystem/index.html
Watch the full What’s Up for September video:
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
What's Up for June? Saturn at its best! Plus, good views of Mars, Jupiter and Jupiter's moons continue from dusk to dawn.
You don't have to stay up late to see Jupiter, Mars and Saturn this month, because they're all visible soon after sunset. Jupiter is the brightest of the three, visible in the western sky all evening.
The four Galilean moons are easily visible in binoculars or telescopes. If you think you're seeing 5 moons on June 10th, you're not. One of them is a distant star in the constellation Leo.
For telescope viewers, the time near Mars' closest approach to Earth, May 30th this year, is the best time to try to see the two moons of Mars: Phobos and Deimos. It takes patience, very steady skies and good charts! Mars is still large and bright in early June, but it fades as speedy Earth, in its shorter orbit around the sun, passes it.
Saturn has been close to Mars recently. This month Saturn reaches opposition, when Saturn, Earth and the sun are in a straight line with Earth in the middle, providing the best and closest views of the ringed beauty and several of its moons. You'll be able to make out cloud bands on Saturn, in delicate shades of cream and butterscotch. They're fainter than the bands of Jupiter. Through a telescope you'll see Saturn's rings tilted about as wide as they get: 26 degrees.
You'll also have a ring-side view of the Cassini division, discovered by Giovanni Domenico Cassini, namesake of our Cassini spacecraft, orbiting Saturn since 2004 and continuing through September 2017. When you look at Saturn through a telescope, you can't help but see several of its 4 brightest moons, and maybe more. If you just see one, that's Titan, 50% larger than our own moon. A telescope can also reveal more moons, like Saturn's two-colored moon Iapetus. It takes 3 months to orbit Saturn, and it's fairly easy to see.
There's a bright comet visible this month, Comet PanSTARRS. It's best seen from the southern hemisphere, but it's also visible from the U.S. low in the morning sky. Comet PanSTARRS can be seen through a telescope near the beautiful Helix Nebula on June 4, but it is visible all month.
Watch the full June “What’s Up” video for more: https://youtu.be/M7RtIa9zBYA
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Craving some summer Sun? We're inviting people around the world to submit their names to be placed on a microchip that will travel to the Sun aboard Parker Solar Probe!
Launching summer 2018, Parker Solar Probe will be our first mission to "touch" a star. The spacecraft - about the size of a small car - will travel right through the Sun's atmosphere, facing brutal temperatures and radiation as it traces how energy and heat move through the solar corona and explores what accelerates the solar wind and solar energetic particles.
Send your name along for the ride at go.nasa.gov/HotTicket! Submissions will be accepted through April 27, 2018.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Image Credit:NASA/JPL-Caltech
In this large celestial mosaic, our Spitzer Space Telescope captured a stellar family portrait! You can find infants, parents and grandparents of star-forming regions all in this generational photo. There’s a lot to see in this image, including multiple clusters of stars born from the same dense clumps of gas and dust – some older and more evolved than others. Dive deeper into its intricacies by visiting https://go.nasa.gov/2XpiWLf
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Is the earth really as beautiful as they say from space?
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts