What Scientists Are Learning From The Eclipse

What Scientists Are Learning from the Eclipse

While millions of people in North America headed outside to watch the eclipse on Aug. 21, 2017, hundreds of scientists got out telescopes, set up instruments, and prepared balloon launches – all so they could study the Sun and its complicated influence on Earth.

image

Total solar eclipses happen about once every 18 months somewhere in the world, but the August eclipse was rare because of its long path over land. The total eclipse lasted more than 90 minutes over land, from when it first reached Oregon to when it left the U.S. in South Carolina.

image

This meant that scientists could collect more data from land than during most eclipses, giving us new insight into our world and the star that powers it.

A moment in the Sun’s atmosphere

During a total solar eclipse, the Sun’s outer atmosphere, the corona, is visible from Earth. It’s normally too dim to see next to the Sun’s bright face, but, during an eclipse, the Moon blocks out the Sun, revealing the corona.

image

Image Credit: Peter Aniol, Miloslav Druckmüller and Shadia Habbal

Though we can study parts of the corona with instruments that create artificial eclipses, some of the innermost regions of the corona are only visible during total solar eclipses. Solar scientists think this part of the corona may hold the secrets to some of our most fundamental questions about the Sun: Like how the solar wind – the constant flow of magnetized material that streams out from the Sun and fills the solar system – is accelerated, and why the corona is so much hotter than the Sun’s surface below.  

Depending on where you were, someone watching the total solar eclipse on Aug. 21 might have been able to see the Moon completely obscuring the Sun for up to two minutes and 42 seconds. One scientist wanted to stretch that even further – so he used a pair of our WB-57 jets to chase the path of the Moon’s shadow, giving their telescopes an uninterrupted view of the solar corona for just over seven and half minutes.

image

These telescopes were originally designed to help monitor space shuttle launches, and the eclipse campaign was their first airborne astronomy project!

image

These scientists weren’t the only ones who had the idea to stretch out their view of the eclipse: The Citizen CATE project (short for Continental-America Telescopic Eclipse) did something similar, but with the help of hundreds of citizen scientists. 

Citizen CATE included 68 identical small telescopes spread out across the path of totality, operated by citizen and student scientists. As the Moon’s shadow left one telescope, it reached the next one in the lineup, giving scientists a longer look at the way the corona changes throughout the eclipse.

image

After accounting for clouds, Citizen CATE telescopes were able to collect 82 minutes of images, out of the 93 total minutes that the eclipse was over the US. Their images will help scientists study the dynamics of the inner corona, including fast solar wind flows near the Sun’s north and south poles.

The magnetized solar wind can interact with Earth’s magnetic field, causing auroras, interfering with satellites, and – in extreme cases – even straining our power systems, and all these measurements will help us better understand how the Sun sends this material speeding out into space.

Exploring the Sun-Earth connection

Scientists also used the eclipse as a natural laboratory to explore the Sun’s complicated influence on Earth.

High in Earth’s upper atmosphere, above the ozone layer, the Sun’s intense radiation creates a layer of electrified particles called the ionosphere. This region of the atmosphere reacts to changes from both Earth below and space above. Such changes in the lower atmosphere or space weather can manifest as disruptions in the ionosphere that can interfere with communication and navigation signals.

image

One group of scientists used the eclipse to test computer models of the ionosphere’s effects on these communications signals. They predicted that radio signals would travel farther during the eclipse because of a drop in the number of energized particles. Their eclipse day data – collected by scientists spread out across the US and by thousands of amateur radio operators – proved that prediction right.

In another experiment, scientists used the Eclipse Ballooning Project to investigate the eclipse’s effects lower in the atmosphere. The project incorporated weather balloon flights from a dozen locations to form a picture of how Earth’s lower atmosphere – the part we interact with and which directly affects our weather – reacted to the eclipse. They found that the planetary boundary layer, the lowest part of Earth’s atmosphere, actually moved closer to Earth during the eclipse, dropped down nearly to its nighttime altitude.

image

A handful of these balloons also flew cards containing harmless bacteria to explore the potential for contamination of other planets with Earth-born life. Earth’s stratosphere is similar to the surface of Mars, except in one main way: the amount of sunlight. But during the eclipse, the level of sunlight dropped to something closer to what you’d expect to see on Mars, making this the perfect testbed to explore whether Earth microbes could hitch a ride to the Red Planet and survive. Scientists are working through the data collected, hoping to build up better information to help robotic and human explorers alike avoid carrying bacterial hitchhikers to Mars.

image

Image: The small metal card used to transport bacteria.

Finally, our EPIC instrument aboard NOAA’s DSCOVR satellite provided awe-inspiring views of the eclipse, but it’s also helping scientists understand Earth’s energy balance. Earth’s energy system is in a constant dance to maintain a balance between incoming radiation from the Sun and outgoing radiation from Earth to space, which scientists call the Earth’s energy budget. The role of clouds, both thick and thin, is important in their effect on energy balance.

image

Like a giant cloud, the Moon during the total solar eclipse cast a large shadow across a swath of the United States. Scientists know the dimensions and light-blocking properties of the Moon, so they used ground- and space-based instruments to learn how this large shadow affects the amount of sunlight reaching Earth’s surface, especially around the edges of the shadow. Measurements from EPIC show a 10% drop in light reflected from Earth during the eclipse (compared to about 1% on a normal day). That number will help scientists model how clouds radiate the Sun’s energy – which drives our planet’s ocean currents, seasons, weather and climate – away from our planet.

For even more eclipse science updates, stay tuned to nasa.gov/eclipse.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

9 years ago

How Do You Stay Fit on a Mission to Mars?

This mini exercise device could be the key!

Onboard the International Space Station, astronauts need to work out to maintain their bone density and muscle mass, usually exercising 2 hours every single day. Throughout the week, they exercise on three different pieces of equipment--a bike, a treadmill and the Advanced Restive Exercise Device (ARED).

image

All these devices are needed to keep an astronaut healthy.

However, deep-space vehicles like our Orion Spacecraft aren’t as roomy as station, so everything — including exercise equipment — needs to be downsized. The Miniature Exercise Device (MED-2) is getting us one step closer to being able to keep astronauts’ bodies healthy on long journeys to the moon, Mars and beyond.

image

MED-2 is a compact, all-in-one exercise device that we developed and will be launching to the space station Tuesday, March 22. Onboard the station, we’ll see how MED-2 will perform in microgravity and how it will need to be further adapted for our Journey to Mars. However, it’s already pretty well equipped for deep space missions.

So what makes MED-2 so great for deep space travel and our Journey to Mars?

1. It is an all-in-one exercise device, meaning it can do both aerobic and resistive workouts. When we go to Mars, the less equipment we need, the better.

image

2. It's incredibly light. The MED-2 weighs only 65 pounds, and every pound counts during space missions.

image

3. It has 5 - 350 pounds of resistance, despite weighing only 65 pounds. Astronauts don’t all lift the same amount, making the flexibility in MED-2’s “weights” essential.

image

4. It's tiny. (Hence its name Miniature Exercise Device.) Not only is MED-2 incredibly light, but it also won't take up a lot of space on any craft.

image

5. It powers itself. During an aerobic workout, the device charges, and then that power is used to run the resistive exercises. When traveling to space, it's good when nothing goes to waste, and now astronauts' workouts will help power the Journey to Mars.

image

MED-2 is only one of many devices and experiments flying on Orbital ATK’s Cygnus spacecraft. To find out more about the science on the space station, follow @ISS_Research and @Space_Station on Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Launching the Future of Space Communications

Our newest communications satellite, named the Tracking and Data Relay Satellite-M or TDRS-M, launches Aug. 18 aboard an Atlas V rocket from our Kennedy Space Center in Florida. It will be the 13th TDRS satellite and will replenish the fleet of satellites supporting the Space Network, which provides nearly continuous global communications services to more than 40 of our missions.

image

Communicating from space wasn’t always so easy. During our third attempt to land on the moon in 1970, the Apollo 13 crew had to abort their mission when the spacecraft’s oxygen tank suddenly exploded and destroyed much of the essential equipment onboard. Made famous in the movie ‘Apollo 13’ by Ron Howard and starring Tom Hanks, our NASA engineers on the ground talked to the crew and fixed the issue. Back in 1970 our ground crew could only communicate with their ground teams for 15 percent of their orbit – adding yet another challenge to the crew. Thankfully, our Apollo 13 astronauts survived and safely returned to Earth. 

image

Now, our astronauts don’t have to worry about being disconnected from their teams! With the creation of the TDRS program in 1973, space communications coverage increased rapidly from 15 percent coverage to 85 percent coverage. And as we’ve continued to add TDRS spacecraft, coverage zoomed to over 98 percent!

Launching The Future Of Space Communications

TDRS is a fleet of satellites that beam data from low-Earth-orbiting space missions to scientists on the ground. These data range from cool galaxy images from the Hubble Space Telescope to high-def videos from astronauts on the International Space Station! TDRS is operated by our Space Network, and it is thanks to these hardworking engineers and scientists that we can continuously advance our knowledge about the universe!  

image

What’s up next in space comm? Only the coolest stuff ever! LASER BEAMS. Our scientists are creating ways to communicate space data from missions through lasers, which have the ability to transfer more data per minute than typical radio-frequency systems. Both radio-frequency and laser comm systems send data at the speed of light, but with laser comm’s ability to send more data at a time through infrared waves, we can receive more information and further our knowledge of space.

image

How are we initiating laser comm? Our Laser Communications Relay Demonstration is launching in 2019! We’re only two short years away from beaming space data through lasers! This laser communications demo is the next step to strengthen this technology, which uses less power and takes up less space on a spacecraft, leaving more power and room for science instruments.

image

Watch the TDRS launch live online at 8:03 a.m. EDT on Aug. 18: https://www.nasa.gov/nasalive

Join the conversation on Twitter: @NASA_TDRS and @NASALasercomm!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Black Holes are NICER Than You Think!

We’re learning more every day about black holes thanks to one of the instruments aboard the International Space Station! Our Neutron star Interior Composition Explorer (NICER) instrument is keeping an eye on some of the most mysterious cosmic phenomena.

image

We’re going to talk about some of the amazing new things NICER is showing us about black holes. But first, let’s talk about black holes — how do they work, and where do they come from? There are two important types of black holes we’ll talk about here: stellar and supermassive. Stellar mass black holes are three to dozens of times as massive as our Sun while supermassive black holes can be billions of times as massive!

image

Stellar black holes begin with a bang — literally! They are one of the possible objects left over after a large star dies in a supernova explosion. Scientists think there are as many as a billion stellar mass black holes in our Milky Way galaxy alone!

Supermassive black holes have remained rather mysterious in comparison. Data suggest that supermassive black holes could be created when multiple black holes merge and make a bigger one. Or that these black holes formed during the early stages of galaxy formation, born when massive clouds of gas collapsed billions of years ago. There is very strong evidence that a supermassive black hole lies at the center of all large galaxies, as in our Milky Way.

image

Imagine an object 10 times more massive than the Sun squeezed into a sphere approximately the diameter of New York City — or cramming a billion trillion people into a car! These two examples give a sense of how incredibly compact and dense black holes can be.

Because so much stuff is squished into such a relatively small volume, a black hole’s gravity is strong enough that nothing — not even light — can escape from it. But if light can’t escape a dark fate when it encounters a black hole, how can we “see” black holes?

image

Scientists can’t observe black holes directly, because light can’t escape to bring us information about what’s going on inside them. Instead, they detect the presence of black holes indirectly — by looking for their effects on the cosmic objects around them. We see stars orbiting something massive but invisible to our telescopes, or even disappearing entirely!

When a star approaches a black hole’s event horizon — the point of no return — it’s torn apart. A technical term for this is “spaghettification” — we’re not kidding! Cosmic objects that go through the process of spaghettification become vertically stretched and horizontally compressed into thin, long shapes like noodles.

image

Scientists can also look for accretion disks when searching for black holes. These disks are relatively flat sheets of gas and dust that surround a cosmic object such as a star or black hole. The material in the disk swirls around and around, until it falls into the black hole. And because of the friction created by the constant movement, the material becomes super hot and emits light, including X-rays.  

At last — light! Different wavelengths of light coming from accretion disks are something we can see with our instruments. This reveals important information about black holes, even though we can’t see them directly.

image

So what has NICER helped us learn about black holes? One of the objects this instrument has studied during its time aboard the International Space Station is the ever-so-forgettably-named black hole GRS 1915+105, which lies nearly 36,000 light-years — or 200 million billion miles — away, in the direction of the constellation Aquila.

Scientists have found disk winds — fast streams of gas created by heat or pressure — near this black hole. Disk winds are pretty peculiar, and we still have a lot of questions about them. Where do they come from? And do they change the shape of the accretion disk?

image

It’s been difficult to answer these questions, but NICER is more sensitive than previous missions designed to return similar science data. Plus NICER often looks at GRS 1915+105 so it can see changes over time.

NICER’s observations of GRS 1915+105 have provided astronomers a prime example of disk wind patterns, allowing scientists to construct models that can help us better understand how accretion disks and their outflows around black holes work.

image

NICER has also collected data on a stellar mass black hole with another long name — MAXI J1535-571 (we can call it J1535 for short) — adding to information provided by NuSTAR, Chandra, and MAXI. Even though these are all X-ray detectors, their observations tell us something slightly different about J1535, complementing each other’s data!

This rapidly spinning black hole is part of a binary system, slurping material off its partner, a star. A thin halo of hot gas above the disk illuminates the accretion disk and causes it to glow in X-ray light, which reveals still more information about the shape, temperature, and even the chemical content of the disk. And it turns out that J1535’s disk may be warped!

image

Image courtesy of NRAO/AUI and Artist: John Kagaya (Hoshi No Techou)

This isn’t the first time we have seen evidence for a warped disk, but J1535’s disk can help us learn more about stellar black holes in binary systems, such as how they feed off their companions and how the accretion disks around black holes are structured.

NICER primarily studies neutron stars — it’s in the name! These are lighter-weight relatives of black holes that can be formed when stars explode. But NICER is also changing what we know about many types of X-ray sources. Thanks to NICER’s efforts, we are one step closer to a complete picture of black holes. And hey, that’s pretty nice!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

What’s Up for September?

image

Stargazing and looking up into the night sky is always a fun thing to do. This month, it will be especially exciting because there will be a total eclipse of a supermoon, plus the opportunity to see planets and the late-summer Milky Way!

What is a supermoon?

image

A supermoon is a new or full moon that occurs when it is at, or near its closest approach to Earth in a given orbit. There are usually 4 to 6 supermoons every year.

Observers can view the total eclipse on September 27, starting at 10:11 p.m. EDT until 11:23 p.m. This event will be visible in North and South America, as well as Europe and Africa. So make sure to mark your calendars!

image

This month, you will also be able to see the planets! Look for Mercury, Saturn, Pluto and Neptune in the evening sky. Uranus and Neptune at midnight, and Venus, Mars and Jupiter in the pre-dawn sky.

image

Finally, if you’re able to escape to a dark location, you might be able to see a great view of our Milky Way!

So, make sure to get outside this month and take a look at everything our night sky has to offer.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

10 Things: Mars Helicopter

When our next Mars rover lands on the Red Planet in 2021, it will deliver a groundbreaking technology demonstration: the first helicopter to ever fly on a planetary body other than Earth. This Mars Helicopter will demonstrate the first controlled, powered, sustained flight on another world. It could also pave the way for future missions that guide rovers and gather science data and images at locations previously inaccessible on Mars. This exciting new technology could change the way we explore Mars.

image

1. Its body is small, but its blades are mighty.

One of the biggest engineering challenges is getting the Mars Helicopter’s blades just right. They need to push enough air downward to receive an upward force that allows for thrust and controlled flight — a big concern on a planet where the atmosphere is only one percent as dense as Earth’s. “No helicopter has flown in those flight conditions – equivalent to 100,000 feet (30,000 meters) on Earth,” said Bob Balaram, chief engineer for the project at our Jet Propulsion Laboratory.

image

2. It has to fly in really thin Martian air.

To compensate for Mars’ thin atmosphere, the blades must spin much faster than on an Earth helicopter, and the blade size relative to the weight of the helicopter has to be larger too. The Mars Helicopter’s rotors measure 4 feet wide (about 1.2 meters) long, tip to tip. At 2,800 rotations per minute, it will spin about 10 times faster than an Earth helicopter. At the same time, the blades shouldn’t flap around too much, as the helicopter’s design team discovered during testing. Their solution: make the blades more rigid. “Our blades are much stiffer than any terrestrial helicopter’s would need to be,” Balaram said.   The body, meanwhile, is tiny — about the size of a softball. In total, the helicopter will weigh just under 4 pounds (1.8 kilograms).

image

3. It will make up to five flights on Mars.

Over a 30-day period on Mars, the helicopter will attempt up to five flights, each time going farther than the last. The helicopter will fly up to 90 seconds at a time, at heights of up to 10 to 15 feet (3 to 5 meters). Engineers will learn a lot about flying a helicopter on Mars with each flight, since it’s never been done before!

image

4. The Mars Helicopter team has already completed groundbreaking tests.

Because a helicopter has never visited Mars before, the Mars Helicopter team has worked hard to figure out how to predict the helicopter’s performance on the Red Planet. “We had to invent how to do planetary helicopter testing on Earth,” said Joe Melko, deputy chief engineer of Mars Helicopter, based at JPL.

The team, led by JPL and including members from JPL, AeroVironment Inc.,  Ames Research Center, and Langley Research Center, has designed, built and tested a series of test vehicles.

In 2016, the team flew a full-scale prototype test model of the helicopter in the 25-foot (7.6-meter) space simulator at JPL. The chamber simulated the low pressure of the Martian atmosphere. More recently, in 2018, the team built a fully autonomous helicopter designed to operate on Mars, and successfully flew it in the 25-foot chamber in Mars-like atmospheric density.

Engineers have also exercised the rotors of a test helicopter in a cold chamber to simulate the low temperatures of Mars at night. In addition, they have taken design steps to deal with Mars-like radiation conditions. They have also tested the helicopter’s landing gear on Mars-like terrain. More tests are coming to see how it performs with Mars-like winds and other conditions.

image

5. The camera is as good as your cell phone camera.

The helicopter’s first priority is successfully flying on Mars, so engineering information takes priority. An added bonus is its camera. The Mars Helicopter has the ability to take color photos with a 13-megapixel camera — the same type commonly found in smart phones today. Engineers will attempt to take plenty of good pictures.

6. It’s battery-powered, but the battery is rechargeable.

The helicopter requires 360 watts of power for each second it hovers in the Martian atmosphere – equivalent to the power required by six regular lightbulbs. But it isn’t out of luck when its lithium-ion batteries run dry. A solar array on the helicopter will recharge the batteries, making it a self-sufficient system as long as there is adequate sunlight. Most of the energy will be used to keep the helicopter warm, since nighttime temperatures on Mars plummet to around minus 130 degrees Fahrenheit (minus 90 Celsius). During daytime flights, temperatures may rise to a much warmer minus 13 to minus 58 degrees Fahrenheit to (minus 25 to minus 50 degrees Celsius) — still chilly by Earth standards. The solar panel makes an average of 3 watts of power continuously during a 12-hour Martian day.

7. The helicopter will be carried to Mars under the belly of the rover.

Somewhere between 60 to 90 Martian days (or sols) after the Mars 2020 rover lands, the helicopter will be deployed from the underside of the rover. Mars Helicopter Delivery System on the rover will rotate the helicopter down from the rover and release it onto the ground. The rover will then drive away to a safe distance.

image

8. The helicopter will talk to the rover.

The Mars 2020 rover will act as a telecommunication relay, receiving commands from engineers back on Earth and relaying them to the helicopter. The helicopter will then send images and information about its own performance to the rover, which will send them back to Earth. The rover will also take measurements of wind and atmospheric data to help flight controllers on Earth.

9. It has to fly by itself, with some help.

Radio signals take time to travel to Mars — between four and 21 minutes, depending on where Earth and Mars are in their orbits — so instantaneous communication with the helicopter will be impossible. That means flight controllers can’t use a joystick to fly it in real time, like a video game. Instead, they need to send commands to the helicopter in advance, and the little flying robot will follow through. Autonomous systems will allow the helicopter to look at the ground, analyze the terrain to look how fast it’s moving, and land on its own.

10. It could pave the way for future missions.

A future Mars helicopter could scout points of interest, help scientists and engineers select new locations and plan driving routes for a rover. Larger standalone helicopters could carry science payloads to investigate multiple sites at Mars. Future helicopters could also be used to fly to places on Mars that rovers cannot reach, such as cliffs or walls of craters. They could even assist with human exploration one day. Says Balaram: "Someday, if we send astronauts, these could be the eyes of the astronauts across Mars.”

Read the full version of this week’s ‘10 Things to Know’ article on the web HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

Rare Full Moon on Christmas Day

Not since 1977 has a full moon dawned in the skies on Christmas. But this year, a bright full moon will be an added gift for the holidays.

image

This full moon, the last of the year, is called the Full Cold Moon because it occurs during the beginning of winter.

Make sure you get outside to check out this rare event because it won’t happen again until 2034!

image

Here are a few fun facts about the event and our moon:

The moon’s peak this year will occur at 6:11 a.m. EST

As you gaze up at the Christmas moon, take note that we have a spacecraft currently orbiting Earth’s moon. Our Lunar Reconnaissance Orbiter (LRO) mission has been investigating the lunar surface since 2009

More than 100 spacecraft have been launched to explore the moon

Our moon is the only celestial body beyond Earth that has been visited by human beings..so far!

Twelve human beings have walked on the surface of the moon

The moon makes a complete orbit around Earth in 27 Earth days and rotates or spins at the same rate. This causes the moon to keep the same side, or face, towards Earth during the course of its orbit

The moon is the brightest and largest feature in the night sky. Venus is second

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Neutron Stars Are Even Weirder Than We Thought

Let’s face it, it’s hard for rapidly-spinning, crushed cores of dead stars NOT to be weird. But we’re only beginning to understand how truly bizarre these objects — called neutron stars — are.

image

Neutron stars are the collapsed remains of massive stars that exploded as supernovae. In each explosion, the outer layers of the star are ejected into their surroundings. At the same time, the core collapses, smooshing more than the mass of our Sun into a sphere about as big as the island of Manhattan.

image

Our Neutron star Interior Composition Explorer (NICER) telescope on the International Space Station is working to discover the nature of neutron stars by studying a specific type, called pulsars. Some recent results from NICER are showing that we might have to update how we think about pulsars!

Here are some things we think we know about neutron stars:

Pulsars are rapidly spinning neutron stars ✔︎

Pulsars get their name because they emit beams of light that we see as flashes. Those beams sweep in and out of our view as the star rotates, like the rays from a lighthouse.

image

Pulsars can spin ludicrously fast. The fastest known pulsar spins 43,000 times every minute. That’s as fast as blender blades! Our Sun is a bit of a slowpoke compared to that — it takes about a month to spin around once.

The beams come from the poles of their strong magnetic fields ✔︎

Pulsars also have magnetic fields, like the Earth and Sun. But like everything else with pulsars, theirs are super-strength. The magnetic field on a typical pulsar is billions to trillions of times stronger than Earth’s!

image

Near the magnetic poles, the pulsar’s powerful magnetic field rips charged particles from its surface. Some of these particles follow the magnetic field. They then return to strike the pulsar, heating the surface and causing some of the sweeping beams we see.

The beams come from two hot spots… ❌❓✔︎ 🤷🏽

Think of the Earth’s magnetic field — there are two poles, the North Pole and the South Pole. That’s standard for a magnetic field.

image

On a pulsar, the spinning magnetic field attracts charged particles to the two poles. That means there should be two hot spots, one at the pulsar’s north magnetic pole and the other at its south magnetic pole.

This is where things start to get weird. Two groups mapped a pulsar, known as J0030, using NICER data. One group found that there were two hot spots, as we might have expected. The other group, though, found that their model worked a little better with three (3!) hot spots. Not two.

… that are circular … ❌❓✔︎ 🤷🏽

The particles that cause the hot spots follow the magnetic field lines to the surface. This means they are concentrated at each of the magnetic poles. We expect the magnetic field to appear nearly the same in any direction when viewed from one of the poles. Such symmetry would produce circular hot spots.

image

In mapping J0030, one group found that one of the hot spots was circular, as expected. But the second spot may be a crescent. The second team found its three spots worked best as ovals.

… and lie directly across from each other on the pulsar ❌❓✔︎ 🤷🏽

Think back to Earth’s magnetic field again. The two poles are on opposite sides of the Earth from each other. When astronomers first modeled pulsar magnetic fields, they made them similar to Earth’s. That is, the magnetic poles would lie at opposite sides of the pulsar.

image

Since the hot spots happen where the magnetic poles cross the surface of the pulsar, we would expect the beams of light to come from opposite sides of the pulsar.

image

But, when those groups mapped J0030, they found another surprising characteristic of the spots. All of the hot spots appear in the southern half of the pulsar, whether there were two or three of them.

image

This also means that the pulsar’s magnetic field is more complicated than our initial models!

J0030 is the first pulsar where we’ve mapped details of the heated regions on its surface. Will others have similarly bizarre-looking hotspots? Will they bring even more surprises? We’ll have to stay tuned to NICER find out!

And check out the video below for more about how this measurement was done.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

... and we’re ‘GO’ for launch! 🚀

NASA Flight Integration Chief and past Mission Control Flight Director, Ginger Kerrick, is here answering your questions during this Tumblr Answer Time. Tune in and join the fun!


Tags
7 years ago

Solar System: Things to Know This Week

What's next for NASA? A quick look at some of the big things coming up:

1. We will add to our existing robotic fleet at the Red Planet with the InSight Mars lander set to study the planet's interior.

image

This terrestrial planet explorer will address one of the most fundamental issues of planetary and solar system science - understanding the processes that shaped the rocky planets of the inner solar system (including Earth) more than four billion years ago.

2. The Mars 2020 rover will look for signs of past microbial life, gather samples for potential future return to Earth.

image

The Mars 2020 mission takes the next step by not only seeking signs of habitable conditions on the Red Planet in the ancient past, but also searching for signs of past microbial life itself. The Mars 2020 rover introduces a drill that can collect core samples of the most promising rocks and soils and set them aside in a "cache" on the surface of Mars.

3. The James Webb Space Telescope will be the premier observatory of the next decade, studying the history of our Universe in infrared.

image

Webb will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own solar system.

4. The Parker Solar Probe will "touch the Sun," traveling closer to the surface than any spacecraft before.

image

This spacecraft, about the size of a small car, will travel directly into the sun's atmosphere about 4 million miles from our star's surface. Parker Solar Probe and its four suites of instruments – studying magnetic and electric fields, energetic particles, and the solar wind – will be protected from the Sun’s enormous heat by a 4.5-inch-thick carbon-composite heat shield.

5. Our OSIRIS-REx spacecraft arrives at the near-Earth asteroid Bennu in August 2018, and will return a sample for study in 2023.

image

This mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth.

6. Launching in 2018, the Transiting Exoplanet Survey Satellite (TESS) will search for planets around 200,000 bright, nearby stars.

image

The Transiting Exoplanet Survey Satellite (TESS) is the next step in the search for planets outside of our solar system (exoplanets), including those that could support life. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits.

7. A mission to Jupiter's ocean-bearing moon Europa is being planned for launch in the 2020s.

image

The mission will place a spacecraft in orbit around Jupiter in order to perform a detailed investigation of Europa -- a world that shows strong evidence for an ocean of liquid water beneath its icy crust and which could host conditions favorable for life.

8. We will launch our first integrated test flight of the Space Launch System rocket and Orion spacecraft, known as Exploration Mission-1.

image

The Space Launch System rocket will launch with Orion atop it. During Exploration Mission-1, Orion will venture thousands of miles beyond the moon during an approximately three week mission.

9. We are looking at what a flexible deep space gateway near the Moon could be.

image

We’ve issued a draft announcement seeking U.S. industry-led studies for an advanced solar electric propulsion (SEP) vehicle capability. The studies will help define required capabilities and reduce risk for the 50 kilowatt-class SEP needed for the agency’s near-term exploration goals.

10. Want to know more? Read the full story.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago
That’s A Wrap! Thank You All So Much For Your Awesome Questions! 

That’s a wrap! Thank you all so much for your awesome questions! 

If you’re looking for other ways to enjoy #EarthDayatHome, check out this feature: https://www.nasa.gov/feature/goddard/2020/earthdayathome-with-nasa/

Don’t forget to follow NASA Earth on Twitter, Facebook and Instagram.

You can follow Sandra Cauffman on Twitter, HERE. 

You can follow Dr. Thomas Zurbuchen “Dr. Z” on Twitter, HERE. 

Happy Earth Day!


Tags
Loading...
End of content
No more pages to load
  • pereninan
    pereninan liked this · 3 years ago
  • mothnem
    mothnem reblogged this · 4 years ago
  • mothnem
    mothnem liked this · 4 years ago
  • starspices
    starspices reblogged this · 4 years ago
  • starspices
    starspices liked this · 4 years ago
  • jfpec-blog
    jfpec-blog liked this · 4 years ago
  • geograficidades
    geograficidades liked this · 4 years ago
  • thekingsjourney
    thekingsjourney liked this · 5 years ago
  • vicmac-love
    vicmac-love liked this · 5 years ago
  • bennett-media-is
    bennett-media-is liked this · 5 years ago
  • blaqbatman
    blaqbatman liked this · 5 years ago
  • mihail1311
    mihail1311 liked this · 5 years ago
  • jyuxgo
    jyuxgo liked this · 5 years ago
  • ihannahhumphreysblr-blog
    ihannahhumphreysblr-blog reblogged this · 5 years ago
  • fossyatra
    fossyatra liked this · 5 years ago
  • forsurfsake
    forsurfsake liked this · 6 years ago
  • diabaliful
    diabaliful reblogged this · 6 years ago
  • higher-than-aegis-7
    higher-than-aegis-7 liked this · 6 years ago
  • ihannahhumphreysblr-blog
    ihannahhumphreysblr-blog reblogged this · 6 years ago
  • ihannahhumphreysblr-blog
    ihannahhumphreysblr-blog liked this · 6 years ago
  • spencerjamesanderson
    spencerjamesanderson reblogged this · 6 years ago
  • lensel
    lensel liked this · 6 years ago
  • rosaanderson
    rosaanderson liked this · 6 years ago
  • caerangel
    caerangel liked this · 6 years ago
  • patricia--smith
    patricia--smith liked this · 6 years ago
  • sex-ass-secrets
    sex-ass-secrets liked this · 6 years ago
  • royal-grim-p
    royal-grim-p liked this · 6 years ago
  • martel-thread-spinner
    martel-thread-spinner liked this · 6 years ago
  • lepetiterik
    lepetiterik reblogged this · 6 years ago
  • moment-japan
    moment-japan liked this · 7 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags