Your personal Tumblr journey starts here
BEST OF BL 2020: [4/5] Favourite otps
SoloGui - Oxygen
oxygen the series: episode 13
non-sexual intimacy is my kink and this drama is the king of it.
i’ve never seen a drama where the main couple gets together so early and there is ZERO relationship drama. it’s all external conflict that they face head-on as a unit. communication + respect + patience + small touches to show they are precious to you…soooo good.
just skip through the hetero bullshit (didn’t watch any of it after ep 2 lol) and this is a very rare gem of a show. it has a soft, sentimental tone overall (except for big bunny energy kao/ball!) because the two main characters are both more reserved and quiet and when they were delivering the cheesiest of lines coming from any other character it is SO in-character for them felt.
Submitted for your consideration: A team of researchers from more than 20 institutions, boarding two research vessels, heading into the ocean’s twilight zone.
The twilight zone is a dimly lit region between 650 and 3300 feet below the surface, where we’re unfolding the mystery of how tiny ocean organisms affect our planet’s climate.
These tiny organisms – called phytoplankton – are plant-like and mostly single-celled. They live in water, taking in carbon dioxide and releasing oxygen.
Two boats, more than 100 researchers from more than 20 partner institutions, and a whole fleet of robotic explorers make up the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) team. We’re learning more about what happens to carbon dioxide after phytoplankton digest it.
Phytoplankton have predators in the ocean called zooplankton. They absorb the phytoplankton’s carbon, carrying it up the food chain. The EXPORTS mission will focus partly on how that happens in the ocean’s twilight zone, where some zooplankton live. When phytoplankton die, sometimes their bodies sink through the same area. All of this carries carbon dioxide into the ocean’s depths and out of Earth’s atmosphere.
Studying the diversity of these organisms is important to better understand what’s happening to the phytoplankton as they die. Researchers from the Virginia Institute of Marine Science are using a very fine mesh net to sample water at various depths throughout the ocean to count various plankton populations.
Researchers from the University of Rhode Island are bringing the tools to sequence the DNA of phytoplankton and zooplankton to help count these organism populations, getting a closer look at what lives below the ocean’s surface.
Taking measurements at various depths is important, because phytoplankton, like plants, use sunlight to digest carbon dioxide. That means that phytoplankton at different levels in the ocean absorb and digest carbon differently. We’re bringing a Wirewalker, an instrument that glides up and down along a vertical wire to take in water samples all along its 500-foot long tether.
This journey to the twilight zone will take about thirty days, but we’ll be sending back dispatches from the ships. Follow along as we dive into ocean diversity on our Earth Expeditions blog: https://blogs.nasa.gov/earthexpeditions.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
How do space plants grow? This experiment on the International Space Station hopes to find out. Space-grown plants look mostly normal, but have some distinct features compared to plants grown on Earth – most notably in the way their roots grow.
Roots evolved to grow “down” to search out nutrients and water, and on Earth, that response is predominantly governed by the force of gravity. But how does a plant know which way is down when there is no “down”? What determines the direction in which the plant’s roots should grow in space?
We are studying the molecular genetic signals that help guide plant growth in the novel environment of spaceflight, including how plants use new molecular “tools” to sense and respond to their environment when familiar signals are absent. What we learn could improve the way we grow plants in microgravity on future space missions, enabling crews to use plants for food and oxygen. This is just one of many petri plates filled with tiny plants from the Characterizing Arabidopsis Root Attractions-2 (CARA-2) that was recently harvest aboard the space station.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.