Your personal Tumblr journey starts here
On Earth, a double shot mocha latte with soymilk, low-fat whip and a caramel drizzle is just about as complicated as a cup of coffee gets. Aboard the International Space Station, however, even just a simple cup of black coffee presents obstacles for crew members.
Understanding how fluids behave in microgravity is crucial to bringing the joys of the coffee bean to the orbiting laboratory. Astronaut Don Pettit crafted a DIY space cup using a folded piece of overhead transparency film. Surface tension keeps the scalding liquid inside the cup, and the shape wicks the liquid up the sides of the device into the drinker’s mouth.
The Capillary Beverage investigation explored the process of drinking from specially designed containers that use fluid dynamics to mimic the effect of gravity. While fun, this study could provide information useful to engineers who design fuel tanks for commercial satellites!
The capillary beverage cup allows astronauts to drink much like they would on Earth. Rather than drinking from a shiny bag and straw, the cup allows the crew member to enjoy the aroma of the beverage they’re consuming.
On Earth, liquid is held in the cup by gravity. In microgravity, surface tension keeps the liquid stable in the container.
The ISSpresso machine brought the comforts of freshly-brewed coffees and teas to the space station. European astronaut Samantha Cristoforetti enjoyed the first cup of espresso brewed using the ISSpresso machine during Expedition 43.
Now, during Expedition 53, European astronaut Paolo Nespoli enjoys the same comforts.
Astronaut Kjell Lindgren celebrated National Coffee Day during Expedition 45 by brewing the first cup of hand brewed coffee in space.
We have a latte going on over on our Snapchat account, so give us a follow to stay up to date! Also be sure to follow @ISS_Research on Twitter for your daily dose of space station science.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
It’s a bird! It’s a plane! It’s a…dragon? A SpaceX Dragon spacecraft is set to launch into orbit atop the Falcon 9 rocket toward the International Space Station for its 12th commercial resupply (CRS-12) mission August 14 from our Kennedy Space Center in Florida.
It won’t breathe fire, but it will carry science that studies cosmic rays, protein crystal growth, bioengineered lung tissue.
I scream, you scream, we all scream for ISS-CREAM!
Cosmic Rays, Energetics and Mass, that is! Cosmic rays reach Earth from far outside the solar system with energies well beyond what man-made accelerators can achieve. The Cosmic Ray Energetics and Mass (ISS-CREAM) instrument measures the charges of cosmic rays ranging from hydrogen to iron nuclei. Cosmic rays are pieces of atoms that move through space at nearly the speed of light
The data collected from the instrument will help address fundamental science questions such as:
Do supernovae supply the bulk of cosmic rays?
What is the history of cosmic rays in the galaxy?
Can the energy spectra of cosmic rays result from a single mechanism?
ISS-CREAM’s three-year mission will help the scientific community to build a stronger understanding of the fundamental structure of the universe.
Space-grown crystals aid in understanding of Parkinson’s disease
The microgravity environment of the space station allows protein crystals to grow larger and in more perfect shapes than earth-grown crystals, allowing them to be better analyzed on Earth.
Developed by the Michael J. Fox Foundation, Anatrace and Com-Pac International, the Crystallization of Leucine-rich repeat kinase 2 (LRRK2) under Microgravity Conditions (CASIS PCG 7) investigation will utilize the orbiting laboratory’s microgravity environment to grow larger versions of this important protein, implicated in Parkinson’s disease.
Defining the exact shape and morphology of LRRK2 would help scientists to better understand the pathology of Parkinson’s and could aid in the development of therapies against this target.
Mice Help Us Keep an Eye on Long-term Health Impacts of Spaceflight
Our eyes have a whole network of blood vessels, like the ones in the image below, in the retina—the back part of the eye that transforms light into information for your brain. We are sending mice to the space station (RR-9) to study how the fluids that move through these vessels shift their flow in microgravity, which can lead to impaired vision in astronauts.
By looking at how spaceflight affects not only the eyes, but other parts of the body such as joints, like hips and knees, in mice over a short period of time, we can develop countermeasures to protect astronauts over longer periods of space exploration, and help humans with visual impairments or arthritis on Earth.
Telescope-hosting nanosatellite tests new concept
The Kestrel Eye (NanoRacks-KE IIM) investigation is a microsatellite carrying an optical imaging system payload, including an off-the-shelf telescope. This investigation validates the concept of using microsatellites in low-Earth orbit to support critical operations, such as providing lower-cost Earth imagery in time-sensitive situations, such as tracking severe weather and detecting natural disasters.
Sponsored by the ISS National Laboratory, the overall mission goal for this investigation is to demonstrate that small satellites are viable platforms for providing critical path support to operations and hosting advanced payloads.
Growth of lung tissue in space could provide information about diseases
The Effect of Microgravity on Stem Cell Mediated Recellularization (Lung Tissue) uses the microgravity environment of space to test strategies for growing new lung tissue. The cells are grown in a specialized framework that supplies them with critical growth factors so that scientists can observe how gravity affects growth and specialization as cells become new lung tissue.
The goal of this investigation is to produce bioengineered human lung tissue that can be used as a predictive model of human responses allowing for the study of lung development, lung physiology or disease pathology.
These crazy-cool investigations and others launching aboard the next SpaceX #Dragon cargo spacecraft on August 14. They will join many other investigations currently happening aboard the space station. Follow @ISS_Research on Twitter for more information about the science happening on 250 miles above Earth on the space station.
Watch the launch live HERE starting at 12:20 p.m. EDT on Monday, Aug. 14!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Space Station astronaut Kate Rubins was the first person to sequence DNA in microgravity.
Since 2011, when we engaged the Center for the Advancement of Science in Space (CASIS) to manage the International Space Station (ISS) National Lab, CASIS has partnered with academic researchers, other government organizations, startups and major commercial companies to take advantage of the unique microgravity lab. Today, more than 50 percent of CASIS’ experiments on the station represent commercial research.
Here’s a look at five ways the ISS National Lab is enabling new opportunities for commercial research in space.
One of the main areas of focus for us in the early origins of the space station program was life sciences, and it is still a major priority today. Studying the effects of microgravity on astronauts provides insight into human physiology, and how it evolves or erodes in space. CASIS took this knowledge and began robust outreach to the pharmaceutical community, which could now take advantage of the microgravity environment on the ISS National Lab to develop and enhance therapies for patients on Earth. Companies such as Merck, Eli Lilly & Company, and Novartis have sent several experiments to the station, including investigations aimed at studying diseases such as osteoporosis, and examining ways to enhance drug tablets for increased potency to help patients on Earth. These companies are trailblazers for many other life science companies that are looking at how the ISS National Lab can advance their research efforts.
Over the past few years, CASIS and the ISS National Lab also have seen a major push toward material and physical sciences research by companies interested in enhancing their products for consumers. Examples range from Proctor and Gamble’s investigation aimed at increasing the longevity of daily household products, to Milliken’s flame-retardant textile investigation to improve protective clothing for individuals in harm’s way, and companies looking to enhance materials for household appliances. Additionally, CASIS has been working with a variety of companies to improve remote sensing capabilities in order to better monitor our oceans, predict harmful algal blooms, and ultimately, to better understand our planet from a vantage point roughly 250 miles above Earth.
CASIS has funded a variety of investigations with small startup companies (in particular through seed funding and grant funding from partnerships and funded solicitations) to leverage the ISS National Lab for both research and test-validation model experiments. CASIS and The Boeing Company recently partnered with MassChallenge, the largest startup accelerator in the world, to fund three startup companies to conduct microgravity research.
The ISS National Lab helps validate low-Earth orbit business models. Companies such as NanoRacks, Space Tango, Made In Space, Techshot, and Controlled Dynamics either have been funded by CASIS or have sent instruments to the ISS National Lab that the research community can use, and that open new channels for inquiry. This has allowed the companies that operate these facilities to validate their business models, while also building for the future beyond station.
We have been a key partner in working with CASIS to demonstrate to American businesses the value of conducting research in space. Through outreach events such as our Destination Station, where representatives from the International Space Station Program Science Office and CASIS select cities with several major companies and meet with the companies to discuss how they could benefit from space-based research. Over the past few years, this outreach has proven to be a terrific example of building awareness on the benefits of microgravity research.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Do you remember the last time you stayed awake all night? Maybe you had a major exam, or flew across the ocean. How did you feel the following day? The time at which you would normally feel sleepy was probably different from usual. Your eyes “told” you that it was day, time for work or school. Your brain or muscles disagreed. They “told” you that it was middle of the night, and that you should sleep.
Changing when you sleep, or being in areas where daytime and nighttime are “off-schedule”, affects your circadian rhythm. The circadian rhythm exists in humans as a roughly 24-hour clock that prompts us to sleep or wake.
The European Space Agency’s experiment, Circadian Rhythms, investigates the role of this “biological clock” and its changes during spaceflight. Researchers hypothesize that a non-24-hour cycle of light and dark affects crew members’ circadian rhythms. Understanding the effects of life in space on astronauts’ circadian rhythms may help improve performance and health for future crew members.
Researchers collect data on astronaut’s circadian rhythms by using a “double-sensor,” which measures the temperature at the core of the body. The crew attaches one sensor to their head, and the other to their chest.
Based on results from this research, future crew members could more accurately adjust their sleep, work and physical activity scheduled to accommodate natural circadian cycles, which could improve productivity and health.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Each month, we highlight a different research topic on the International Space Station. In August, our focus is biological research. Learning how spaceflight affects living organisms will help us understand potential health risks related to humans on long duration missions, including our journey to Mars.
Cells, microbes, animals and plants are affected by microgravity, and studying the processes involved in adaptation to spaceflight increases our fundamental understanding of biological processes on Earth. Results on Earth from biological research in space include the development of new medications, improved agriculture, advancements in tissue engineering and regeneration, and more.
Take a look at a few of the biological research experiments performed on space station:
Biomolecule Sequencer
Living organisms contain DNA, and sequencing DNA is a powerful way to understand how they respond to changing environments. The Biomolecule Sequencer experiment hopes to demonstrate (for the first time) that DNA sequencing is feasible in an orbiting spacecraft. Why? A space-based DNA sequencer could identify microbes, diagnose diseases and understand crew member health, and potentially help detect DNA- based life elsewhere in the solar system.
Ant-stronauts
Yes, ant-stronauts…as in ants in space. These types of studies provide insights into how ants answer collective search problems. Watching how the colony adapts as a unit in the quest for resources in extreme environments, like space, provides data that can be used to build algorithms with varied applications. Understanding how ants search in different conditions could have applications for robotics.
TAGES
The TAGES experiment (Transgenic Arabidopsis Gene Expression System) looks to see how microgravity impacts the growth of plant roots. Fluorescent markers placed on the plant’s genes allow scientists to study root development of Arabidopsis (a cress plant) grown on the space station. Evidence shows that directional light in microgravity skews root growth to the right, rather than straight down from the light source. Root growth patters on station mimic that of plants grown at at 45% degree angle on Earth. Space flight appears to slow the rate of the plant’s early growth as well.
Heart Cells
Spaceflight can cause a suite of negative health effects, which become more problematic as crew members stay in orbit for long periods of time. Effects of Microgravity on Stem Cell-Derived Cardiomycytes (Heart Cells) studies the human heart, specifically how heart muscle tissue contracts, grows and changes in microgravity. Understanding how heart muscle cells change in space improves efforts for studying disease, screening drugs and conducting cell replacement therapy for future space missions.
Medaka Fish
Chew on these results…Jaw bones of Japanese Medaka fish in microgravity show decreased mineral density and increased volume of osteoclasts, cells that break down bone tissue. Results from this study improve our understanding of the mechanisms behind bone density and organ tissue changes in space.
These experiments, and many others, emphasize the importance of biological research on the space station. Understanding the potential health effects for crew members in microgravity will help us develop preventatives and countermeasures.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Astronauts onboard the International Space Station spend most of their time doing science, exercising and maintaining the station. But they still have time to shoot hoops and toss around a football.
From chess to soccer, there’s a zero-gravity spin to everything.
1. Baseball
Baseball: America’s favorite pastime. JAXA astronaut, Satoshi Furukawa shows us how microgravity makes it possible to be a one-man team. It would be a lot harder to hit home runs if the players could jump that high to catch the ball.
2. Chess
Yes, it’s a sport, and one time NASA astronaut Greg Chamitoff (right) played Earth on a Velcro chess board. An elementary school chess team would pick moves that everyone could vote for online. The winning move would be Earth’s play, and then Chamitoff would respond. About every two days, a move would be made. But who won the historic Earth vs. Space match? Earth! Chamitoff resigned after Earth turned its pawn into a queen, but it was game well played.
3. Soccer
NASA astronaut Steve Swanson put a new spin on soccer by juggling the ball upside down. However, he might not have considered himself upside down. On the space station, up and down are relative.
4. Gymnastics
NASA astronauts usually sign off their videos with a zero-gravity somersault (either forwards or backwards). But astronauts are also proficient in handstands, flips and twists. The predecessor to the International Space Station, the Skylab, had the best space for the moves. The current space station is a bit tight in comparison.
5. Basketball
Objects that aren’t heavy don’t move very well on the space station. They kind of just float. It’s like Earth, but exaggerated. For example, on Earth a beach ball wouldn’t go as far as a basketball. The same is true in space, which is why playing with a basketball in space is more fun than playing with a beach ball.
6. Golf
People talk about hitting golf balls off skyscrapers, but what about off the International Space Station? While golf isn’t a normal occurrence on the station, it’s been there. One golf company even sent an experiment to the station to find out how to make better golf clubs.
7. Football
Zero gravity doesn’t make everything easier. Astronauts need to relearn how to throw things because their brains need to relearn how to interpret sensory information. A bowling ball on the space station no longer feels as heavy as a bowling ball on Earth. When astronauts first throw things on the space station, everything keeps going too high. That would put a wrench in your spiral for a couple of months. But once you adjust, the perfect spiral will just keep spiraling!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Floating around in zero gravity may sound like a blast, but it can actually present a lot of challenges to things we do everyday here on Earth with little to no thought. Here are a few ways that astronauts on the International Space Station complete normal tasks in orbit:
1) Washing Hair
You can’t just have a shower on the space station because the water would come out of the faucet and float all over the place. In this video, NASA Astronaut Karen Nyberg demonstrates how she uses a bag of water, no rinse shampoo, a towel and her comb to wash her hair.
2) Drinking Coffee
Believe it or not, there are special cups used on the space station to drink coffee from the new ISSpresso machine. I mean, you wouldn’t want hot coffee floating around in the air…would you? Previously, astronauts drank coffee from plastic bags, but let’s face it, that sounds pretty unenjoyable. Now, there are zero Gravity coffee cups, and an Italian espresso machine aboard the International Space Station! These cups were created with the help of capillary flow experiments conducted in space.
3) Sleeping
There’s nothing like crawling into bed after a long day, but astronauts can’t exactly do that while they’re in microgravity. Instead of beds, crew members use sleeping bags attached to the walls of their small crew cabins. They are able to zipper themselves in so that they don’t float around while they’re asleep. This may sound uncomfortable, but some astronauts, like Scott Kelly, say that they sleep better in space than they do on Earth!
4) Exercising
Exercising in general is an important part of a daily routine. In space, it even helps prevent the effects of bone and muscle loss associated with microgravity. Typically, astronauts exercise two hours per day, but the equipment they use is different than here on Earth. For example, if an astronaut wants to run on the treadmill, they have to wear a harness and bungee cords so that they don’t float away.