Record Number Of Americans Apply To #BeAnAstronaut

Record Number of Americans Apply to #BeAnAstronaut

image

On Dec. 14, 2015, we announced that astronaut applications were open on USAJOBS. The window for applications closed on Feb. 18. We’re happy to announce that we have received more than 18,300 applications from excited individuals from around the country, all hoping to join the 2017 astronaut class. This surpasses the more than 6,100 received in 2012 for the most recent astronaut class, and the previous record - 8,000 applicants in 1978. 

image

So you applied to be an astronaut...now what?

Since the applications closed on Feb. 18, many people are curious to know…what’s next? Let us help you navigate the selection process:

image

Now that we have received all the applications, we will review them to determine the “Highly Qualified” applicants. This process will take place through summer 2016.

What is a “Highly Qualified” Applicant?

The diversity of experiences is what separates the highly qualified from qualified. Experience that demonstrates good leadership, fellowship and decision making are beneficial.

Between fall 2016 and spring 2017, interviewees will be brought to Johnson Space Center for evaluation. This process will help us determine the finalists, which takes place in spring 2017. 

Finally, in summer 2017, the Astronaut Candidate Class of 2017 is announced! These candidates will report to Johnson Space Center starting in August 2017. 

To view the full astronaut candidate selection process timeline, visit: http://astronauts.nasa.gov/content/timeline.htm

*Note that the high volume of applications received, dates in the timeline could be adjusted. 

Why do we need more astronauts?

image

We are continuing human spaceflight on the International Space Station, which has a continuous crew of six people on board. The Boeing and SpaceX commercial crew spacecraft that will travel to the station both have seats for four astronauts (the current Soyuz spacecraft, on which astronauts travel, only has three). This will add a seventh astronaut to the orbiting laboratory, and enable us to do more science!

How many astronauts will be selected?

The exact number will be determined by mission requirements, but current analysis shows about 8 - 14 astronauts will be needed. The final number will depend on updates to program plans, budgets, etc. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

8 years ago

Want to Send Your Art to the International Space Station?!

For children ages 4-12, we’re hosting an art contest! Get the details:

image
image
image
image
image

We are working with Boeing and SpaceX to build human spaceflight systems, like rockets and spacecraft, to take astronauts to the International Space Station. These companies will fly astronauts to orbit around Earth while we focus on plans to explore deeper into our solar system. 

image

Get out your art supplies and use your creative imagination to show us the present and future of traveling in space!

image

There are no grocery stores in space, but there may soon be farms. Very small farms that are important to a crew conducting a mission to deep space. That’s because our astronauts will need to grow some of their own food. Researchers on Earth and astronauts on the International Space Station are already showing what is needed to grow robust plants in orbit.

image

What would you take to space? Astronaut Suni Williams took a cutout of her dog, Gorbie, on her first mission to the International Space Station. 

image

Kids 4 to 12, draw what you would take and enter it in our Children’s Artwork Calendar contest! Your entry could be beamed to the space station!

image
image

Go to http://go.nasa.gov/2fvRLNf for more information about the competition’s themes, rules and deadlines plus the entry form. 

image
image

Get your parent's permission, of course!

Email your entry form and drawing to us at: ksc-connect2ccp@mail.nasa.gov

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

5 Out of this World Experiments Awaiting Crew-1 Space Scientists

NASA astronauts Shannon Walker, Victor Glover, and Mike Hopkins, and JAXA (Japan Aerospace Exploration Agency) astronaut Soichi Noguchi embark on a historic mission on November 14, 2020 aboard the Crew Dragon. NASA’s Crew-1 mission marks the first certified crew rotation flight to the International Space Station. During their 6-month stay on orbit, these crew members will don their science caps and complete experiments in microgravity.  Check out five out of this world experiments you can expect to see these space scientists working on during Expedition 64.

1. Space Gardening

The Crew-1 astronauts will become space farmers with the responsibility of tending to the rad(ish) garden located in a facility known as the Advanced Plant Habitat (APH). Researchers are investigating radishes in the Plant Habitat-02 experiment as a candidate crop for spaceflight applications to supplement food sources for astronauts. Radishes have the benefits of high nutritional content and quick growth rates, making these veggies an intriguing option for future space farmers on longer missions to the Moon or Mars.

image

2. Micro Miners

Microbes can seemingly do it all, including digging up the dirt (so to speak).  The BioAsteroid investigation looks at the ability of bacteria to break down rock.  Future space explorers could use this process for extracting elements from planetary surfaces and refining regolith, the type of soil found on the moon, into usable compounds.  To sum it up, these microbial miners rock.

image

3. Cooler Exploration Spacesuits

The iconic spacesuits used to walk on the moon and perform spacewalks on orbit are getting an upgrade. The next generation spacesuit, the Exploration Extravehicular Mobility Unit (xEMU), will be even cooler than before, both in looks and in terms of ability to regulate astronaut body temperature.  The Spacesuit Evaporation Rejection Flight Experiment (SERFE) experiment is a technology demonstration being performed on station to look at the efficiency of multiple components in the xEMU responsible for thermal regulation, evaporation processes, and preventing corrosion of the spacesuits.

image
image
image

4. Chips in Space

Crew-1 can expect to get a delivery of many types of chips during their mission.  We aren’t referring to the chips you would find in your pantry.  Rather, Tissue Chips in Space is an initiative sponsored by the National Institutes of Health to study 3D organ-like constructs on a small, compact devices in microgravity. Organ on a chip technology allows for the study of disease processes and potential therapeutics in a rapid manner. During Expedition 64, investigations utilizing organ on a chip technology will include studies on muscle loss, lung function, and the blood brain barrier – all on devices the size of a USB flashdrive.

image
image

5. The Rhythm of Life

Circadian rhythm, otherwise known as our "internal clock," dictates our sleep-wake cycles and influences cognition. Fruit flies are hitching a ride to the space station as the subjects of the Genes in Space-7 experiment, created by a team of high school students.  These flies, more formally known as the Drosophila melanogaster, are a model organism, meaning that they are common subjects of scientific study. Understanding changes in the genetic material that influences circadian rhythm in microgravity can shed light on processes relevant to an astronaut’s brain function.

image
image

Make sure to follow us on Tumblr for your regular dose of space:  http://nasa.tumblr.com

For updates on other platforms, follow @ISS_Research, Space Station Research and Technology News, or our Facebook to keep up with the science happening aboard your orbiting laboratory, and step outside to see the space station passing over your town using Spot the Station.


Tags
8 years ago

Solar System: Things to Know This Week

Celebrate with us as our Opportunity rover turns 13, view art from our fans and more!

1. All Grown Up

After exceeding her 90-day mission and design parameters many times over, our plucky little rover Opportunity turns 13 years old on the Red Planet. She’s officially a teenager!

2. People’s Space

image

The public contributes so much wonderful art that we decided to make a place to share it. Enjoy!

3. Ready for a Close Up

Solar System: Things To Know This Week

Our Juno spacecraft recently got a closer look at Jupiter’s Little Red Spot. The craft’s JunoCam imager snapped this shot of Jupiter's northern latitudes on December 2016, as the spacecraft performed a close flyby of the gas giant. The spacecraft was at an altitude of 10,300 miles above Jupiter's cloud tops.

4. A New Test for Life on Other Planets 

image

A simple chemistry method could vastly enhance how scientists search for signs of life on other planets. The test uses a liquid-based technique known as capillary electrophoresis to separate a mixture of organic molecules into its components. It was designed specifically to analyze for amino acids, the structural building blocks of all life on Earth.

5. Blurring the Line Between Asteroid and Comet  

image

Our NEOWISE mission recently discovered some celestial objects traveling through our neighborhood, including one on the blurry line between asteroid and comet. An object called 2016 WF9 was detected by the NEOWISE project in November 2016 and it's in an orbit that takes it on a scenic tour of our solar system. A different object, discovered by NEOWISE a month earlier, is more clearly a comet, releasing dust as it nears the sun.

Discover the full list of 10 things to know about our solar system this week HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

@saraxmix: What is it that makes you go back up there once you're home?


Tags
7 years ago

From Microscopic to Multicellular: Six Stories of Life that We See from Space

Life. It's the one thing that, so far, makes Earth unique among the thousands of other planets we've discovered. Since the fall of 1997, NASA satellites have continuously and globally observed all plant life at the surface of the land and ocean. During the week of Nov. 13-17, we are sharing stories and videos about how this view of life from space is furthering knowledge of our home planet and the search for life on other worlds.

image

Earth is the only planet with life, as far as we know. From bacteria in the crevices of the deepest oceans to monkeys swinging between trees, Earth hosts life in all different sizes, shapes and colors. Scientists often study Earth from the ground, but some also look to our satellites to understand how life waxes and wanes on our planet.

Over the years, scientists have used this aerial view to study changes in animal habitats, track disease outbreaks, monitor forests and even help discover a new species. While this list is far from comprehensive, these visual stories of bacteria, plants, land animals, sea creatures and birds show what a view from space can reveal.

1. Monitoring the single-celled powerhouses of the sea

image

Known as the grass of the ocean, phytoplankton are one of the most abundant types of life in the ocean. Usually single-celled, these plant-like organisms are the base of the marine food chain. They are also responsible for the only long-term transfer of carbon dioxide from Earth’s atmosphere to the ocean. 

Even small changes in phytoplankton populations can affect carbon dioxide concentrations in the atmosphere, which could ultimately affect Earth’s global surface temperatures. Scientists have been observing global phytoplankton populations continuously since 1997 starting with the Sea-Viewing Wide Field-of View Sensor (SeaWiFS). They continue to study the small life-forms by satellite, ships and aircrafts.

2. Predicting cholera bacteria outbreaks

Found on the surface of zooplankton and in contaminated water, the bacteria that cause the infectious disease cholera — Vibrio cholerae — affect millions of people every year with severe diarrhea, sometimes leading to death. While our satellite sensors can’t detect the actual bacteria, scientists use various satellite data to look for the environmental conditions that the bacteria thrive in. 

Specifically, microbiologist Rita Colwell at the University of Maryland, College Park, and West Virginia University hydrologist Antar Jutla studied data showing air and ocean temperature, salinity, precipitation, and chlorophyllconcentrations, the latter a marker for zooplankton. Anticipating where the bacteria will bloom helps researchers to mitigate outbreaks.

image

Recently, Colwell and Jutla have been able to estimate cholera risk after major events, such as severe storms, by looking at satellite precipitation data, air temperature, and population maps. The two maps above show the team's predicted cholera risk in Haiti two weeks after Hurricane Matthew hit over October 1-2, 2016 and the actual reported cholera cases in October 2016.

3. Viewing life on land

From helping preserve forests for chimpanzees to predicting deer population patterns, scientists use our satellites to study wildlife across the world. Satellites can also see the impacts of perhaps the most relatable animal to us: humans. Every day, we impact our planet in many ways including driving cars, constructing buildings and farming – all of which we can see with satellites.

From Microscopic To Multicellular: Six Stories Of Life That We See From Space

Our Black Marble image provides a unique view of human activity. Looking at trends in our lights at night, scientists can study how cities develop over time, how lighting and activity changes during certain seasons and holidays, and even aid emergency responders during power outages caused by natural disasters.

4. Tracking bird populations

Scientists use our satellite data to study birds in a variety of ways, from understanding their migratory patterns, to spotting potential nests, to tracking populations. In a rather creative application, scientists used satellite imagery to track Antarctica’s emperor penguin populations by looking for their guano – or excrement.

image

Counting emperor penguins from the ground perspective is challenging because they breed in some of the most remote and cold places in the world, and in colonies too large to easily count manually. With their black and white coats, emperor penguins are also difficult to count from an aerial view as they sometimes blend in with shadows on the ice. Instead, Phil Trathan and his colleagues at the British Antarctic Survey looked through Landsat imagery for brown stains on the sea ice. By looking for penguin droppings, Trathan said his team identified 54 emperor penguin colonies along the Antarctic coast.

5. Parsing out plant life

Just as we see plants grow and wilt on the ground, satellites observe the changes from space. Flourishing vegetation can indicate a lively ecosystem while changes in greenery can sometimes reveal natural disasters, droughts or even agricultural practices. While satellites can observe plant life in our backyards, scientists can also use them to provide a global picture. 

image

Using data from satellites including SeaWiFS, and instruments including the NASA/NOAA Visible Infrared Imaging Radiometer Suite and the Moderate Resolution Imaging Spectroradiometer, scientists have the most complete view of global biology to date, covering all of the plant life on land and at the surface of the ocean.

6. Studying life under the sea

Our satellites have helped scientists study creatures living in the oceans whether it’s finding suitable waters for oysters or protecting the endangered blue whale. Scientists also use the data to learn more about one of the most vulnerable ecosystems on the planet – coral reefs.

image

They may look like rocks or plants on the seafloor, but corals are very much living animals. Receiving sustenance from photosynthetic plankton living within their calcium carbonate structures, coral reefs provide food and shelter for many kinds of marine life, protect shorelines from storms and waves, serve as a source for potential medicines, and operate as some of the most diverse ecosystems on the planet.

image

However, coral reefs are vulnerable to the warming of the ocean and human activity. Our satellites measure the surface temperature of ocean waters. These measurements have revealed rising water temperatures surrounding coral reef systems around the world, which causes a phenomenon known as “coral bleaching.” To add to the satellite data, scientists use measurements gathered by scuba divers as well as instruments flown on planes.

During the week of Nov. 13-17, check out our stories and videos about how this view of life from space is furthering knowledge of our home planet and the search for life on other worlds. Follow at www.nasa.gov/Earth.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

What You Should Know About Scott Kelly’s #YearInSpace

1. It’s Actually More Like a Three-Year Mission

What You Should Know About Scott Kelly’s #YearInSpace

NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko may have had a year-long stay in space, but the science of their mission will span more than three years. One year before they left Earth, Kelly and Kornienko began participating in a suite of investigations aimed at better understanding how the human body responds to long-duration spaceflight. Samples of their blood, urine, saliva, and more all make up the data set scientists will study. The same kinds of samples continued to be taken throughout their stay in space, and will continue for a year or more once they return.

2. What We Learn is Helping Us Get to Mars

What You Should Know About Scott Kelly’s #YearInSpace

One of the biggest hurdles of getting to Mars is ensuring humans are “go” for a long-duration mission and that crew members will maintain their health and full capabilities for the duration of a Mars mission and after their return to Earth. Scientists have solid data about how bodies respond to living in microgravity for six months, but significant data beyond that timeframe had not been collected…until now. A mission to Mars will likely last about three years, about half the time coming and going to Mars and about half the time on Mars. We need to understand how human systems like vision and bone health are affected by the 12 to 16 months living on a spacecraft in microgravity and what countermeasures can be taken to reduce or mitigate risks to crew members during the flight to and from Mars. Understanding the challenges facing humans is just one of the ways research aboard the space station helps our journey to Mars.

3. The Science Will Take Some Time

What You Should Know About Scott Kelly’s #YearInSpace

While scientists will begin analyzing data from Kelly and Kornienko as soon as they return to Earth, it could be anywhere from six months to six years before we see published results from the research. The scientific process takes time, and processing the data from all the investigations tied to the one-year mission will be no easy task. Additionally, some blood, urine and saliva samples from Kelly and Kornienko will still be stored in the space station freezers until they can be returned on the SpaceX Dragon spacecraft. Early on in the analytical process scientists may see indications of what we can expect, but final results will come long after Kelly and Kornienko land.

4. This Isn’t the First Time Someone Has Spent a Year in Space

What You Should Know About Scott Kelly’s #YearInSpace

This is the first time that extensive research using exciting new techniques like genetic studies has been conducted on very long-duration crew members. Astronaut Scott Kelly is the first American to complete a continuous, year-long mission in space and is now the American who has spent the most cumulative time in space, but it’s not the first time humans have reached this goal. Previously, only four humans have spent a year or more in orbit on a single mission, all aboard the Russian Mir Space Station. They all participated in significant research proving that humans are capable of living and working in space for a year or more.

Russian cosmonaut Valery Polyakov spent 438 days aboard Mir between January 1994 and March 1995 and holds the all-time record for the most continuous days spent in space.

Cosmonaut Sergei Avdeyev spent 380 days on Mir between August 1998 and August 1999.

Cosmonauts Vladimir Titov and Musa Manarov completed a 366-day mission from December 1987 to December 1988.

5. International Collaboration is Key

What You Should Know About Scott Kelly’s #YearInSpace

The International Space Station is just that: international. The one-year mission embodies the spirit of collaboration across countries in the effort to mitigate as many risks as possible for humans on long-duration missions. Data collected on both Kelly and Kornienko will be shared between the United States and Russia, and international partners. These kinds of collaborations help increase more rapidly the biomedical knowledge necessary for human exploration, reduce costs, improve processes and procedures, and improve efficiency on future space station missions.

6. So Much Science!

What You Should Know About Scott Kelly’s #YearInSpace

During Kelly’s year-long mission aboard the orbiting laboratory, his participation in science wasn’t limited to the one-year mission investigations. In all, he worked on close to 400 science studies that help us reach for new heights, reveal the unknown, and benefit all of humanity. His time aboard the station included blood draws, urine collection, saliva samples, computer tests, journaling, caring for two crops in the Veggie plant growth facility, ocular scans, ultrasounds, using the space cup, performing runs with the SPHERES robotic satellites, measuring sound, assisting in configuring cubesats to be deployed, measuring radiation, participating in fluid shifts testing in the Russian CHIBIS pants, logging his sleep and much, much more. All of this was in addition to regular duties of station maintenance, including three spacewalks!

7. No More Food in Pouches

What You Should Know About Scott Kelly’s #YearInSpace

After months of eating food from pouches and cans and drinking through straws, Kelly and Kornienko will be able to celebrate their return to Earth with food of their choice. While aboard the space station, their food intake is closely monitored and designed to provide exactly the nutrients they need. Crew members do have a say in their on-orbit menus but often miss their favorite meals from back home. Once they return, they won’t face the same menu limitations as they did in space. As soon as they land on Earth and exit the space capsule, they are usually given a piece of fruit or a cucumber to eat as they begin their initial health checks. After Kelly makes the long flight home to Houston, he will no doubt greatly savor those first meals.

8. After the Return Comes Reconditioning

What You Should Know About Scott Kelly’s #YearInSpace

You’ve likely heard the phrase, “Use it or lose it.” The same thing can be said for astronauts’ muscles and bones. Muscles and bones can atrophy in microgravity. While in space, astronauts have a hearty exercise regimen to fight these effects, and they continue strength training and reconditioning once they return to Earth. They will also participate in Field Tests immediately after landing. Once they are back at our Johnson Space Center, Functional Task Tests will assess how the human body responds to living in microgravity for such a long time. Understanding how astronauts recover after long-duration spaceflight is a critical piece in planning for missions to deep space.

9. Twins Studies Have Researchers Seeing Double

What You Should Know About Scott Kelly’s #YearInSpace

One of the unique aspects of Kelly’s participation in the one-year mission is that he has an identical twin brother, Mark, who is a former astronaut. The pair have taken part in a suite of studies that use Mark as a human control on the ground during Scott’s year-long stay in space. The Twins Study is comprised of 10 different investigations coordinating together and sharing all data and analysis as one large, integrated research team. The investigations focus on human physiology, behavioral health, microbiology/microbiome and molecular/omics. The Twins Study is multi-faceted national cooperation between investigations at universities, corporations, and government laboratories.

10. This Mission Will Help Determine What Comes Next

What You Should Know About Scott Kelly’s #YearInSpace

The completion of the one-year mission and its studies will help guide the next steps in planning for long-duration deep space missions that will be necessary as humans move farther into the solar system. Kelly and Kornienko’s mission will inform future decisions and planning for other long-duration missions, whether they are aboard the space station, a deep space habitat in lunar orbit, or a mission to Mars.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

Rocket Launches and Rising Seas

At NASA, we’re not immune to effects of climate change. The seas are rising at NASA coastal centers – the direct result of warming global temperatures caused by human activity. Several of our centers and facilities were built near the coast, where there aren’t as many neighbors, as a safety precaution. But now the tides have turned and as sea levels rise, these facilities are at greater risk of flooding and storms.

image

Global sea level is increasing every year by 3.3 millimeters, or just over an eighth of an inch, and the rate of rise is speeding up over time. The centers within range of rising waters are taking various approaches to protect against future damage.

image

Kennedy Space Center in Florida is the home of historic launchpad 39A, where Apollo astronauts first lifted off for their journey to the Moon. The launchpad is expected to flood periodically from now on.

image

Like Kennedy, Wallops Flight Facility on Wallops Island, Virginia has its launchpads and buildings within a few hundred feet of the Atlantic Ocean. Both locations have resorted to replenishing the beaches with sand as a natural barrier to the sea.

image

Native vegetation is planted to help hold the sand in place, but it needs to be replenished every few years.

image

At the Langley Research Center in Hampton, Virginia, instead of building up the ground, we’re hardening buildings and moving operations to less flood-prone elevations. The center is bounded by two rivers and the Chesapeake Bay.

The effects of sea level rise extend far beyond flooding during high tides. Higher seas can drive larger and more intense storm surges – the waves of water brought by tropical storms.

image

In 2017, Hurricane Harvey brought flooding to the astronaut training facility at Johnson Space Center in Houston, Texas. Now we have installed flood resistant doors, increased water intake systems, and raised guard shacks to prevent interruptions to operations, which include astronaut training and mission control.

image

Our only facility that sits below sea level already is Michoud Assembly Facility in New Orleans. Onsite pumping systems protected the 43-acre building, which has housed Saturn rockets and the Space Launch System, from Hurricane Katrina. Since then, we’ve reinforced the pumping system so it can now handle double the water capacity.

image

Ames Research Center in Silicon Valley is going one step farther and gradually relocating farther south and to several feet higher in elevation to avoid the rising waters of the San Francisco Bay.

Understanding how fast and where seas will rise is crucial to adapting our lives to our changing planet.

image

We have a long-standing history of tracking sea level rise, through satellites like the TOPEX-Poseidon and the Jason series, working alongside partner agencies from the United States and other countries.

image

We just launched the Sentinel-6 Michael Freilich satellite—a U.S.-European partnership—which will use electromagnetic signals bouncing off Earth’s surface to make some of the most accurate measurements of sea levels to date.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

10 Space & Football Facts You Probably Didn’t Know

There are more connections between space and football than you may have originally thought. Here are a few examples of how...

1. The International Space Station and a football field are basically the same size

image

Yes, that’s right! The International Space Station measures 357 feet end-to-end. That’s almost equivalent to the length of a football field including the end zones (360 feet).

2. It would take over 4,000 footballs to fill the Orion spacecraft

image

Our Orion spacecraft is being designed to carry astronauts to deep space destinations, like Mars! It will launch atop the most powerful rocket ever built, the Space Launch System rocket. If you were to fill the Orion spacecraft with footballs instead of crew members, you would fit a total of 4,625!

3. Our new Space Launch System rocket is taller than a football field is long

image

We’re building the most powerful rocket ever, the Space Launch System. At its full height it will stand 384 feet – 24 feet taller than a football field is long.

4. The crew living on space station will see the day begin and end…twice…during the Super Bowl

image

An average NFL game lasts more than three hours. Traveling at 17,500 mph, the crew on the space station will see two sunrises and two sunsets in that time…they see 16 sunrises and sunsets each day!

5. Playing football on Mars would be…lighter

image

On Mars, a football would weigh less than half a pound, while a 200-pund football player would weigh just about 75 pounds.

6. It would take over 3,000 hours for a football to reach the Moon

image

Talk about going long…if you threw a football to the Moon at 60 mph, the average speed of an NFL pass, it would take 3,982 hours, or 166 days, to get there. The quickest trip to the Moon was the New Horizons probe, which zipped pass the Moon in just 8 hours 35 minutes on its way to Pluto 

7. The longest field goal kick in history would’ve been WAY easier to make on Mars

image

The longest field goal kick in NFL history is 64 yards. On Mars, at 1/3 the gravity of Earth, that same field goal, ignoring air resistance, could have been made from almost two football fields away (192 yards).

8. A quarterback would be able to throw even further on Mars

image

Aerodynamic drag doesn’t happen on Mars. With a very thin atmosphere and low gravity to drag the ball down, a quarterback could throw the football three times as far as he could on Earth. A receiver would have to be much further down the field to catch the throw 

9. Football players and astronauts both need to exercise every day

image

Football players must be quick and powerful, honing the physical skills necessary for their unique positions. In space, maintaining physical fitness is a top priority, since astronauts will lose bone and muscle mass if they do not keep up their strength and conditioning.

10. Clear team communication is important on the football field AND in space

image

During football games, calling plays and relaying information from coaches on the sidelines or in the booth to players on the field is essential. Coaches communicate directly with quarterbacks and a defensive player between plays via radio frequencies. They must have a secure and reliable system that keeps their competitors from listening in and also keeps loud fan excitement from drowning out what can be heard. Likewise, reliable communication with astronauts in space and robotic spacecraft exploring far into the solar system is key to our mission success.

A radio and satellite communications network allows space station crew members to talk to the ground-based team at control centers, and for those centers to send commands to the orbital complex.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Solar System: Top 5 Things to Know This Week

It’s only Tuesday and this week is already filled with news about our solar system. Here are the top five things to know this week:

1) Mars!

image

With five spacecraft in orbit and two rovers exploring the ground, there’s always something new and interesting about the Red Planet. Yesterday things got even more exciting when we released the most compelling evidence yet that liquid water sometimes flows on Mars today.

2) HTV-5 Cargo Ship

image

On Monday, the HTV-5 cargo ship was released from the International Space Station to burn up as it reenters Earth’s atmosphere. The HTV-5 carried a variety of experiments and supplies to the space station, and was docked for five weeks.

3) Pluto Continues to Excite

image

If you haven’t been keeping up with the weekly releases of newly downloaded pictures from our New Horizons spacecraft, you are definitely missing out. But don’t worry, we have you covered. The latest updates can be found HERE, be sure to follow along as new information is released. More images are scheduled to be featured on Oct. 1.

4) Cassini Mission

image

This week on Sept. 30, our Cassini spacecraft will reach the closest point to Saturn in it’s latest orbit around the planet. Just to put things in perspective, that will be Cassini’s 222nd orbit around Saturn! Learn more about this mission HERE.

5) What Happened to Mars’ Atmosphere?

image

Believe it or not, the Martian atmosphere we see today used to be much more substantial many years ago. What happened? Our Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has been in orbit around Mars for one Earth year, searching for the answers. Learn more HERE.

Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com


Tags
1 year ago
Chloe Mehring, a woman with shoulder length brown hair, stands for an official portrait in front of the United States (left) and NASA (right) flags. She wears a black blazer and a black top. Credit: NASA
Diane Dailey, a woman with long brown hair, stands for an official portrait in front of the United States (left) and NASA (right) flags. She wears a black blazer and a white top with lace detailing. Credit: NASA

And that’s a wrap! Thank you for all the great questions. We hope you learned a little bit about what it takes to work in mission control as a flight director.

If you’re hungry for more, you can read the latest installment of our First Woman graphic novel series, where fictional character Commander Callie Rodriguez embarks on the next phase of her trailblazing journey and leaves the Moon to take the helm at Mission Control.

Keep up with the flight directors, the Space Station, and the Artemis missions at the links below.

Flight directors: X

Artemis: Facebook: Facebook, Instagram, X

Space Station: Facebook, Instagram, X (@Space_Station), X( @ISS_Research)

Make sure to follow us on Tumblr for your regular dose of space!


Tags
Loading...
End of content
No more pages to load
  • ringhanwellsent
    ringhanwellsent liked this · 1 year ago
  • thecrypticwitch
    thecrypticwitch liked this · 5 years ago
  • captain-raven-knight
    captain-raven-knight reblogged this · 7 years ago
  • libin33-blog
    libin33-blog reblogged this · 7 years ago
  • libin33-blog
    libin33-blog liked this · 7 years ago
  • kissableandquiet2020
    kissableandquiet2020 reblogged this · 8 years ago
  • kissableandquiet2020
    kissableandquiet2020 liked this · 8 years ago
  • paintmearevolution
    paintmearevolution liked this · 8 years ago
  • forlorn-kumquat
    forlorn-kumquat liked this · 8 years ago
  • spiritofthenorth4
    spiritofthenorth4 reblogged this · 8 years ago
  • nukeless
    nukeless liked this · 8 years ago
  • scottysass
    scottysass liked this · 8 years ago
  • radioactivepanic
    radioactivepanic reblogged this · 8 years ago
  • radioactivepanic
    radioactivepanic liked this · 8 years ago
  • lancemcangst
    lancemcangst liked this · 8 years ago
  • understandabletangerine
    understandabletangerine reblogged this · 8 years ago
  • talk-nerdy-to-me-thyla
    talk-nerdy-to-me-thyla reblogged this · 8 years ago
  • that-hippy-girl-art
    that-hippy-girl-art liked this · 8 years ago
  • estherlion
    estherlion reblogged this · 9 years ago
  • depaula-stuff
    depaula-stuff liked this · 9 years ago
  • realismomagico
    realismomagico liked this · 9 years ago
  • brightfire99
    brightfire99 liked this · 9 years ago
  • venussbeehive
    venussbeehive liked this · 9 years ago
  • venussbeehive
    venussbeehive reblogged this · 9 years ago
  • gatersgonewild
    gatersgonewild reblogged this · 9 years ago
  • parkrrpeter-blog
    parkrrpeter-blog reblogged this · 9 years ago
  • ofbooksandcleverness
    ofbooksandcleverness reblogged this · 9 years ago
  • mckailad
    mckailad reblogged this · 9 years ago
  • omirao
    omirao reblogged this · 9 years ago
  • migrobowy
    migrobowy liked this · 9 years ago
  • galaxy-cosplay
    galaxy-cosplay liked this · 9 years ago
  • omirao
    omirao liked this · 9 years ago
  • guacamolegirl
    guacamolegirl reblogged this · 9 years ago
  • auliaminee-blog
    auliaminee-blog liked this · 9 years ago
  • moonrisezeeba
    moonrisezeeba reblogged this · 9 years ago
  • tarottots
    tarottots liked this · 9 years ago
  • wanderwoman51
    wanderwoman51 reblogged this · 9 years ago
  • crybabyfresa
    crybabyfresa liked this · 9 years ago
  • localserpent
    localserpent reblogged this · 9 years ago
  • localserpent
    localserpent liked this · 9 years ago
  • apshora
    apshora reblogged this · 9 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags