Our Orion space capsule is now on Tumblr! Check it out, follow, and share! http://nasaorion.tumblr.com/
Engineers are preparing to test the parachute system for NASA’s Orion spacecraft at the U.S. Army Yuma Proving Ground in Yuma, Arizona. During the test, planned for Wednesday, Aug. 26, a C-17 aircraft will carry a representative Orion capsule to 35,000 feet in altitude and then drop it from its cargo bay. Engineers will test a scenario in which one of Orion’s two drogue parachutes, used to stabilize it in the air, does not deploy, and one of its three main parachutes, used to slow the capsule during the final stage of descent, also does not deploy. The risky test will provide data engineers will use as they gear up to qualify Orion’s parachutes for missions with astronauts. On Aug. 24, a C-17 was loaded with the test version of Orion, which has a similar mass and interfaces with the parachutes as the Orion being developed for deep space missions but is shorter on top to fit inside the aircraft.
Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.
To read more entires from this series, visit our Space Blogs on Tumblr.
Wow, time has gone by extremely fast. The mid-deployment phase will be short-lived for me this time, as the new crew (Drew Feustel, Ricky Arnold, and Oleg Artemyev) will arrive on March 23rd, and then we have at least one spacewalk on the 29th, followed by a planned SpaceX Dragon cargo craft arrival on the 4th of April. It’s a little strange being up here with only two other crewmates. We are still very busy, but the overall work effort is half of what it was just a week ago. My crewmate, Nemo (Norishige Kanai), and I are trying to use the time to prepare for the upcoming very busy schedule, and we have been having some great success getting a ton of details taken care of.
Yesterday I had a funny event, though. I was controlling a robot named “Justin” who was located in Munich. The research and demonstration events were so interesting and fun that I offered them my lunch hour to do an additional protocol and have a longer debrief session. The ground team responded happily and accepted the offer – any extra time with crew onboard the International Space Station (ISS) is valuable to our programs. Halfway through the event, the team needed a few minutes to shut down and restart the robot, and I surmised that since I was skipping my break, this would be a good time to use the toilet. And I did, use the toilet. And literally 3 minutes later I returned, waited another 2 minutes for the robot systems to connect, and we began another great session controlling Justin from ISS with no loss to science.
Later that same day, I was approached by the ground team in Houston (not the test team I was working with in Munich) and queried if something was wrong, and why did I have to take a toilet break while we were executing valuable science? They were concerned that I might have a medical issue, as taking a break in the middle of some very valuable science is not normal for us to do while on ISS. It’s nice to know that we have literally hundreds of highly-trained professionals looking out for us.
Find more ‘Captain’s Log’ entries HERE.
Follow NASA astronaut Scott Tingle on Instagram and Twitter.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The solar system is huge, so let us break it down for you. Here are the top 10 things you should know this week:
1. Big “Wows” from Small Worlds
Our robotic explorers continue to send truly spectacular pictures and data from deep space. Our New Horizons mission to Pluto and Dawn mission to dwarf planet Ceres are revealing never-before-seen landscapes on a regular basis. If you missed it, check out the most recent images from Pluto and Ceres.
2. Deep Waters
Saturn’s moon Enceladus has intrigued many with its geysers that erupt continuously in spectacular plumes. Our Cassini spacecraft has provided scientists with data that is allowing them to determine the source of those plumes. New evidence points to a global ocean of liquid water hidden beneath the moon’s icy shell!
3. A Super Eclipse
This weekend a “supermoon” lunar eclipse will be visible in the night sky. Supermoons occur when the moon is at its closest point to the Earth in its orbit, making it appear slightly larger. This one is extra special because it will also undergo a lunar eclipse! Beginning at 9:07 p.m. EDT on Sept. 27, make sure you get outside and look up! For more information visit: What’s Up for September.
4. All Things Equal
Sept. 23 marks the autumnal equinox, which is the official beginning of the Fall season in the northern hemisphere. The word “equinox” comes from the Latin for “equal night,” meaning day and night will be of equal length on that day.
5. Explore Goddard Space Flight Center
This weekend, Goddard Space Flight Center will be offering tours, presentations and other activities for children and adults. The theme this year is “Celebrating Hubble and the Spirit of Exploration”. This event is free and open to the public, and will be held on Saturday, Sept. 26 from 11 a.m. to 5 p.m. Join in HERE.
6. Titan’s Haze
This week, our Cassini spacecraft will observe Saturn’s hazy, planet-sized moon Titan. Scientists will use these images to look for clouds across Titan’s exotic regions. Explore HERE.
7. New Horizons Team on Pluto
Ever wondered what it was like to be part of the team that explored Pluto for the first time? If you’ll be near the Smithsonian National Air and Space Museum in Washington, DC on Sept. 22 you’re invited to a free lecture and Q&A to find out! Get the details HERE.
8. Martian Weather Report
Every day, our Mars Reconnaissance Orbiter delivers a global view of the planet and its atmospheric activity. The most recent report included lots of water-ice clouds in the afternoon, with dust storms developing along the south polar region. Get the latest HERE.
9. Imagine: The View from Pluto
If you’ve ever wondered what it would look like to stand on the icy terrain of Pluto, you’re not alone. Artist Karl Kofoed created a series of digital paintings that render scenes from the dwarf planet based on data from the New Horizons July 14 Pluto flyby. View them HERE.
10. What’s the Big Idea?
We’re giving university students a chance to help us come up with solutions for our journey to Mars. This Breakthrough, Innovative, and Game-changing (BIG) Idea Challenge will look for creative solutions for generating lift using inflatable spacecraft heat shields on Mars. Enter your BIG Idea.
Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com
On Dec. 14, 2015, we announced that astronaut applications were open on USAJOBS. The window for applications closed on Feb. 18. We’re happy to announce that we have received more than 18,300 applications from excited individuals from around the country, all hoping to join the 2017 astronaut class. This surpasses the more than 6,100 received in 2012 for the most recent astronaut class, and the previous record - 8,000 applicants in 1978.
Since the applications closed on Feb. 18, many people are curious to know…what’s next? Let us help you navigate the selection process:
Now that we have received all the applications, we will review them to determine the “Highly Qualified” applicants. This process will take place through summer 2016.
The diversity of experiences is what separates the highly qualified from qualified. Experience that demonstrates good leadership, fellowship and decision making are beneficial.
Between fall 2016 and spring 2017, interviewees will be brought to Johnson Space Center for evaluation. This process will help us determine the finalists, which takes place in spring 2017.
Finally, in summer 2017, the Astronaut Candidate Class of 2017 is announced! These candidates will report to Johnson Space Center starting in August 2017.
To view the full astronaut candidate selection process timeline, visit: http://astronauts.nasa.gov/content/timeline.htm
*Note that the high volume of applications received, dates in the timeline could be adjusted.
We are continuing human spaceflight on the International Space Station, which has a continuous crew of six people on board. The Boeing and SpaceX commercial crew spacecraft that will travel to the station both have seats for four astronauts (the current Soyuz spacecraft, on which astronauts travel, only has three). This will add a seventh astronaut to the orbiting laboratory, and enable us to do more science!
The exact number will be determined by mission requirements, but current analysis shows about 8 - 14 astronauts will be needed. The final number will depend on updates to program plans, budgets, etc.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
How long did it take to build the rover??
The adventures awaiting astronauts on future long-duration missions have technologists researching sustainable ways to live away from Earth. We’re using what we know from almost 20 years of a continuous human presence on the International Space Station and looking at new technologies to prepare for missions to the Moon and Mars.
Biotechnology – technology that uses living organisms to make products that provide a new use – is key to this research.
With biotechnology, we’re developing new ways to manufacture medicines, build habitats and more in space. Here are some ways biotechnology is advancing spaceflight and how the same research is reaping benefits on Earth.
Planning ways to supply food for a multi-year mission on the Moon or Mars may require making food and nutrients in space. Our scientists are testing an early version of a potential solution: get microorganisms to produce vital nutrients like those usually found in vegetables. Then, whenever they’re needed, astronauts can drink them down.
The microorganisms are genetically engineered to rapidly produce controlled quantities of essential nutrients. Because the microorganisms and their food source both have a long shelf-life at room temperature and only need water to be activated, the system provides a simple, practical way to produce essential nutrients on-demand. The same kind of system designed for space could also help provide nutrition for people in remote areas of our planet.
Our researchers are evaluating the first batches of BioNutrient samples that came back to Earth after an experimental run on the International Space Station.
Because space travel takes a toll on the human body, we’re also researching how biotechnology can be used to advance the field of regenerative medicine.
Related cells that are joined together are collectively referred to as tissue, and these cells work together as organs to accomplish specific functions in the human body. Blood vessels around the cells vascularize, providing nutrients to the tissue to keep it healthy.
Our Vascular Tissue Challenge offers a $500,000 prize to be divided among the first three teams that successfully create thick, metabolically-functional human vascularized organ tissue in a controlled laboratory environment. The vascularized, thick-tissue models resulting from this challenge will function as organ analogs, or models, that can be used to study deep space environmental effects, such as radiation, and to develop strategies to minimize the damage to healthy cells.
Humans have relied on plants’ medicinal qualities for thousands of years for everything from alleviating minor ailments to curing serious diseases. Now, researchers are trying to simplify the process of turning plants into medicine (i.e. how to make it compact and portable). If successful, the cost of biomanufacturing pharmaceuticals on Earth could go down, and plants could produce medicines in space.
Creating medicine on demand isn’t something we typically do, so we’re turning to experts in the field for help. Researchers at the University of California, Davis are transforming plants into mini-medicine factories for future Mars missions. They’re genetically altering an ordinary type of lettuce so that it produces a protein called parathyroid hormone. This hormone is an approved drug for treating osteoporosis, a common condition where bones become weak and brittle.
This type of research is important to long duration spaceflight. When astronauts land on Mars, they will have spent more than half a year in zero gravity on the flight there, and they’ll need to be strong and ready to explore. Having the technologies needed to treat that possibility, and other unanticipated health effects of long duration spaceflight, is crucial.
Vitamins aren’t the only thing astronauts could be growing on Mars; we’re exploring technologies that could grow structures out of fungi.
An early-stage research project underway at our Ames Research Center is prototyping technologies that could "grow" habitats on the Moon, Mars and beyond out of life – specifically, fungi and the unseen underground threads that make up the main part of the fungus. These tiny threads build complex structures with extreme precision, networking out into larger structures like mushrooms. With the right conditions, they can be coaxed into making new structures – ranging from a material similar to leather to the building blocks for a planetary home.
The myco-architecture project envisions a future where astronauts can construct a habitat out of the lightweight fungi material. Upon arrival, by unfolding a basic structure made up of dormant fungi and simply adding water, the fungi would grow around that framework into a fully functional human habitat – all while being safely contained to avoid contaminating the external environment.
Once astronauts arrive on the surface of the Moon or a more distant planet, they’ll have to carefully manage garbage. This waste includes some stuff that gets flushed on Earth.
Today, we’re already using a recycling system on the space station to turn urine into drinking water. Poop on the other hand is contained then disposed of on spacecraft returning to Earth. That won’t be possible on more distant journeys, so, we’re turning to biomanufacturing for a practical solution.
Biology can serve as an effective recycling factory. Microorganisms such as yeast and algae feed on all kinds of things classified as “mission waste.” Processing their preferred form of nourishment generates products that can serve as raw materials used to make essential supplies like nutrients, medicines, plastic and fuel.
Biotechnology is preparing us for longer space missions to the Moon and then Mars – farther from Earth than humans have ever traveled before. As we prepare for those exciting missions, we’re also conducting research on the space station for the primary benefit of everyone on Earth.
January is National Biotechnology Month. To learn more about some of the ways NASA is using biotechnology to solve challenges in space and improve life on Earth, visit this link.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Hubble Space Telescope has been exploring the wonders of the universe for nearly 30 years, answering some of our deepest cosmic questions. Some of Hubble’s most exciting observations have been about black holes — places in space where gravity pulls so much that not even light can escape. As if black holes weren’t wild enough already, Hubble has helped us make discoveries that show us they’re even weirder than we thought!
First, these things are all over the place. If you look at any random galaxy in the universe, chances are it has a giant black hole lurking in its heart. And when we say giant, we’re talking as massive as millions or even billions of stars!
Hubble found that the mass of these black holes, hidden away in galactic cores, is linked to the mass of the host galaxy — the bigger the galaxy, the bigger the black hole. Scientists think this may mean that the black holes grew along with their galaxies, eating up some of the stuff nearby.
A globular cluster is a ball of old, very similar stars that are bound together by gravity. They’re fairly common — our galaxy has at least 150 of them — but Hubble has found some black sheep in the herd. Some of these clusters are way more massive than usual, have a wide variety of stars and may even harbor a black hole at the center. This suggests that at least some of the globular clusters in our galaxy may have once been dwarf galaxies that we absorbed.
While black holes themselves are invisible, sometimes they shoot out huge jets of energy as gas and dust fall into them. Since stars form from gas and dust, the jets affect star birth within the galaxy.
Sometimes they get rid of the fuel needed to keep making new stars, but Hubble saw that it can also keep star formation going at a slow and steady rate.
If you’ve ever spent some time stargazing, you know that staring up into a seemingly peaceful sea of stars can be very calming. But the truth is, it’s a hectic place out there in the cosmos! Entire galaxies — these colossal collections of gas, dust, and billions of stars with their planets — can merge together to form one supergalaxy. You might remember that most galaxies have a supermassive black hole at the center, so what happens to them when galaxies collide?
In 2018, Hubble unveiled the best view yet of close pairs of giant black holes in the act of merging together to form mega black holes!
What better way to spice up black holes than by throwing gravitational waves into the mix! Gravitational waves are ripples in space-time that can be created when two massive objects orbit each other.
In 2017, Hubble found a rogue black hole that is flying away from the center of its galaxy at over 1,300 miles per second (about 90 times faster than our Sun is traveling through the Milky Way). What booted the black hole out of the galaxy’s core? Gravitational waves! Scientists think that this is a case where two galaxies are in the late stages of merging together, which means their central black holes are probably merging too in a super chaotic process.
Want to learn about more of the highlights of Hubble’s exploration? Check out this page! https://www.nasa.gov/content/goddard/2017/highlights-of-hubble-s-exploration-of-the-universe
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Is your favorite Star Wars planet a desert world or an ice planet or a jungle moon?
It’s possible that your favorite planet exists right here in our galaxy. Astronomers have found over 3,400 planets around other stars, called “exoplanets.”
Some of these alien worlds could be very similar to arid Tatooine, watery Scarif and even frozen Hoth, according to NASA scientists.
Find out if your planet exists in a galaxy far, far away or all around you.
Were you going to the Tosche station to pick up some power converters? Hold on a minute and learn about Kepler-16b, 200 light-years from Earth. It’s the first honest-to-goodness planet ever found where you could watch two suns set like Luke. George Lucas himself even blessed its nickname ‘Tatooine.’ It’s not a perfect comparison: Kepler-16b is a cold gas giant roughly the size of Saturn. But don’t worry, kid.
The best part is that Tatooine aka Kepler-16b was just the first. It has family. A LOT of family. Half the stars in our galaxy are pairs, rather than single stars like our sun. If every star has at least one planet, that’s billions of worlds with two suns. Billions! Maybe waiting for life to be found on them.
If you’re like Finn and want to know why everyone wants to go back to Jakku desert planets, get this: Star Wars may be reflecting the real universe. Desert worlds are not only a very real possibility, but we think they are probably very common. They can be hot, like the fictional Tatooine and Jakku, or cold, like Jedha in “Rogue One” or our real planet Mars.
Perhaps it’s not so weird that both Luke and Rey grew up on planets that look suspiciously like each other. If you’re scouring the universe for a place to settle, you have a good chance of finding a desert planet.
There is a Hoth in our galaxy! Though not the same Hoth from “The Empire Strikes Back” (no invading Imperials, for one). The icy super-Earth reminded scientists so much of the frozen Rebel base they nicknamed it “Hoth.” The planet’s real name is OGLE 2005-BLG-390L.
Our galaxy’s Hoth is too cold to support life as we know it. But life may evolve under the ice of a different world, or a moon in our solar system.
We’re currently designing a mission to look for life under the crust of Jupiter’s icy moon Europa. We’re pretty sure ity won’t look like tauntauns, if it exists.
Both the forest moon of Endor and Takodana, the home of Han Solo’s favorite cantina in “Force Awakens,” are green like our home planet. But astrobiologists think that plant life on other worlds could be red, black, or even rainbow-colored!
In August 2016, astronomers from the European Southern Observatory announced the discovery of Proxima Centauri b, a planet only four light-years away from Earth, which orbits a tiny red star.
The light from a red star, also known as an M dwarf, is dim and mostly in the infrared spectrum (as opposed to the visible spectrum we see with our sun). And that could mean plants with wildly different colors than what we’re used to seeing on Earth. Or, animals that see in the near-infrared.
The next few years will see the launch of a new generation of spacecraft to search for planets around other stars. TESS and the James Webb Telescope will go into space in 2018, and WFIRST in the mid-2020s. That’s one step closer to finding life.
Discover more about exoplanets here: https://exoplanets.nasa.gov/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Two years after selecting the next generation of American spacecraft and rockets that will launch astronauts to the International Space Station, engineers and spaceflight specialists across our Commercial Crew Program, Boeing and SpaceX are putting in place the elements required for successful missions.
1. The Goal
The goal of our Commercial Crew Program is to return human spaceflight launches to U.S. soil, providing reliable and cost-effective access to low-Earth orbit on systems that meet our safety requirements. To accomplish this goal, we are taking a unique approach by asking private companies, Boeing and SpaceX, to develop human spaceflight systems to take over the task of flying astronauts to station.
2. Multi-User Spaceport
Boeing and SpaceX, like other commercial aerospace companies, are capitalizing on the unique experience and infrastructure along the Space Coast at our Kennedy Space Center and Cape Canaveral Air Force Station. Kennedy has transitioned from a government-only launch complex to a premier multi-user spaceport. In the coming years, the number of launch providers along the Space Coast is expected to more than double.
3. Innovation
Our expertise has been joined with industry innovations to produce the most advanced spacecraft to ever carry humans into orbit. Each company is developing its own unique systems to meet our safety requirements, and once certified by us, the providers will begin taking astronauts to the space station.
4. Research
With two new spacecraft that can carry up to four astronauts to the International Space Station with each of our missions, the number of resident crew will increase and will double the amount of time dedicated to research. That means new technologies and advances to improve life here on Earth and a better understanding of what it will take for long duration, deep space missions, including to Mars.
5. Crew Training
Astronauts Bob Behnken, Eric Boe, Doug Hurley and Suni Williams have been selected to train to fly flight tests aboard the Boeing CST-100 Starliner and SpaceX Crew Dragon.
The veteran crew have sent time in both spacecraft evaluating and training on their systems. Both providers are responsible for developing every aspect of the mission, from the spacesuits and training, to the rocket and spacecraft.
6. Launch Abort System
Boeing and SpaceX will equip their spacecraft with launch abort systems to get astronauts out of danger . . . FAST!
7. Expedited Delivery
Time-sensitive, critical experiments performed in orbit will be returned to Earth aboard commercial crew spacecraft, and returned to the scientists on Earth in hours, instead of days – before vital results are lost. That means better life and physical science research results, like VEGGIE, heart cells, and protein crystals.
8. Lifeboat
The spacecraft will offer safe and versatile lifeboats for the crew of the space station, whether an emergency on-orbit causes the crew to shelter for a brief time in safety, or leave the orbiting laboratory altogether. Learn more HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Questions coming up from….
@monicagellar: Is it open for international students?
@Anonymous: How should high school students get involved?
@Anonymous: Can I apply if my subjects are physics and chemistry in college
@unsuspicious-nobody: Do you have plans to repeat this/do something similar for students in the future?
Through November 3, catch glimpses of a gibbous Venus, a crescent moon and ringed Saturn in the southwest sky just after sunset.
Wake up before sunrise every day this month to see Jupiter just above Spica, the brightest star in the constellation Virgo, shining in the east-southeast sky.
Just before dawn on November 23-24, see the waning crescent moon just above Jupiter.
November is a great time to see the constellation Ceres as it glides past Cetus, the Whale and you will be able to see the dwarf planet move relative to the background stars, but you’ll need a telescope for this one.
This month, just like last month, there will be three meteor showers--the Northern Tuarids, the Leonids and the November Orionids.
Watch the full November “What’s Up" video for more:
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts