From Microscopic To Multicellular: Six Stories Of Life That We See From Space

From Microscopic to Multicellular: Six Stories of Life that We See from Space

Life. It's the one thing that, so far, makes Earth unique among the thousands of other planets we've discovered. Since the fall of 1997, NASA satellites have continuously and globally observed all plant life at the surface of the land and ocean. During the week of Nov. 13-17, we are sharing stories and videos about how this view of life from space is furthering knowledge of our home planet and the search for life on other worlds.

image

Earth is the only planet with life, as far as we know. From bacteria in the crevices of the deepest oceans to monkeys swinging between trees, Earth hosts life in all different sizes, shapes and colors. Scientists often study Earth from the ground, but some also look to our satellites to understand how life waxes and wanes on our planet.

Over the years, scientists have used this aerial view to study changes in animal habitats, track disease outbreaks, monitor forests and even help discover a new species. While this list is far from comprehensive, these visual stories of bacteria, plants, land animals, sea creatures and birds show what a view from space can reveal.

1. Monitoring the single-celled powerhouses of the sea

image

Known as the grass of the ocean, phytoplankton are one of the most abundant types of life in the ocean. Usually single-celled, these plant-like organisms are the base of the marine food chain. They are also responsible for the only long-term transfer of carbon dioxide from Earth’s atmosphere to the ocean. 

Even small changes in phytoplankton populations can affect carbon dioxide concentrations in the atmosphere, which could ultimately affect Earth’s global surface temperatures. Scientists have been observing global phytoplankton populations continuously since 1997 starting with the Sea-Viewing Wide Field-of View Sensor (SeaWiFS). They continue to study the small life-forms by satellite, ships and aircrafts.

2. Predicting cholera bacteria outbreaks

Found on the surface of zooplankton and in contaminated water, the bacteria that cause the infectious disease cholera — Vibrio cholerae — affect millions of people every year with severe diarrhea, sometimes leading to death. While our satellite sensors can’t detect the actual bacteria, scientists use various satellite data to look for the environmental conditions that the bacteria thrive in. 

Specifically, microbiologist Rita Colwell at the University of Maryland, College Park, and West Virginia University hydrologist Antar Jutla studied data showing air and ocean temperature, salinity, precipitation, and chlorophyllconcentrations, the latter a marker for zooplankton. Anticipating where the bacteria will bloom helps researchers to mitigate outbreaks.

image

Recently, Colwell and Jutla have been able to estimate cholera risk after major events, such as severe storms, by looking at satellite precipitation data, air temperature, and population maps. The two maps above show the team's predicted cholera risk in Haiti two weeks after Hurricane Matthew hit over October 1-2, 2016 and the actual reported cholera cases in October 2016.

3. Viewing life on land

From helping preserve forests for chimpanzees to predicting deer population patterns, scientists use our satellites to study wildlife across the world. Satellites can also see the impacts of perhaps the most relatable animal to us: humans. Every day, we impact our planet in many ways including driving cars, constructing buildings and farming – all of which we can see with satellites.

From Microscopic To Multicellular: Six Stories Of Life That We See From Space

Our Black Marble image provides a unique view of human activity. Looking at trends in our lights at night, scientists can study how cities develop over time, how lighting and activity changes during certain seasons and holidays, and even aid emergency responders during power outages caused by natural disasters.

4. Tracking bird populations

Scientists use our satellite data to study birds in a variety of ways, from understanding their migratory patterns, to spotting potential nests, to tracking populations. In a rather creative application, scientists used satellite imagery to track Antarctica’s emperor penguin populations by looking for their guano – or excrement.

image

Counting emperor penguins from the ground perspective is challenging because they breed in some of the most remote and cold places in the world, and in colonies too large to easily count manually. With their black and white coats, emperor penguins are also difficult to count from an aerial view as they sometimes blend in with shadows on the ice. Instead, Phil Trathan and his colleagues at the British Antarctic Survey looked through Landsat imagery for brown stains on the sea ice. By looking for penguin droppings, Trathan said his team identified 54 emperor penguin colonies along the Antarctic coast.

5. Parsing out plant life

Just as we see plants grow and wilt on the ground, satellites observe the changes from space. Flourishing vegetation can indicate a lively ecosystem while changes in greenery can sometimes reveal natural disasters, droughts or even agricultural practices. While satellites can observe plant life in our backyards, scientists can also use them to provide a global picture. 

image

Using data from satellites including SeaWiFS, and instruments including the NASA/NOAA Visible Infrared Imaging Radiometer Suite and the Moderate Resolution Imaging Spectroradiometer, scientists have the most complete view of global biology to date, covering all of the plant life on land and at the surface of the ocean.

6. Studying life under the sea

Our satellites have helped scientists study creatures living in the oceans whether it’s finding suitable waters for oysters or protecting the endangered blue whale. Scientists also use the data to learn more about one of the most vulnerable ecosystems on the planet – coral reefs.

image

They may look like rocks or plants on the seafloor, but corals are very much living animals. Receiving sustenance from photosynthetic plankton living within their calcium carbonate structures, coral reefs provide food and shelter for many kinds of marine life, protect shorelines from storms and waves, serve as a source for potential medicines, and operate as some of the most diverse ecosystems on the planet.

image

However, coral reefs are vulnerable to the warming of the ocean and human activity. Our satellites measure the surface temperature of ocean waters. These measurements have revealed rising water temperatures surrounding coral reef systems around the world, which causes a phenomenon known as “coral bleaching.” To add to the satellite data, scientists use measurements gathered by scuba divers as well as instruments flown on planes.

During the week of Nov. 13-17, check out our stories and videos about how this view of life from space is furthering knowledge of our home planet and the search for life on other worlds. Follow at www.nasa.gov/Earth.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

6 years ago

Gravity, Hazard of Alteration

A human journey to Mars, at first glance, offers an inexhaustible amount of complexities. To bring a mission to the Red Planet from fiction to fact, NASA’s Human Research Program has organized some of the hazards astronauts will encounter on a continual basis into five classifications.

image

The variance of gravity fields that astronauts will encounter on a mission to Mars is the fourth hazard.

image

On Mars, astronauts would need to live and work in three-eighths of Earth’s gravitational pull for up to two years. Additionally, on the six-month trek between the planets, explorers will experience total weightlessness. 

image

Besides Mars and deep space there is a third gravity field that must be considered. When astronauts finally return home they will need to readapt many of the systems in their bodies to Earth’s gravity.

image

To further complicate the problem, when astronauts transition from one gravity field to another, it’s usually quite an intense experience. Blasting off from the surface of a planet or a hurdling descent through an atmosphere is many times the force of gravity.

image

Research is being conducted to ensure that astronauts stay healthy before, during and after their mission. Specifically researchers study astronauts’ vision, fine motor skills, fluid distribution, exercise protocols and response to pharmaceuticals.

image

Exploration to the Moon and Mars will expose astronauts to five known hazards of spaceflight, including gravity. To learn more, and find out what NASA’s Human Research Program is doing to protect humans in space, check out the "Hazards of Human Spaceflight" website. Or, check out this week’s episode of “Houston We Have a Podcast,” in which host Gary Jordan further dives into the threat of gravity with Peter Norsk, Senior Research Director/ Element Scientist at the Johnson Space Center.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

NASA Astronaut Scott Kelly shared this incredible video tonight, August 11, showing "our galactic home" with the stars of the Milky Way. Kelly is living and working off the Earth, for the Earth aboard the station for a yearlong mission. Traveling the world more than 220 miles above the Earth, and at 17,500 mph, he circumnavigates the globe more than a dozen times a day conducting research about how the body adapts and changes to living in space for a long duration.

Video credit: NASA


Tags
9 years ago

Our Orion space capsule is now on Tumblr! Check it out, follow, and share! http://nasaorion.tumblr.com/  

Engineers Are Preparing To Test The Parachute System For NASA’s Orion Spacecraft At The U.S. Army Yuma
Engineers Are Preparing To Test The Parachute System For NASA’s Orion Spacecraft At The U.S. Army Yuma
Engineers Are Preparing To Test The Parachute System For NASA’s Orion Spacecraft At The U.S. Army Yuma

Engineers are preparing to test the parachute system for NASA’s Orion spacecraft at the U.S. Army Yuma Proving Ground in Yuma, Arizona. During the test, planned for Wednesday, Aug. 26, a C-17 aircraft will carry a representative Orion capsule to 35,000 feet in altitude and then drop it from its cargo bay. Engineers will test a scenario in which one of Orion’s two drogue parachutes, used to stabilize it in the air, does not deploy, and one of its three main parachutes, used to slow the capsule during the final stage of descent, also does not deploy. The risky test will provide data engineers will use as they gear up to qualify Orion’s parachutes for missions with astronauts. On Aug. 24, a C-17 was loaded with the test version of Orion, which has a similar mass and interfaces with the parachutes as the Orion being developed for deep space missions but is shorter on top to fit inside the aircraft.

3 years ago

Our Parker Solar Probe Just Touched the Sun!

Our Parker Solar Probe Just Touched The Sun!

For the first time in history, a spacecraft has touched the Sun. Our Parker Solar Probe flew right through the Sun’s atmosphere, the corona. (That’s the part of the Sun that we can see during a total solar eclipse.)

Our Parker Solar Probe Just Touched The Sun!

This marks one great step for Parker Solar Probe and one giant leap for solar science! Landing on the Moon helped scientists better understand how it was formed. Now, touching the Sun will help scientists understand our star and how it influences worlds across the solar system.

Our Parker Solar Probe Just Touched The Sun!

Unlike Earth, the Sun doesn’t have a solid surface (it’s a giant ball of seething, boiling gases). But the Sun does have a superheated atmosphere. Heat and pressure push solar material away from the Sun. Eventually, some of that material escapes the pull of the Sun’s gravity and magnetism and becomes the solar wind, which gusts through the entire solar system.

But where exactly does the Sun’s atmosphere end and the solar wind begin? We’ve never known for sure. Until now!

Our Parker Solar Probe Just Touched The Sun!

In April 2021, Parker Solar Probe swooped near the Sun. It passed through a massive plume of solar material in the corona. This was like flying into the eye of a hurricane. That flow of solar stuff — usually a powerful stream of particles — hit the brakes and went into slow-motion.

For the first time, Parker Solar Probe found itself in a place where the Sun’s magnetism and gravity were strong enough to stop solar material from escaping. That told scientists Parker Solar Probe had passed the boundary: On one side, space filled with solar wind, on the other, the Sun’s atmosphere.

Our Parker Solar Probe Just Touched The Sun!

Parker Solar Probe’s proximity to the Sun has led to another big discovery: the origin of switchbacks, zig-zag-shaped magnetic kinks in the solar wind.

These bizarre shapes were first observed in the 1990s. Then, in 2019, Parker Solar Probe revealed they were much more common than scientists first realized. But they still had questions, like where the switchbacks come from and how the Sun makes them.

Our Parker Solar Probe Just Touched The Sun!

Recently, Parker Solar Probe dug up two important clues. First, switchbacks tend to have lots of helium, which scientists know comes from the solar surface. And they come in patches.

Those patches lined up just right with magnetic funnels that appear on the Sun’s surface. Matching these clues up like puzzle pieces, scientists realized switchbacks must come from near the surface of the Sun.

Figuring out where switchbacks come from and how they form will help scientists understand how the Sun produces the solar wind. And that could clue us into one of the Sun’s biggest mysteries: why the Sun’s atmosphere is much, much hotter than the surface below.

Our Parker Solar Probe Just Touched The Sun!

Parker Solar Probe will fly closer and closer to the Sun. Who knows what else we’ll discover?

Make sure to follow us on Tumblr for your regular dose of space!


Tags
6 years ago

Space Telescope Gets to Work

Our latest space telescope, Transiting Exoplanet Survey Satellite (TESS), launched in April. This week, planet hunters worldwide received all the data from the first two months of its planet search. This view, from four cameras on TESS, shows just one region of Earth’s southern sky.

image

The Transiting Exoplanet Survey Satellite (TESS) captured this strip of stars and galaxies in the southern sky during one 30-minute period in August. Created by combining the view from all four of its cameras, TESS images will be used to discover new exoplanets. Notable features in this swath include the Large and Small Magellanic Clouds and a globular cluster called NGC 104. The brightest stars, Beta Gruis and R Doradus, saturated an entire column of camera detector pixels on the satellite’s second and fourth cameras.

Credit: NASA/MIT/TESS

The data in the images from TESS will soon lead to discoveries of planets beyond our solar system – exoplanets. (We’re at 3,848 so far!)

image

But first, all that data (about 27 gigabytes a day) needs to be processed. And where do space telescopes like TESS get their data cleaned up? At the Star Wash, of course!

image

TESS sends about 10 billion pixels of data to Earth at a time. A supercomputer at NASA Ames in Silicon Valley processes the raw data, turning those pixels into measures of a star’s brightness.

image

And that brightness? THAT’S HOW WE FIND PLANETS! A dip in a star’s brightness can reveal an orbiting exoplanet in transit.

image

TESS will spend a year studying our southern sky, then will turn and survey our northern sky for another year. Eventually, the space telescope will observe 85 percent of Earth’s sky, including 200,000 of the brightest and closest stars to Earth.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Asteroid Terms: Explained

There are interesting asteroid characters in our solar system, including an asteroid that has its own moon and even one that is shaped like a dog bone! Our OSIRIS-REx mission launches at 7:05 p.m. EDT today and will travel to asteroid Bennu.

image

Scientists chose Bennu as the target of the OSIRIS-REx mission because of its composition, size and proximity to Earth. Bennu is a rare B-type asteroid (primitive and carbon-rich), which is expected to have organic compounds and water-bearing minerals like clays.

Our OSIRIS-REx mission will travel to Bennu and bring a small sample back to Earth for study.

image

When talking about asteroids, there are some terms scientists use that might not be in your typical vocabulary…but we’ll help with that!

Here are a few terms you should know:

Orbital Eccentricity: This number describes the shape of an asteroid’s orbit by how elliptical it is. For asteroids in orbit around the sun, eccentricity is a number between 0 and 1, with 0 being a perfectly circular orbit and 0.99 being a highly elliptical orbit.

Inclination: The angle, in degrees, of how tilted an asteroid’s orbit is compared to another plane of reference, usually the plane of the Earth’s orbit around the sun.

Orbital Period: The number of days it takes for an asteroid to revolve once around the sun. For example, the Earth’s orbital period is 365 days.

Perihelion Distance: The distance between an asteroid and the sun when the asteroid is closest to the sun.

Aphelion Distance: The distance between the asteroid and the sun when the asteroid is farthest away from the sun.

Astronomical unit: A distance unit commonly used to describe orbits of objects around the sun. The distance from the Earth to the sun is one astronomical unit, or 1 AU, equivalent to about 93 million miles or 150 million kilometers.

Diameter: A measure of the size of an asteroid. It is the length of a line from a point on the surface, through the center of the asteroid, extending out to the opposite surface. Irregularly shaped asteroids may have different diameters depending on which direction they are measured.

Rotation Period: The time it takes for an asteroid to complete one revolution around its axis of rotation. For example, the rotation period of the Earth is approximately 24 hours, or 1 day.

Spectral Type: The classification of an asteroid, based on a measurement of the light reflected by the asteroid. 

Asteroid Terms: Explained

Watch live launch coverage of OSIRIS-REx to asteroid Bennu starting at 5:30 p.m, on NASA TV: http://www.nasa.gov/nasatv 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Exploring Our National Parks…from Space!

The United States has nearly 84 million acres of historic and scenic land in its national parks system. In celebration of National Park Week, here are some satellite views of a few of those national treasures.

Throughout National Park Week, you can #FindYourPark and visit for free.

Yosemite National Park – California

image

Naked summits alternate with forested lowlands in Yosemite Valley, part of California’s Yosemite National Park. Our Landsat 7 satellite captured this true-color image of part of the Yosemite Valley on Aug. 8, 2001.

Yellowstone National Park – Wyoming, Idaho and Montana

image

Established in 1872, it was the first national park in the United States, and the world! Its geological and biological wonders have led international groups to declare it a world heritage site and a biosphere reserve. Yellowstone National Park captures the spirit and purpose of the National Park Service, blending modern and ancient human history with nature in its raw complexity.

Hot Springs National Park – Arkansas

image

National Parks usually make us think of pristine landscapes untouched by human civilization. Most of the 59 national parks in the United States fit that mold, but there are a few exceptions. Arkansas’s Hot Springs National Park, the country’s smallest and most urban, is one of them. Hot Springs, a city of 96,000 people, lies at the southern edge of the park and partly within its boarders.

Shenandoah National Park – Virginia

image

This long, narrow park in the Blue Ridge Mountains spans more than 179,000 acres, with 40% of the land protected as wilderness. More than 95% of the park is forested, sheltering 1,300 plant species and 267 types of trees and shrubs. The park contains 577 archeological sites, more than 100 cemeteries, and some rocks that date back a billion years.

Olympic National Park – Washington

image

Possibly one of America’s most diverse national landscapes, Olympic National Park is situated on the Olympic Peninsula in northwestern Washington. If you walked from west to east across the park, you would start at the rocky Pacific shoreline, move into rare temperate rainforests and lush river valleys, ascend glaciers and rugged mountain peaks, and then descend into a comparatively dry rain shadow and alpine forest. From beach to the top of Mount Olympus, you would rise 7,980 feet above sea level.

Colorado National Monument – Colorado

image

Along the Interstate 70 corridor in western Colorado, well-watered croplands, residential properties and urbanized areas create a broad stripe of green and gray. Away from the interstate, dry climate conditions color the landscape shades of beige, brick and tan. Yet these arid regions offer treasures of their own, including stunning vistas and wildlife both living and extinct. The varied landscapes of this park show the effects of tens of millions of years of erosion.

The images above were produced by our Earth Observatory as part of its 2016 series featuring the National Park Service properties. Check out more HERE. 

Want to see more of our nation’s parks from space? Visit our Flickr gallery HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

6 years ago

Your Gut in Space

Finding the Right Balance for the Microbiota

Trillions of microorganisms live on and in the human body, many of them essential to its function and health. These organisms, collectively known as the microbiota, outnumber cells in the body by at least five times. 

image

Microorganisms in the intestinal tract, the gut microbiota, play an especially important role in human health. An investigation on the International Space Station, Rodent Research-7 (RR-7), studies how the gut microbiota changes in response to spaceflight, and how that change in turn affects the immune system, metabolic system, and circadian or daily rhythms. 

image

Research shows that the microbiota in the mammalian digestive tract has a major impact on an individual’s physiology and behavior. In humans, disruption of microbial communities has been linked to multiple health problems affecting intestinal, immune, mental and metabolic systems.

image

The investigation compares two different genetic strains of mice and two different durations of spaceflight. Twenty mice, ten of each strain, launch to the space station, and another 20 remain on the ground in identical conditions (except, of course, for the absence of gravity). Mice are a model organism that often serves as a scientific stand-in for other mammals and humans. 

image

Fecal material collected from the mice every two weeks will be examined for changes in the gut microbiota. Researchers plan to analyze fecal and tissue samples after 30 and 90 days of flight to compare the effects of different durations of time in space. 

image

With a better understanding of relationships between changes such as disruption in sleep and an imbalance of microbial populations, researchers can identify specific factors that contribute to changes in the microbiota. Further studies then can determine proactive measures and countermeasures to protect astronaut health during long-term missions. 

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

How does it feel to take a walk in space?


Tags
3 years ago

Does Webb have resolution to look more closely at nearby objects, like Mars or even Earth? Or just far things?


Tags
Loading...
End of content
No more pages to load
  • tuggyboy267
    tuggyboy267 liked this · 2 years ago
  • itslookingback
    itslookingback liked this · 4 years ago
  • neverstoplearning1999
    neverstoplearning1999 liked this · 4 years ago
  • naturalsomewhere39
    naturalsomewhere39 liked this · 4 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags