Your personal Tumblr journey starts here
We just finished the second hottest year on Earth since global temperature estimates first became feasible in 1880. Although 2016 still holds the record for the warmest year, 2017 came in a close second, with average temperatures 1.6 degrees Fahrenheit higher than the mean.
2017’s temperature record is especially noteworthy, because we didn’t have an El Niño this year. Often, the two go hand-in-hand.
El Niño is a climate phenomenon that causes warming of the tropical Pacific Ocean waters, which affect wind and weather patterns around the world, usually resulting in warmer temperatures globally. 2017 was the warmest year on record without an El Niño.
We collect the temperature data from 6,300 weather stations and ship- and buoy-based observations around the world, and then analyze it on a monthly and yearly basis. Researchers at the National Oceanic and Atmospheric Administration (NOAA) do a similar analysis; we’ve been working together on temperature analyses for more than 30 years. Their analysis of this year’s temperature data tracks closely with ours.
The 2017 temperature record is an average from around the globe, so different places on Earth experienced different amounts of warming. NOAA found that the United States, for instance, had its third hottest year on record, and many places still experienced cold winter weather.
Other parts of the world experienced abnormally high temperatures throughout the year. Earth’s Arctic regions are warming at roughly twice the rate of the rest of the planet, which brings consequences like melting polar ice and rising sea levels.
Increasing global temperatures are the result of human activity, specifically the release of greenhouse gases like carbon dioxide and methane. The gases trap heat inside the atmosphere, raising temperatures around the globe.
We combine data from our fleet of spacecraft with measurements taken on the ground and in the air to continue to understand how our climate is changing. We share this important data with partners and institutions across the U.S. and around the world to prepare and protect our home planet.
Earth’s long-term warming trend can be seen in this visualization of NASA’s global temperature record, which shows how the planet’s temperatures are changing over time, compared to a baseline average from 1951 to 1980.
Learn more about the 2017 Global Temperature Report HERE.
Discover the ways that we are constantly monitoring our home planet HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
What did the astronauts on the International Space Station see when they looked upon the Earth from orbit in 2017? See some of the top Earth observations from the year and download these pics, as chosen by our Earth Science and Remote Sensing Unit at the Johnson Space Center in Houston. Astronauts have used hand-held cameras to photograph the Earth for more than 55 years. Beginning with the Mercury missions in the early 1960s, astronauts have taken more than 1.5 million photographs of the Earth. Today, the International Space Station continues this tradition of Earth observation from human-tended spacecraft. Operational since November 2000, the space station is well suited for documenting Earth features. The orbiting laboratory maintains an altitude of about 250 miles above the Earth, providing an excellent stage for observing most populated areas of the world.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
While millions of people in North America headed outside to watch the eclipse on Aug. 21, 2017, hundreds of scientists got out telescopes, set up instruments, and prepared balloon launches – all so they could study the Sun and its complicated influence on Earth.
Total solar eclipses happen about once every 18 months somewhere in the world, but the August eclipse was rare because of its long path over land. The total eclipse lasted more than 90 minutes over land, from when it first reached Oregon to when it left the U.S. in South Carolina.
This meant that scientists could collect more data from land than during most eclipses, giving us new insight into our world and the star that powers it.
During a total solar eclipse, the Sun’s outer atmosphere, the corona, is visible from Earth. It’s normally too dim to see next to the Sun’s bright face, but, during an eclipse, the Moon blocks out the Sun, revealing the corona.
Image Credit: Peter Aniol, Miloslav Druckmüller and Shadia Habbal
Though we can study parts of the corona with instruments that create artificial eclipses, some of the innermost regions of the corona are only visible during total solar eclipses. Solar scientists think this part of the corona may hold the secrets to some of our most fundamental questions about the Sun: Like how the solar wind – the constant flow of magnetized material that streams out from the Sun and fills the solar system – is accelerated, and why the corona is so much hotter than the Sun’s surface below.
Depending on where you were, someone watching the total solar eclipse on Aug. 21 might have been able to see the Moon completely obscuring the Sun for up to two minutes and 42 seconds. One scientist wanted to stretch that even further – so he used a pair of our WB-57 jets to chase the path of the Moon’s shadow, giving their telescopes an uninterrupted view of the solar corona for just over seven and half minutes.
These telescopes were originally designed to help monitor space shuttle launches, and the eclipse campaign was their first airborne astronomy project!
These scientists weren’t the only ones who had the idea to stretch out their view of the eclipse: The Citizen CATE project (short for Continental-America Telescopic Eclipse) did something similar, but with the help of hundreds of citizen scientists.
Citizen CATE included 68 identical small telescopes spread out across the path of totality, operated by citizen and student scientists. As the Moon’s shadow left one telescope, it reached the next one in the lineup, giving scientists a longer look at the way the corona changes throughout the eclipse.
After accounting for clouds, Citizen CATE telescopes were able to collect 82 minutes of images, out of the 93 total minutes that the eclipse was over the US. Their images will help scientists study the dynamics of the inner corona, including fast solar wind flows near the Sun’s north and south poles.
The magnetized solar wind can interact with Earth’s magnetic field, causing auroras, interfering with satellites, and – in extreme cases – even straining our power systems, and all these measurements will help us better understand how the Sun sends this material speeding out into space.
Scientists also used the eclipse as a natural laboratory to explore the Sun’s complicated influence on Earth.
High in Earth’s upper atmosphere, above the ozone layer, the Sun’s intense radiation creates a layer of electrified particles called the ionosphere. This region of the atmosphere reacts to changes from both Earth below and space above. Such changes in the lower atmosphere or space weather can manifest as disruptions in the ionosphere that can interfere with communication and navigation signals.
One group of scientists used the eclipse to test computer models of the ionosphere’s effects on these communications signals. They predicted that radio signals would travel farther during the eclipse because of a drop in the number of energized particles. Their eclipse day data – collected by scientists spread out across the US and by thousands of amateur radio operators – proved that prediction right.
In another experiment, scientists used the Eclipse Ballooning Project to investigate the eclipse’s effects lower in the atmosphere. The project incorporated weather balloon flights from a dozen locations to form a picture of how Earth’s lower atmosphere – the part we interact with and which directly affects our weather – reacted to the eclipse. They found that the planetary boundary layer, the lowest part of Earth’s atmosphere, actually moved closer to Earth during the eclipse, dropped down nearly to its nighttime altitude.
A handful of these balloons also flew cards containing harmless bacteria to explore the potential for contamination of other planets with Earth-born life. Earth’s stratosphere is similar to the surface of Mars, except in one main way: the amount of sunlight. But during the eclipse, the level of sunlight dropped to something closer to what you’d expect to see on Mars, making this the perfect testbed to explore whether Earth microbes could hitch a ride to the Red Planet and survive. Scientists are working through the data collected, hoping to build up better information to help robotic and human explorers alike avoid carrying bacterial hitchhikers to Mars.
Image: The small metal card used to transport bacteria.
Finally, our EPIC instrument aboard NOAA’s DSCOVR satellite provided awe-inspiring views of the eclipse, but it’s also helping scientists understand Earth’s energy balance. Earth’s energy system is in a constant dance to maintain a balance between incoming radiation from the Sun and outgoing radiation from Earth to space, which scientists call the Earth’s energy budget. The role of clouds, both thick and thin, is important in their effect on energy balance.
Like a giant cloud, the Moon during the total solar eclipse cast a large shadow across a swath of the United States. Scientists know the dimensions and light-blocking properties of the Moon, so they used ground- and space-based instruments to learn how this large shadow affects the amount of sunlight reaching Earth’s surface, especially around the edges of the shadow. Measurements from EPIC show a 10% drop in light reflected from Earth during the eclipse (compared to about 1% on a normal day). That number will help scientists model how clouds radiate the Sun’s energy – which drives our planet’s ocean currents, seasons, weather and climate – away from our planet.
For even more eclipse science updates, stay tuned to nasa.gov/eclipse.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The 2017 Atlantic hurricane season was among the top ten most active seasons in recorded history. Our experts are exploring what made this year particularly active and the science behind some of the biggest storms to date.
After a period of 12 years without a Category 3 or higher hurricane making landfall in the U.S., Hurricane Harvey made landfall over Texas as a Category 4 hurricane this August.
Harvey was also the biggest rainfall event ever to hit the continental U.S. with estimates more than 49 inches of rain.
Data like this from our Global Precipitation Measurement Mission, which shows the amount of rainfall from the storm and temperatures within the story, are helping scientists better understand how storms develop.
The unique vantage point of satellites can also help first responders, and this year satellite data helped organizations map out response strategies during hurricanes Harvey, Irma and Maria.
In addition to satellites, we use ground stations and aircraft to track hurricanes.
We also use the capabilities of satellites like Suomi NPP and others that are able to take nighttime views. In this instance, we were able to view the power outages in Puerto Rico. This allowed first responders to see where the location of impacted urban areas.
The combined effort between us, NOAA, FEMA and other federal agencies helps us understand more about how major storms develop, how they gain strength and how they affect us.
To learn more about how we study storms, go to www.nasa.gov/Hurricanes.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
We will select between eight and 14 new astronaut candidates from among a record-breaking applicant class of more than 18,300, almost three times the number of applications the agency received in 2012 for the recent astronaut class, and far surpassing the previous record of 8,000 in 1978.
The candidates will be announced at an event at our Johnson Space Center in Houston, Texas at 2 p.m. EDT on June 7. You can find more information on how to watch the announcement HERE.
Applicants must meet the following minimum requirements before submitting an application.
Bachelor’s degree from an accredited institution in engineering, biological science, physical science, computer science or mathematics.
Degree must be followed by at least 3 years of related, progressively responsible, professional experience or at least 1,000 hours of pilot-in-command time in jet aircraft
Ability to pass the NASA Astronaut physical.
For more information, visit: https://astronauts.nasa.gov/content/faq.htm
There have been 22 classes of astronauts selected from the original “Mercury Seven” in 1959 to the most recent 2017 class. Other notable classes include:
The fourth class in 1965 known as “The Scientists: because academic experience was favored over pilot skills.
The eighth class in 1978 was a huge step forward for diversity, featuring the first female, African American and Asian American selections.
The 16th class in 1996 was the largest class yet with 44 members – 35 U.S. astronauts and 9 international astronauts. They were selected for the frequent Space Shuttle flights and the anticipated need for International Space Station crewmembers.
The 21st class in 2013 was the first class to have 50/50 gender split with 4 female members and 4 male members.
They could be assigned on any of four different spacecraft: the International Space Station, our Orion spacecraft for deep space exploration or one of two American-made commercial crew spacecraft currently in development – Boeing’s CST-199 Starliner or the SpaceX Crew Dragon.
These astronauts will be part of expanded crews aboard the space station that will significantly increase the crew time available to conduct the important research and technology demonstrations that are advancing our knowledge for missions farther into space than humans have gone before, while also returning benefits to Earth. They will also be candidates for missions beyond the moon and into deep space aboard our Orion spacecraft on flights that help pave the way for missions to Mars.
After completing two years of general training, these astronaut candidates will be considered full astronauts, eligible to be assigned spaceflight missions. While they wait for their turn, they will be given duties within the Astronaut Office at Johnson Space Center. Technical duties can range from supporting current missions in roles such as CAPCOM in Mission Control, to advising on the development of future spacecraft.
The first two years of astronaut candidate training will focus on the basic skills astronauts need. They’ll practice for spacewalks in Johnson’s 60-foot deep swimming pool, the Neutral Buoyancy Lab, which requires SCUBA certification. They’ll also simulate bringing visiting spacecraft in for a berthing to the space station using its robotic arm, Canadarm2, master the ins and outs of space station system and learn Russian.
And, whether they have previous experience piloting an aircraft of not, they’ll learn to fly our fleet of T-38s. In addition, they’ll perfect their expeditionary skills, such as leadership and fellowship, through activities like survival training and geology treks.
They will join a team that supports missions going on at many different NASA centers across the country, but they’ll also interact with commercial partners developing spaceflight hardware. In addition, they will work with our international partners around the globe: ESA (the European Space Agency, the Canadian Space Agency, the Japan Aerospace Exploration Agency and the Russian space agency, Roscosmos.
All 18,353 of the applications submitted were reviewed by human resources experts to determine if they met the basic qualifications. Those that did were then each reviewed by a panel of about 50 people, made up primarily of current astronauts. Called the Astronaut Rating Panel, that group narrowed to applicants down to a few hundred of what they considered the most highly qualified individuals, whose references were then checked.
From that point, a smaller group called the Astronaut Selection Board brought in the top 120 applicants for an intense round of interviews and some initial medical screening tests. That group is further culled to the top 50 applicants afterward, who are brought back for a second round of interviews and additional screening. The final candidates are selected from that group.
Each applicant selected to become an astronaut receives a phone call from the head of the Flight Operations Directorate at our Johnson Space Center and the chief of the astronaut office. They’re asked to share the good news with only their immediate family until their selection has been officially announced.
Astronaut candidates will report for duty at Johnson Space Center in August 2017, newly fitted flight suits in tow, and be sworn into civil service. Between their selection and their report for duty, they will make arrangements to leave their current positions and relocate with their family to Houston, Texas.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
With 2016 behind us, we take the time to not only reflect on what we’ve accomplished, but also take a look to what’s ahead for the next year.
New Telescope in Town
This year marked big progress on our James Webb Space Telescope and there are still a number of large milestones before the telescope is launched in 2018. Once launched, JWST will be the premier observatory of the next decade. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own solar system.
In 2017, the telescope will be shipped to our Johnson Space Center in Houston, Texas where end-to-end optical testing in a simulated cryo-temperature and vacuum space environment will occur.
Epic Final Year at Saturn
After more than 12 years studying Saturn, its rings and moons, our Cassini spacecraft is in its final year of its epic voyage. The conclusion of the historic scientific odyssey is planned for September 2017, but not before the spacecraft completes a daring two-part endgame.
Cassini’s final phase – called the Grand Finale – begins in earnest in April 2017. During this time, Cassini will make the closest-ever observations of Saturn, mapping the planet’s magnetic and gravity fields with exquisite precision and returning ultra-close views of the atmosphere.
Delivering Supplies to Space
Our ambitious commercial space program has enabled a successful partnership with two American companies to resupply the International Space Station.
The companies are successfully resupplying the space station, and more missions to deliver scientific investigations and cargo are planned for 2017.
Launching Two Earth Missions
New Earth science missions got underway in 2016 to enable studies that will unravel the complexities of our planet from the highest reaches of Earth’s atmosphere to its core. In 2017, we will launch two Earth-observing instruments to the International Space Station as part of our ongoing use of the orbiting space laboratory to study our changing planet.
The Stratospheric Aerosol and Gas Experiment III (SAGE III) will give us a new way to monitor Earth’s protective ozone layer and document its ongoing recovery. The Lightning Imaging Sensor (LIS) will measure both in-cloud and cloud-to-ground lightning over much of the planet, data that will help improve our understanding of lightning’s connections to weather and related phenomena.
Commercial Crew
Our Commercial Crew Program is working with American aerospace industry as companies develop and operate a new generation of spacecraft and launch systems capable of carrying crews to low-Earth orbit and the International Space Station.
In 2017, astronauts will train for commercial flights and launch pad 39A will be completed at Kennedy Space Center in Florida. Work is wrapping up on a new structure built specifically for the needs of astronauts climbing into Boeing's CST-100 Starliner as it stands atop a United Launch Alliance Atlas V rocket at Space Launch Complex 41 in Florida. In 2017, the 200-foot-tall Crew Access Tower and Crew Access Arm will see installation and testing of emergency evacuation systems.
SpaceX has also overhauled the historic Launch Pad 39A at Kennedy and built new support structures for the company's line of Falcon rockets. The Crew Access Arm, currently under construction, will be connected in mid-2017 to provide a bridge from the fixed service structure to the Crew Dragon spacecraft so astronauts can board before launch
Orion Progress
Our Orion spacecraft is being built to take humans farther than they’ve ever gone before. Orion will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities.
In 2017, computers in the Orion crew module for the spacecraft’s first mission with our Space Launch System rocket will be turned on for the first time to verify the spacecraft can route power and send commands. While the Orion outfitting and assembly process for the first mission of the spacecraft atop the SLS rocket continues in 2017, construction will also begin on the vehicle for the first Orion flight with astronauts that will fly as early as 2021.
Cutting Edge Technology
Our Space Technology office is dedicated to pushing the technological envelope, taking on challenges not only to further space agency missions near Earth, but also to sustain future deep space exploration activities.
In 2016, the office focused on and made significant progress in advancing technologies and capabilities that will continue into 2017.
Advances in Aeronautics
Our rich aeronautical research heritage added to its history of technical innovation in 2016 with advancements that will help make airplanes use less fuel, release fewer emissions and fly more quietly…and that includes working to return supersonic flight to the commercial marketplace.
We took steps in 2016 to resume designing, building and flying several experimental aircraft, or X-planes, as a means to demonstrate key green technologies and help accelerate their use by industry. In 2017, this research will continue to grow and develop.
Thanks for joining us in 2016, we look forward to sharing our progress with you in the coming year.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Instagram page has over 1,800 images and is lucky enough to be followed by more than 18 million fans.
What images and videos were your favorite from this past year? Great question, and one we asked ourselves too!
Colorful “last hurrah’ of a star: The Hubble Space Telescope shows off the colorful “last hurrah” of a star like our sun. The star is ending its life by casting off its outer layers of gas, which formed a cocoon around the star’s remaining core. With 513,672 likes, this image is our 10th most liked of 2016.
Vivid glowing auroras in Jupiter’s atmosphere! Astronomers are using the Hubble Space Telescope to study auroras – stunning light shows in a planet’s atmosphere – on the poles of the largest planet in the solar system. This image ranks #9 for 2016 with 515,339 likes.
Astronomers found evidence for what is likely one of the most extreme pulsars, or rotating neutron stars, ever detected. The source exhibits properties of a highly magnetized neutron star, or magnetar, yet its deduced spin period is thousands of times longer than any pulsar ever observed. With 517,995 likes, this picture ranks #8 for 2016.
Fiery South Atlantic Sunset! An astronaut aboard the International Space Station photographed a sunset that looks like a vast sheet of flame. With Earth’s surface already in darkness, the setting sun, the cloud masses, and the sideways viewing angle make a powerful image of the kind that astronauts use to commemorate their flights. This image ranks #7 for 2016 with 520,553 likes.
Go floating! Join us for a fly-through of the International Space Station! This footage was shot using a fisheye lens for extreme focus and depth of field. This video ranks as our sixth most liked Instagram post of 2016 with 541,418 likes.
This #BlackFriday post helped us celebrate our 4th annual #BlackHoleFriday! Each year we pose awesome content about black holes on the Black Friday shopping holiday. A black hole is a place in space where gravity pulls so much that even light cannot get out. With 549,910 likes, this image ranks #5 for 2016.
A cluster of young stars – about one to two million years old – located about 20,000 light years from Earth. Data in visible light from the Hubble Space Telescope (green and blue) reveal thick clouds where the stars are forming. This image ranks #4 for 2016 with 573,002 likes.
Supermoon is a spectacular sight! The Nov. 14 supermoon was especially “super” because it was the closest full moon to Earth since 1948. We won’t see another supermoon like this until 2034. Which might have something to do with this image ranking #3 for 2016 with 695,343 likes.
Supermoon seen from space! Aboard the International Space Station, NASA astronaut Peggy Whitson posted this image on Dec. 14 captured by European Space Agency astronaut Thomas Pesquet. This stunning image ranks #2 for 2016 with 704,530 likes.
It’s a bird, it’s a plane…no, it’s a #supermoon! The moon, or supermoon, is seen rising behind the Soyuz rocket at the Baikonur Cosmodrome launch pad in Kazakhstan ahead of the November crew launch to the International Space Station. This photo was our #1 image of 2016 with 746,981 likes.
Thanks for joining us as we traveled through the space events of 2016. We’re looking forward to all of the interstellar fun that 2017 will bring. Happy Holidays!
Do you want to get amazing images of Earth from space, see distant galaxies and more on Instagram? Of course you do! Follow us: https://www.instagram.com/nasa/
*Posts and rankings are were taken as of Dec. 21, 2016.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com