It’s A U.S. Record! Cumulative Days In Space: 383

It’s a U.S. Record! Cumulative Days in Space: 383

image

Today, Astronaut Scott Kelly has broken the record for longest time spent in space by a U.S. astronaut! Over the course of his four missions, Kelly has spent 383 cumulative days in space. This record was previously held by Astronaut Mike Fincke, with 382 days in space over three flights. Here are some more fun facts about this milestone:

4: The number of humans that have spent a year or more in orbit on a single mission

215 Days: The record currently held by Mike Lopez-Alegria for most time on a single spaceflight by U.S. astronaut. On Oct. 29, Kelly will break this record

377 Days: The current record for most days in space by a U.S. female astronaut, held by Peggy Whitson

879 Days: The record for most cumulative days in space by a human, currently held by Russian cosmonaut Gennady Padalka

image

Why Spend a Year in Space?

Kelly’s One-Year Mission is an important stepping stone on our journey to Mars and other deep space destinations. These investigations are expected to yield beneficial knowledge on the medical, psychological and biomedical challenges faced by astronauts during long-duration spaceflight.

Kelly is also involved in the Twins Study, which consists of ten separate investigations that are being conducted with his twin brother, who is on Earth. Since we are able to study two individuals who have the same genetics, but are in different environments for one year, we can gain a broader insight into the subtle effects and changes that may occur in spaceflight.

For regular updates on Kelly’s one-year mission aboard the space station, follow him on social media: Facebook, Twitter, Instagram.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

6 years ago

6 Things You Didn’t Know About Our ‘First’ Space Flight Center

When NASA began operations on Oct. 1, 1958, we consisted mainly of the four laboratories of our predecessor, the National Advisory Committee for Aeronautics (NACA). Hot on the heels of NASA’s first day of business, we opened the Goddard Space Flight Center. Chartered May 1, 1959, and located in Greenbelt, Maryland, Goddard is home to one of the largest groups of scientists and engineers in the world. These people are building, testing and experimenting their way toward answering some of the universe’s most intriguing questions.

To celebrate 60 years of exploring, here are six ways Goddard shoots for the stars.

image

For the last 60 years, we’ve kept a close eye on our home planet, watching its atmosphere, lands and ocean.

Goddard instruments were crucial in tracking the hole in the ozone layer over Antarctica as it grew and eventually began to show signs of healing. Satellites and field campaigns track the changing height and extent of ice around the globe. Precipitation missions give us a global, near-real-time look at rain and snow everywhere on Earth. Researchers keep a record of the planet’s temperature, and Goddard supercomputer models consider how Earth will change with rising temperatures. From satellites in Earth’s orbit to field campaigns in the air and on the ground, Goddard is helping us understand our planet.

image

We seek to answer the big questions about our universe: Are we alone? How does the universe work? How did we get here?

We’re piecing together the story of our cosmos, from now all the way back to its start 13.7 billion years ago. Goddard missions have contributed to our understanding of the big bang and have shown us nurseries where stars are born and what happens when galaxies collide. Our ongoing census of planets far beyond our own solar system (several thousand known and counting!) is helping us hone in on which ones might be potentially habitable.

image

We study our dynamic Sun.

Our Sun is an active star, with occasional storms and a constant outflow of particles, radiation and magnetic fields that fill the solar system out far past the orbit of Neptune. Goddard scientists study the Sun and its activity with a host of satellites to understand how our star affects Earth, planets throughout the solar system and the nature of the very space our astronauts travel through.

image

We explore the planets, moons and small objects in the solar system and beyond. 

Goddard instruments (well over 100 in total!) have visited every planet in the solar system and continue on to new frontiers. What we’ve learned about the history of our solar system helps us piece together the mysteries of life: How did life in our solar system form and evolve? Can we find life elsewhere?

image

Over 60 years, our communications networks have enabled hundreds of NASA spacecraft to “phone home.”

Today, Goddard communications networks bring down 98 percent of our spacecraft data – nearly 30 terabytes per day! This includes not only science data, but also key information related to spacecraft operations and astronaut health. Goddard is also leading the way in creating cutting-edge solutions like laser communications that will enable exploration – faster, better, safer – for generations to come. Pew pew!

image

Exploring the unknown often means we must create new ways of exploring, new ways of knowing what we’re “seeing.” 

Goddard’s technologists and engineers must often invent tools, mechanisms and sensors to return information about our universe that we may not have even known to look for when the center was first commissioned.

image

Behind every discovery is an amazing team of people, pushing the boundaries of humanity’s knowledge. Here’s to the ones who ask questions, find answers and ask questions some more!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago
Answer Time From Space!

Answer Time from Space!

I’m on day 321 of my #YearInSpace, and today I surpassed 500 days in space total. Let’s chat! Sat., Feb. 13 at 1:45 p.m. ET. 

5 years ago

What’s it like launching into space?


Tags
5 years ago

Weird Magnetic Behavior in Space

In between the planets, stars and other bits of rock and dust, space seems pretty much empty. But the super-spread out matter that is there follows a different set of rules than what we know here on Earth.

For the most part, what we think of as empty space is filled with plasma. Plasma is ionized gas, where electrons have split off from positive ions, creating a sea of charged particles. In most of space, this plasma is so thin and spread out that space is still about a thousand times emptier than the vacuums we can create on Earth. Even still, plasma is often the only thing out there in vast swaths of space — and its unique characteristics mean that it interacts with electric and magnetic fields in complicated ways that we are just beginning to understand.

image

Five years ago, we launched a quartet of satellites to study one of the most important yet most elusive behaviors of that material in space — a kind of magnetic explosion that had never before been adequately studied up close, called magnetic reconnection. Here are five of the ways the Magnetospheric Multiscale mission (MMS) has helped us study this intriguing magnetic phenomenon.

1. Seeing magnetic explosions up close

Magnetic reconnection is the explosive snapping and forging of magnetic fields, a process that can only happen in plasmas — and it's at the heart of space weather storms that manifest around Earth.

When the Sun launches clouds of solar material — which is also made of plasma — toward Earth, the magnetic field embedded within the material collides with Earth's huge global magnetic field. This sets off magnetic reconnection that injects energy into near-Earth space, triggering a host of effects — induced electric currents that can harm power grids, to changes in the upper atmosphere that can affect satellites, to rains of particles into the atmosphere that can cause the glow of the aurora.  

image

Though scientists had theorized about magnetic reconnection for decades, we'd never had a chance to study it on the small scales at which it occurs. Determining how magnetic reconnection works was one of the key jobs MMS was tasked with — and the mission quickly delivered. Using instruments that measured 100 times faster than previous missions, the MMS observations quickly determined which of several 50-year-old theories about magnetic reconnection were correct. It also showed how the physics of electrons dominates the process — a subject of debate before the launch.

2. Finding explosions in surprising new places

In the five years after launch, MMS made over a thousand trips around Earth, passing through countless magnetic reconnection events. It saw magnetic reconnection where scientists first expected it: at the nose of Earth's magnetic field, and far behind Earth, away from the Sun. But it also found this process in some unexpected places — including a region thought to be too tumultuous for magnetic reconnection to happen.

As solar material speeds away from the Sun in a flow called the solar wind, it piles up as it encounters Earth's magnetic field, creating a turbulent region called the magnetosheath. Scientists had only seen magnetic reconnection happening in relatively calm regions of space, and they weren't sure if this process could even happen in such a chaotic place. But MMS' precise measurements revealed that magnetic reconnection happens even in the magnetosheath.  

image

MMS also spotted magnetic reconnection happening in giant magnetic tubes, leftover from earlier magnetic explosions, and in plasma vortices shaped like ocean waves — based on the mission's observations, it seems magnetic reconnection is virtually ubiquitous in any place where opposing magnetic fields in a plasma meet.  

3. How energy is transferred

Magnetic reconnection is one of the major ways that energy is transferred in plasma throughout the universe — and the MMS mission discovered that tiny electrons hold the key to this process.

Electrons in a strong magnetic field usually exhibit a simple behavior: They spin tight spirals along the magnetic field. In a weaker field region, where the direction of the magnetic field reverses, the electrons go freestyle — bouncing and wagging back and forth in a type of movement called Speiser motion.

image

Flying just 4.5 miles apart, the MMS spacecraft measured what happens in a magnetic field with intermediate strength: These electrons dance a hybrid, meandering motion — spiraling and bouncing about before being ejected from the region. This takes away some of the magnetic field’s energy.

4. Surpassing computer simulations

Before we had direct measurements from the MMS mission, computer simulations were the best tool scientists had to study plasma's unusual magnetic behavior in space. But MMS' data has revealed that these processes are even more surprising than we thought — showing us new electron-scale physics that computer simulations are still trying to catch up with. Having such detailed data has spurred theoretical physicists to rethink their models and understand the specific mechanisms behind magnetic reconnection in unexpected ways. 

image

5. In deep space & nuclear reactions

Although MMS studies plasma near Earth, what we learn helps us understand plasma everywhere. In space, magnetic reconnection happens in explosions on the Sun, in supernovas, and near black holes.

These magnetic explosions also happen on Earth, but only under the most extreme circumstances: for example, in nuclear fusion experiments. MMS' measurements of plasma's behavior are helping scientists better understand and potentially control magnetic reconnection, which may lead to improved nuclear fusion techniques to generate energy more efficiently.

image

This quartet of spacecraft was originally designed for a two-year mission, and they still have plenty of fuel left — meaning we have the chance to keep uncovering new facets of plasma's intriguing behavior for years to come. Keep up with the latest on the mission at nasa.gov/mms.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Earth Day at Home with NASA

When you think about Earth Day, you might think about planting trees or picking up garbage. But right now, as a lot of us are staying inside to stay safe, we’ve got you covered for Earth Day at Home with ways to appreciate our beautiful home planet from your couch.

Want to help our researchers map coral in the ocean?

Our new NeMo-Net app lets you do that while playing a game!

image

What about virtually exploring our planet?

Worldview lets you choose any location on Earth and see it the way our satellites do – in natural color, lit by electric lights at night, or in infrared, highlighting fires around the globe. 

image

On April 22 -- Earth Day -- we’ll have a host of activities you can participate in. Scientists will share their research from their own homes, including messages from astronauts living on the International Space Station! Hear stories from a trip to Earth’s most remote location: Antarctica, including what happens when the chocolate goes missing on a weeks-long excursion. We’ll even have a new episode of NASA Science Live sharing some of what we’re doing to make our work more sustainable.

image

We’ll be sharing Earth Day from our homes with #EarthDayAtHome on Twitter, Instagram, Facebook and with a Tumblr Answer Time right here! Follow along, and participate, as we share our love for our home planet with you.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

A Space Odyssey: 21 Years of Searching for Another Earth

There are infinite worlds both like and unlike this world of ours. We must believe that in all worlds there are living creatures and plants and other things we see in this world. – Epicurus, c. 300 B.C.

image

Are we alone? Are there other planets like ours? Does life exist elsewhere in the universe?

These are questions mankind has been asking for years—since the time of Greek philosophers. But for years, those answers have been elusive, if not impossible to find.

The month of October marks the 21st anniversary of the discovery of the first planet orbiting another sun-like star (aka. an exoplanet), 51 Pegasi b or “Dimidium.” Its existence proved that there were other planets in the galaxy outside our solar system.*

image

Even more exciting is the fact that astronomers are in hot pursuit of the first discovery of an Earth-like exoplanet orbiting a star other than the sun. The discovery of the so-called "blue dot" could redefine our understanding of the universe and our place in it, especially if astronomers can also find signs that life exists on that planet's surface.

Astronomy is entering a fascinating era where we're beginning to answer tantalizing questions that people have pondered for thousands of years.

A Space Odyssey: 21 Years Of Searching For Another Earth

Are we alone?

In 1584, when the Catholic monk Giordano Bruno asserted that there were "countless suns and countless earths all rotating around their suns," he was accused of heresy.

image

But even in Bruno's time, the idea of a plurality of worlds wasn't entirely new. As far back as ancient Greece, humankind has speculated that other solar systems might exist and that some would harbor other forms of life.

Still, centuries passed without convincing proof of planets around even the nearest stars.

image

Are there other planets like ours?

The first discovery of a planet orbiting a star similar to the sun came in 1995. The Swiss team of Michel Mayor and Didier Queloz of Geneva announced that they had found a rapidly orbiting gas world located blisteringly close to the star 51 Pegasi.

image

This announcement marked the beginning of a flood of discoveries. Exotic discoveries transformed science fiction into science fact:

a pink planet

worlds with two or even three suns

a gas giant as light as Styrofoam

a world in the shape of an egg

a lava planet

image

But what about another Earth?

Our first exoplanet mission**, Kepler, launched in 2009 and revolutionized how astronomers understand the universe and our place in it. Kepler was built to answer the question—how many habitable planets exist in our galaxy?

image

And it delivered: Thousands of planet discoveries poured in, providing statistical proof that one in five sun-like stars (yellow, main-sequence G type) harbor Earth-sized planets orbiting in their habitable zones– where it’s possible liquid water could exist on their surface.

image

Now, our other missions like the Hubble and Spitzer space telescopes point at promising planetary systems (TRAPPIST-1) to figure out whether they are suitable for life as we know it.

image

Does life exist elsewhere in the universe?

Now that exoplanet-hunting is a mainstream part of astronomy, the race is on to build instruments that can find more and more planets, especially worlds that could be like our own.

image

Our Transiting Exoplanet Survey Satellite (TESS), set for launch in 2017-2018, will look for super-Earth and Earth-sized planets around stars much closer to home. TESS will find new planets the same way Kepler does—via the transit method—but will cover 400 times the sky area.

image

The James Webb Space Telescope, to launch in 2018, wil be our most powerful space telescope to date. Webb will use its spectrograph to look at exoplanet atmospheres, searching for signs of life.

image

We still don’t know where or which planets are in the habitable zones of the nearest stars­ to Earth. Searching out our nearest potentially habitable neighbors will be the next chapter in this unfolding story.

image

*The first true discovery of extrasolar planets was actually a triplet of dead worlds orbiting the remains of an exploded star, called a pulsar star. Two of three were found by Dr. Alexander Wolszczan in 1992– a full three years before Dimidium’s discovery. But because they are so strange, and can’t support life as we know it, most scientists would reserve the “first” designation for a planet orbiting a normal star.

** The French CoRoT mission, launched in 2006, was the first dedicated exoplanet space mission. It has contributed dozens of confirmed exoplanets to the ranks and boasts a roster of some of the most well-studied planets outside our solar system.

To stay up-to-date on our latest exoplanet discoveries, visit: https://exoplanets.nasa.gov

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago
“I Realized, Really For The First Time, That People Who Didn’t Even Know Me Were Wishing For My Success
“I Realized, Really For The First Time, That People Who Didn’t Even Know Me Were Wishing For My Success

“I realized, really for the first time, that people who didn’t even know me were wishing for my success —  hoping to share in the pride of future accomplishments, but even more important, willing to provide encouragement in the face of disappointments. I hope that by sharing my experiences, others will be inspired to set high goals for themselves.”

- Ellen Ochoa is the first Hispanic director of NASA’s Johnson Space Center and the first Hispanic woman to go to space.

Q: You were the first Hispanic woman to go to space, and you’re the first Hispanic director of the Johnson Space Center. What does the achievement of firsts like these mean to you? What kind of responsibility comes with paving the way?

Becoming an astronaut was a personal goal for me, so I was surprised and overwhelmed to receive such warm support from the entire Hispanic community when I was selected for the astronaut corps. I realized, really for the first time, that people who didn’t even know me were wishing for my success —  hoping to share in the pride of future accomplishments, but even more important, willing to provide encouragement in the face of disappointments. In the same way, in addition to working hard to do my best at every position I’ve had, it became an important part of my job to provide encouragement to others, particularly women and minorities underrepresented in STEM [Science Technology Engineering and Math] fields. I hope that by sharing my experiences, others will be inspired to set high goals for themselves.

Q: Have you experienced any particular challenges as a female astronaut? How have you stayed motivated in the face of such challenges?

Actually, the women astronauts who came before me performed their jobs so well that it really wasn’t an issue.  There was probably more skepticism due to my research background, given that the job is an operational one, and I didn’t have much experience in that environment. The training we’re provided helped prepare me well, as did veterans astronauts who passed on helpful tips.

Q: As a pioneer of spacecraft technology and a champion of outreach, how do you think we can inspire more women to enter STEM fields?

Use every available communications avenue to let women know about the interesting and rewarding careers in the STEM fields. The website Women@NASA profiles many women around the agency, having them describe in their own words what they do and the path that led them to their careers. And since girls start making choices in middle school that can limit their options later on, there’s a section on the website aimed specifically at middle school girls called Aspire to Inspire featuring women at Johnson Space Center. NASA has also made great use of many social media platforms to spread the word on what we are doing in space exploration, both human and robotics. From the first flyby of Pluto to the completion of a one-year mission onboard the International Space Station, this has been an exciting year for NASA.

8 years ago

Over a 22-hour period (May 2-3, 2017), strands of plasma at the sun’s edge shifted and twisted back and forth. In this close-up, the strands are being manipulated by strong magnetic forces associated with active regions on the sun. 

To give a sense of scale, the strands hover above the sun more than several times the size of Earth! The images were taken in a wavelength of extreme ultraviolet light. 

Learn more: http://go.nasa.gov/2qT2C4B

Credits: NASA/SDO

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

How do space plants grow? This experiment on the International Space Station hopes to find out. Space-grown plants look mostly normal, but have some distinct features compared to plants grown on Earth – most notably in the way their roots grow.

Roots evolved to grow “down” to search out nutrients and water, and on Earth, that response is predominantly governed by the force of gravity. But how does a plant know which way is down when there is no “down”? What determines the direction in which the plant’s roots should grow in space?

We are studying the molecular genetic signals that help guide plant growth in the novel environment of spaceflight, including how plants use new molecular “tools” to sense and respond to their environment when familiar signals are absent. What we learn could improve the way we grow plants in microgravity on future space missions, enabling crews to use plants for food and oxygen. This is just one of many petri plates filled with tiny plants from the Characterizing Arabidopsis Root Attractions-2 (CARA-2) that was recently harvest aboard the space station.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
5 years ago

SPACE: A Global Frontier

Space is a global frontier. That’s why we partner with nations all around the world to further the advancement of science and to push the boundaries of human exploration. With international collaboration, we have sent space telescopes to observe distant galaxies, established a sustainable, orbiting laboratory 254 miles above our planet’s surface and more! As we look forward to the next giant leaps in space exploration with our Artemis lunar exploration program, we will continue to go forth with international partnerships!

Teamwork makes the dream work. Here are a few of our notable collaborations:

Artemis Program

image

Our Artemis lunar exploration program will send the first woman and the next man to the Moon by 2024. Using innovative technologies and international partnerships, we will explore more of the lunar surface than ever before and establish sustainable missions by 2028.

During these missions, the Orion spacecraft will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability and provide safe re-entry from deep space return velocities. The European Service Module, provided by the European Space Agency, will serve as the spacecraft’s powerhouse and supply it with electricity, propulsion, thermal control, air and water in space.

image

The Gateway, a small spaceship that will orbit the Moon, will be a home base for astronauts to maintain frequent and sustainable crewed missions to the lunar surface. With the help of a coalition of nations, this new spaceship will be assembled in space and built within the next decade.

Gateway already has far-reaching international support, with 14 space agencies agreeing on its importance in expanding humanity's presence on the Moon, Mars and deeper into the solar system.

International Space Station

image

The International Space Station (ISS) is one of the most ambitious international collaborations ever attempted. Launched in 1998 and involving the U.S., Russia, Canada, Japan and the participating countries of the European Space Agency — the ISS has been the epitome of global cooperation for the benefit of humankind. The largest space station ever constructed, the orbital laboratory continues to bring together international flight crews, globally distributed launches, operations, training, engineering and the world’s scientific research community.

Hubble Space Telescope 

image

The Hubble Space Telescope, one of our greatest windows into worlds light-years away, was built with contributions from the European Space Agency (ESA).

image

ESA provided the original Faint Object Camera and solar panels, and continues to provide science operations support for the telescope. 

Deep Space Network

image

The Deep Space Network (DSN) is an international array of giant radio antennas that span the world, with stations in the United States, Australia and Spain. The three facilities are equidistant approximately one-third of the way around the world from one another – to permit constant communication with spacecraft as our planet rotates. The network supports interplanetary spacecraft missions and a few that orbit Earth. It also provides radar and radio astronomy observations that improve our understanding of the solar system and the larger universe!

Mars Missions 

Information gathered today by robots on Mars will help get humans to the Red Planet in the not-too-distant future. Many of our Martian rovers – both past, present and future – are the products of a coalition of science teams distributed around the globe. Here are a few notable ones:

Curiosity Mars Rover 

image

France: ChemCam, the rover’s laser instrument that can analyze rocks from more than 20 feet away

Russia: DAN, which looks for subsurface water and water locked in minerals

Spain: REMS, the rover’s weather station

InSight Mars Lander

image

France with contributions from Switzerland: SEIS, the first seismometer on the surface of another planet

Germany: HP3, the heatflow probe that will help us understand the interior structure of Mars

Spain: APSS, the lander’s weather station

Mars 2020 Rover

image

Norway: RIMFAX, a ground-penetrating radar

France: SuperCam, the laser instrument for remote science

Spain: MEDA, the rover’s weather station

Space-Analog Astronaut Training

We partner with space agencies around the globe on space-analog missions. Analog missions are field tests in locations that have physical similarities to the extreme space environments. They take astronauts to space-like environments to prepare as international teams for near-term and future exploration to asteroids, Mars and the Moon.

image

The European Space Agency hosts the Cooperative Adventure for Valuing and Exercising human behavior and performance Skills (CAVES) mission. The two week training prepares multicultural teams of astronauts to work safely and effectively in an environment where safety is critical. The mission is designed to foster skills such as communication, problem solving, decision-making and team dynamics.

image

We host our own analog mission, underwater! The NASA Extreme Environment Mission Operations (NEEMO) project sends international teams of astronauts, engineers and scientists to live in the world’s only undersea research station, Aquarius, for up to three weeks. Here, “aquanauts” as we call them, simulate living on a spacecraft and test spacewalk techniques for future space missions in hostile environments.

International Astronautical Congress 

So, whether we’re collaborating as a science team around the globe, or shoulder-to-shoulder on a spacewalk, we are committed to working together with international partners for the benefit of all humanity! 

If you’re interested in learning more about how the global space industry works together, check out our coverage of the 70th International Astronautical Congress (IAC) happening this week in Washington, D.C. IAC is a yearly gathering in which all space players meet to talk about the advancements and progress in exploration.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • goodiebluebox
    goodiebluebox liked this · 6 years ago
  • sophiasticateed
    sophiasticateed liked this · 7 years ago
  • brokentowels
    brokentowels liked this · 8 years ago
  • wheatcountryhero
    wheatcountryhero liked this · 8 years ago
  • geraldad
    geraldad liked this · 8 years ago
  • scrap-paper-origami
    scrap-paper-origami liked this · 8 years ago
  • thepheonixqueen
    thepheonixqueen reblogged this · 8 years ago
  • arirashkae
    arirashkae liked this · 8 years ago
  • wantonlywindswept
    wantonlywindswept reblogged this · 8 years ago
  • wantonlywindswept
    wantonlywindswept liked this · 8 years ago
  • arirashkae
    arirashkae reblogged this · 8 years ago
  • crispenis
    crispenis reblogged this · 8 years ago
  • shippingtech-blog
    shippingtech-blog reblogged this · 8 years ago
  • cognitivelyadvancedzygote
    cognitivelyadvancedzygote liked this · 9 years ago
  • psychosalad
    psychosalad liked this · 9 years ago
  • spooky-levi-dildo
    spooky-levi-dildo liked this · 9 years ago
  • bigbluenasa
    bigbluenasa reblogged this · 9 years ago
  • dab0
    dab0 reblogged this · 9 years ago
  • dab0
    dab0 liked this · 9 years ago
  • mosessalgado97
    mosessalgado97 liked this · 9 years ago
  • sciencerocks-blgonzales-blog
    sciencerocks-blgonzales-blog liked this · 9 years ago
  • tencolorpen
    tencolorpen liked this · 9 years ago
  • shesmedusa
    shesmedusa liked this · 9 years ago
  • starlordsam26
    starlordsam26 reblogged this · 9 years ago
  • haloaroundthemoon
    haloaroundthemoon liked this · 9 years ago
  • earthlingzineb
    earthlingzineb liked this · 9 years ago
  • safari-eyes
    safari-eyes reblogged this · 9 years ago
  • imbogwitch
    imbogwitch liked this · 9 years ago
  • underthesilentstars
    underthesilentstars liked this · 9 years ago
  • itssuicidedevil
    itssuicidedevil reblogged this · 9 years ago
  • postmodernbaseball
    postmodernbaseball liked this · 9 years ago
  • fuckingmultiverse
    fuckingmultiverse reblogged this · 9 years ago
  • farmerpat420
    farmerpat420 liked this · 9 years ago
  • wesleythebuck
    wesleythebuck liked this · 9 years ago
  • geekwiththegoggles
    geekwiththegoggles reblogged this · 9 years ago
  • geekwiththegoggles
    geekwiththegoggles liked this · 9 years ago
  • tristanshoard
    tristanshoard reblogged this · 9 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags